56 research outputs found

    Adaptive Numerical Methods for PDEs

    Get PDF
    This collection contains the extended abstracts of the talks given at the Oberwolfach Conference on “Adaptive Numerical Methods for PDEs”, June 10th - June 16th, 2007. These talks covered various aspects of a posteriori error estimation and mesh as well as model adaptation in solving partial differential equations. The topics ranged from the theoretical convergence analysis of self-adaptive methods, over the derivation of a posteriori error estimates for the finite element Galerkin discretization of various types of problems to the practical implementation and application of adaptive methods

    Parallel Multigrid Method for Adaptive Finite Elements with Application to 3D Flow Problems

    Get PDF
    Aim of this work is the examination of numerical methods for the solution of large systems of PDE's. The equations under consideration arise from chemically reacting flows. A focal point is the analysis of a finite element discretization with stabilized finite elements of degree two. Aspects of error estimation, solution techniques and mesh adaptivity are discussed with regard to the Navier-Stokes equations. Using a well established Navier-Stokes benchmark flow the discussed methods are verified. To cope with the huge systems arising from reactive flow problems a parallel multigrid method on locally refined meshes is presented. Finally, we will perform a simulation of a methane burner in a complex three dimensional geometry. We will use a detailed reaction mechanism with 39 chemical species

    Adaptive Coupling of Finite Element Methods for Simulation of Hydrodynamics and Pollutant Transport in Lakes

    Get PDF
    Gegenstand dieser Arbeit ist die Entwicklung neuer numerischer Methoden zur Lösung von Problemen der Hydrodynamik in Seen. Für die Berechnung von Transportprozessen von Schadstoffen ist es wichtig Fronten scharf aufzulösen. Dies erfordert eine hohe Genauigkeit in bestimmten Bereichen des Gebiets. Um die erforderliche Genauigkeit zu erreichen und gleichzeitig die Kosten bei der Berechnung moderat zu halten, lösen wir das dreidimensioale Gebiet nicht überall komplett auf. In den Teilen des Gebiet, in denen nur geringe Genauigkeit gefordert wird, genügt eine zweidimensioale Lösung. Für die Bereiche in unserem Gebiet, in denen wir bessere Genauigkeit erzielen wollen, addieren wir zu der zweidimensionalen Lösung eine dreidimensionale Korrektur. Auf diese Weise erreichen wir in gewissen Teilen des Gebiets eine genauere, dreidimensionale Lösung bei moderatem Mehraufwand. Die Gleichungen, die durch diese Kopplung entstehen, werden hergeleitet. Für die Vorkonditionierung des gekoppelten Systems verwenden wir einen Block-Vorkonditionierer. Für die einzelnen Blöcke haben wir einen Mehrgitter-Vorkonditionierer für stetige Finite Elemente auf adaptiv verfeinerten Gittern entwickelt. Dabei geschieht die Glättung nur lokal. Anhand von numerischen Beispielen zeigen wir die Effizienz für Elemente höherer Ordnung
    • …
    corecore