14,787 research outputs found

    A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

    Full text link
    Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with SROIQ(D) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    An empirical study of inter-concept similarities in multimedia ontologies

    Get PDF
    Generic concept detection has been a widely studied topic in recent research on multimedia analysis and retrieval, but the issue of how to exploit the structure of a multimedia ontology as well as different inter-concept relations, has not received similar attention. In this paper, we present results from our empirical analysis of different types of similarity among semantic concepts in two multimedia ontologies, LSCOM-Lite and CDVP-206. The results show promise that the proposed methods may be helpful in providing insight into the existing inter-concept relations within an ontology and selecting the most facilitating set of concepts and hierarchical relations. Such an analysis as this can be utilized in various tasks such as building more reliable concept detectors and designing large-scale ontologies

    The landscape of multimedia ontologies in the last decade

    Get PDF
    Many efforts have been made in the area of multimedia to bridge the socalled “semantic-gap” with the implementation of ontologies from 2001 to the present. In this paper, we provide a comparative study of the most well-known ontologies related to multimedia aspects. This comparative study has been done based on a framework proposed in this paper and called FRAMECOMMON. This framework takes into account process-oriented dimension, such as the methodological one, and outcome-oriented dimensions, like multimedia aspects, understandability, and evaluation criteria. Finally, we derive some conclusions concerning this one decade state-of-art in multimedia ontologies

    Knowledge web: realising the semantic web... all the way to knowledge-enhanced multimedia documents

    Get PDF
    The semantic web and semantic web services are major efforts in order to spread and to integrate knowledge technology to the whole web. The Knowledge Web network of excellence aims at supporting their developments at the best and largest European level and supporting industry in adopting them. It especially investigates the solution of scalability, heterogeneity and dynamics obstacles to the full development of the semantic web. We explain how Knowledge Web results should benefit knowledge-enhanced multimedia applications

    Are we Ready to Embrace the Semantic Web?

    Get PDF
    The aim of the semantic web is to describe resources available on the web using metadata elements that can be processed or interpreted by machines. MPEG-7 is the result of a standardisation effort to annotate multimedia documents, and it offers a rich suite of metadata descriptors for describing these documents at various levels of abstraction from low-level features to high-level semantics. Owing to the proliferation of multimedia content in the internet, there is now a lot of interest in the semantic web community in multimedia metadata standards in general, and MPEG-7 in particular. Despite the fact that the semantic web initiatives could benefit a lot from MPEG-7 for the annotation of multimedia documents, recent studies have underlined the limitations of MPEG-7 in describing the semantics of highly structured domains like sports or medicine. This has led to an upsurge of interest in adopting an integrated approach to the design of multimedia ontologies. In our work, we describe a systematic approach to the design of multimedia ontologies in which we use MPEG-7 to model only the structural and the low-level aspects of multimedia documents. High-level semantics are described using domain-specific vocabularies. A retrieval engine based on this framework will then be able to process high-level text-based semantic queries. Whilst a lot of research has been done in the design of multimedia ontologies, a plaguing issue is the automatic annotation of multimedia content at a semantic level. It is possible to derive low-level descriptors using state-of-the-art techniques in multimedia content analysis, but the same does not hold true when it comes to analysing multimedia content at a high level of abstraction. We discuss various approaches that have been recently proposed to accomplish this task. An interesting line of discussion is the automatic population and enrichment of multimedia ontologies that offers a lot of challenges and stresses the need for efficient approaches for the semantic analysis of multimedia documents

    Living with the Semantic Gap: Experiences and remedies in the context of medical imaging

    No full text
    Semantic annotation of images is a key concern for the newly emerged applications of semantic multimedia. Machine processable descriptions of images make it possible to automate a variety of tasks from search and discovery to composition and collage of image data bases. However, the ever occurring problem of the semantic gap between the low level descriptors and the high level interpretation of an image poses new challenges and needs to be addressed before the full potential of semantic multimedia can be realised. We explore the possibilities and lessons learnt with applied semantic multimedia from our engagement with medical imaging where we deployed ontologies and a novel distributed architecture to provide semantic annotation, decision support and methods for tackling the semantic gap problem

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination
    corecore