2,669 research outputs found

    A Unified multilingual semantic representation of concepts

    Get PDF
    Semantic representation lies at the core of several applications in Natural Language Processing. However, most existing semantic representation techniques cannot be used effectively for the representation of individual word senses. We put forward a novel multilingual concept representation, called MUFFIN , which not only enables accurate representation of word senses in different languages, but also provides multiple advantages over existing approaches. MUFFIN represents a given concept in a unified semantic space irrespective of the language of interest, enabling cross-lingual comparison of different concepts. We evaluate our approach in two different evaluation benchmarks, semantic similarity and Word Sense Disambiguation, reporting state-of-the-art performance on several standard datasets

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Huge automatically extracted training sets for multilingual Word Sense Disambiguation

    Get PDF
    We release to the community six large-scale sense-annotated datasets in multiple language to pave the way for supervised multilingual Word Sense Disambiguation. Our datasets cover all the nouns in the English WordNet and their translations in other languages for a total of millions of sense-tagged sentences. Experiments prove that these corpora can be effectively used as training sets for supervised WSD systems, surpassing the state of the art for low- resourced languages and providing competitive results for English, where manually annotated training sets are accessible. The data is available at trainomatic. org

    Using Cross-Lingual Explicit Semantic Analysis for Improving Ontology Translation

    Get PDF
    Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge

    NASARI: a novel approach to a Semantically-Aware Representation of items

    Get PDF
    The semantic representation of individual word senses and concepts is of fundamental importance to several applications in Natural Language Processing. To date, concept modeling techniques have in the main based their representation either on lexicographic resources, such as WordNet, or on encyclopedic resources, such as Wikipedia. We propose a vector representation technique that combines the complementary knowledge of both these types of resource. Thanks to its use of explicit semantics combined with a novel cluster-based dimensionality reduction and an effective weighting scheme, our representation attains state-of-the-art performance on multiple datasets in two standard benchmarks: word similarity and sense clustering. We are releasing our vector representations at http://lcl.uniroma1.it/nasari/

    Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

    Get PDF
    Word embeddings are widely used in Nat-ural Language Processing, mainly due totheir success in capturing semantic infor-mation from massive corpora. However,their creation process does not allow thedifferent meanings of a word to be auto-matically separated, as it conflates theminto a single vector. We address this issueby proposing a new model which learnsword and sense embeddings jointly. Ourmodel exploits large corpora and knowl-edge from semantic networks in order toproduce a unified vector space of wordand sense embeddings. We evaluate themain features of our approach both qual-itatively and quantitatively in a variety oftasks, highlighting the advantages of theproposed method in comparison to state-of-the-art word- and sense-based models

    Discovering missing Wikipedia inter-language links by means of cross-lingual word sense disambiguation

    Get PDF
    Wikipedia is a very popular online multilingual encyclopedia that contains millions of articles covering most written languages. Wikipedia pages contain monolingual hypertext links to other pages, as well as inter-language links to the corresponding pages in other languages. These inter-language links, however, are not always complete. We present a prototype for a cross-lingual link discovery tool that discovers missing Wikipedia inter-language links to corresponding pages in other languages for ambiguous nouns. Although the framework of our approach is language-independent, we built a prototype for our application using Dutch as an input language and Spanish, Italian, English, French and German as target languages. The input for our system is a set of Dutch pages for a given ambiguous noun, and the output of the system is a set of links to the corresponding pages in our five target languages. Our link discovery application contains two submodules. In a first step all pages are retrieved that contain a translation (in our five target languages) of the ambiguous word in the page title (Greedy crawler module), whereas in a second step all corresponding pages are linked between the focus language (being Dutch in our case) and the five target languages (Cross-lingual web page linker module). We consider this second step as a disambiguation task and apply a cross-lingual Word Sense Disambiguation framework to determine whether two pages refer to the same content or not

    Two knowledge-based methods for High-Performance Sense Distribution Learning

    Get PDF
    Knowing the correct distribution of senses within a corpus can potentially boost the performance of Word Sense Disambiguation (WSD) systems by many points. We present two fully automatic and language-independent methods for computing the distribution of senses given a raw corpus of sentences. Intrinsic and extrinsic evaluations show that our methods outperform the current state of the art in sense distribution learning and the strongest baselines for the most frequent sense in multiple languages and on domain-specific test sets. Our sense distributions are available at http://trainomatic.org

    MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach

    Full text link
    Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-based agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results show that the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG, on the other hand, achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.Comment: Accepted in K-CAP 2017: Knowledge Capture Conferenc
    • 

    corecore