3,219 research outputs found

    Multimodal Egocentric Analysis of Focused Interactions

    Get PDF
    Continuous detection of social interactions from wearable sensor data streams has a range of potential applications in domains, including health and social care, security, and assistive technology. We contribute an annotated, multimodal data set capturing such interactions using video, audio, GPS, and inertial sensing. We present methods for automatic detection and temporal segmentation of focused interactions using support vector machines and recurrent neural networks with features extracted from both audio and video streams. The focused interaction occurs when the co-present individuals, having the mutual focus of attention, interact by first establishing the face-to-face engagement and direct conversation. We describe an evaluation protocol, including framewise, extended framewise, and event-based measures, and provide empirical evidence that the fusion of visual face track scores with audio voice activity scores provides an effective combination. The methods, contributed data set, and protocol together provide a benchmark for the future research on this problem

    Auditory environmental context affects visual distance perception

    Get PDF
    In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.Fil: Etchemendy, Pablo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Abregú, Ezequiel Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Calcagno, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Eguia, Manuel Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Vechiatti, Nilda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Iasi, Federico. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Vergara, Ramiro Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; Argentin

    MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain

    Full text link
    Wearable cameras allow to acquire images and videos from the user's perspective. These data can be processed to understand humans behavior. Despite human behavior analysis has been thoroughly investigated in third person vision, it is still understudied in egocentric settings and in particular in industrial scenarios. To encourage research in this field, we present MECCANO, a multimodal dataset of egocentric videos to study humans behavior understanding in industrial-like settings. The multimodality is characterized by the presence of gaze signals, depth maps and RGB videos acquired simultaneously with a custom headset. The dataset has been explicitly labeled for fundamental tasks in the context of human behavior understanding from a first person view, such as recognizing and anticipating human-object interactions. With the MECCANO dataset, we explored five different tasks including 1) Action Recognition, 2) Active Objects Detection and Recognition, 3) Egocentric Human-Objects Interaction Detection, 4) Action Anticipation and 5) Next-Active Objects Detection. We propose a benchmark aimed to study human behavior in the considered industrial-like scenario which demonstrates that the investigated tasks and the considered scenario are challenging for state-of-the-art algorithms. To support research in this field, we publicy release the dataset at https://iplab.dmi.unict.it/MECCANO/.Comment: arXiv admin note: text overlap with arXiv:2010.0565

    Multimodal interactions in insect navigation

    Get PDF
    Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities

    An Outlook into the Future of Egocentric Vision

    Full text link
    What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.Comment: We invite comments, suggestions and corrections here: https://openreview.net/forum?id=V3974SUk1

    WEAR: A Multimodal Dataset for Wearable and Egocentric Video Activity Recognition

    Full text link
    Though research has shown the complementarity of camera- and inertial-based data, datasets which offer both modalities remain scarce. In this paper we introduce WEAR, a multimodal benchmark dataset for both vision- and wearable-based Human Activity Recognition (HAR). The dataset comprises data from 18 participants performing a total of 18 different workout activities with untrimmed inertial (acceleration) and camera (egocentric video) data recorded at 10 different outside locations. WEAR features a diverse set of activities which are low in inter-class similarity and, unlike previous egocentric datasets, not defined by human-object-interactions nor originate from inherently distinct activity categories. Provided benchmark results reveal that single-modality architectures have different strengths and weaknesses in their prediction performance. Further, in light of the recent success of transformer-based video action detection models, we demonstrate their versatility by applying them in a plain fashion using vision, inertial and combined (vision + inertial) features as input. Results show that vision transformers are not only able to produce competitive results using only inertial data, but also can function as an architecture to fuse both modalities by means of simple concatenation, with the multimodal approach being able to produce the highest average mAP, precision and close-to-best F1-scores. Up until now, vision-based transformers have neither been explored in inertial nor in multimodal human activity recognition, making our approach the first to do so. The dataset and code to reproduce experiments is publicly available via: mariusbock.github.io/wearComment: 12 pages, 2 figures, 2 table

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio
    corecore