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Summer, 2006

Greeting

Hiroshi Fujita （藤田　宏）

As the honorary organizer, I wish to welcome you to the First China-Japan-Korea

Joint Conference on Numerical Mathematics, and wish you to enjoy scientific exchanges

and cool summer in Sapporo. My gratitude goes to coordinators from the three coun-

tries, Professors Zhong-Ci Shi, Hisashi Okamoto, Dongwoo Sheen, who have planned and

materialized this important meeting, and also goes to local organizers, scientific advisors

and all the other members who have helped the coordinators.

The three countries are geographically neighbors and are culturally linked since ancient

years. For instance, more than thousand years ago, Chinese characters (letters) came to

Japan from China (along with Buddhism) via Korea, which was followed by import of

general Chinese culture and by import of various Korean craftsmanship, while Japan

served as the first runner to introduce Western science and technology into East Asia for

several decades since she opened her door to the outside about 150 years ago. From this

point of view, I can see that friendly collaboration of the three countries through the CJK

conference can be and will be successfully achieved.

It would be also my duty to refer to a forerunner of the CJK conference, i.e. China-

Japan Joint Seminar on Numerical Mathematics, a series of seven conferences held every

two years since 1992, which contributed much to promote scientific collaboration and to

confirm friendship between Chinese and Japanese researchers in the relevant fields. For

it, Prof. Zhong-Ci Shi was the standing coordinator from Chinese side, while the rotating

task of Japanese coordinator was taken by Professors Teruo Ushijima, Masatake Mori,

Hideo Kawarada, Makoto Natori and Hisashi Okamoto. I can also recollect preliminary

but earnest discussions toward the CJ collaboration which were made in 1981 with Chinese

leaders including Professors Su Buchin, Gu Chaohao and Feng Kang, when I visited China

for the first time.

As to the global aim of science, it is now claimed (e.g. by ICSU) that science in

this century must be ‘science for the human society’ instead of traditional ‘science for

science’. In nature, Numerical Mathematics is directly connected with enforcement of

human understanding of natural and social phenomena, and with creation of powerful

methods to solve serious problems met by humankind. In this connection, I dare say that

researchers of the CJK countries share a good point in doing Numerical Mathematics for

the above-mentioned purposes; that is Wisdom in the East.　
Thus I wish and believe success of the CJK conference.
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August 3, 2006 (Thursday)
9:15-9:55 Opening Session 
10:00-10:40 Zhong-Ci Shi (Chinese Academy of Sciences) 

石 鐘慈（中国科学院） 
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August 4, 2006 (Friday)
9:15-9:55 Dongwoo Sheen (Seoul National University) 
      申 東雨(ソウル大学) 

Analysis of Conforming and Nonconforming Finite Element Methods in Wave 
Propagation

10:00-10:40 Tao Tang (Hong Kong Baptist University) 
湯 濤（香港浸会大学） 

Moving Mesh Methods for Singular Problems Using Perturbed Harmonic 
Mappings

11:00-11:40 Takashi Kako (The University of Electro-Communications)  
加古 隆（電気通信大学） 

Numerical Methods for Wave Propagation Problem Applied to Voice 
Generation Simulation 

11:45-12:25 Yu-Jiang Wu (Lanzhou University) 
伍 渝江（蘭州大学） 

Semi-Implicit Schemes with Multilevel Wavelet-like Incremental Unkowns for 
a Reaction-Diffusion Equation 

14:00-16:00 Poster Session & Group Photo 
16:00-16:20 Awarding Ceremony  
16:25-17:05 Weiwei Sun (City University of Hong Kong／香港城市大学)

Mathematical Modeling for Moisture Transport in Fibrous Materials and 
Applications

17:10-17:30 Takuya Tsuchiya (Ehime University) 
土屋 卓也（愛媛大学） 

 Conformal Mappings to Exterior Jordan Domains and their Finite Element 
Approximation

 

August 5, 2006 (Saturday)
9:35-9:55 Takayasu Matsuo (The University of Tokyo) 

松尾 宇泰（東京大学） 

A conservative Galerkin Scheme for the KdV Equation 
10:00-10:40 Youngmok Jeon (Ajou University) 

全 永穆（亜州大学） 

The Cell Boundary Element Methods 
11:00-11:40 Yoshimasa Nakamura (Kyoto Univeristy) 

中村 佳正（京都大学） 

New Singular Value Decomposition Algorithm with High Performance 
11:45-12:25 Linzhang Lu (Xiamen University／廈門大学)  

A New Look at Restarted GMRES Method 



14:00-14:40 Tetsuya Sakurai (University of Tsukuba) 
櫻井 鉄也（筑波大学） 

A Rayleigh-Ritz Type Method for Large-Scale Generalized Eigenvalue 
Problems

14:45-15:25 Donghui Li (Hunan University) 
李 董輝（湖南大学） 

Descent Nonlinear Congugate Gradient Methods for Optimization 
16:00-16:40 Zhong-Zhi Bai (Chinese Academy of Sciences／中国科学院)

Iterative Splitting Methods for Nonsymmetric Algebraic Riccati Equations 

August 6, 2006 (Sunday)
9:15-9:55 Zhiming Chen (Chinese Academy of Sciences／中国科学院)

A Posteriori Error Analysis and Adaptive Methods for Partial Differential 
Equations

10:00-10:40 Seokchan Kim (Changwon National University／昌原大学)
The Finite Element Methods Dealing with Domain Singularities

11:00-11:40 Hiroshi Fujiwara (Kyoto University) 
藤原 宏志（京都大学） 

High-Accurate Numerical Computation with Multiple-precision Arithmetic and 
Spectral Method

11:45-12:25 Chang-Ock Lee (KAIST) 
李 昌沃（韓国科学技術院） 

A Neumann-Dirichlet Preconditioner for a Feti-DP Formulation with Mortar 
Methods

14:00-14:40 Mitsuhiro T. Nakao (Kyushu University) 
中尾 充宏（九州大学） 

Numerical Verification Methods of Bifurcating Solutions for Two- and Three- 
Dimensional Rayleigh-Bénard Problems 

August 7, 2006 (Monday)
Excursion to Hokkaido’s volcanic area（登別 地獄谷） 
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Some Aspects of Finite Element Approximation  for  Reissner-Mindlin Plates 

                   Zhong-Ci SHI and Pingbing MING 

               Institute of Computational Mathematics 
                   Chinese Academy of Sciences 

shi@lsec.cc.ac.cn, mpb@lsec.cc.ac.cn
      
                          Abstract 
                          ====== 

    Reissner-Mindlin plate model is one of the most commonly used models  
of a moderately think to thin linearly elastic plate. However, a direct  
and seemingly reasonable finite element discretization usually yields  
very poor results which is usually referred to LOCKING phenomenon. 
In the past two decades, many efforts have been devoted to the design of  
locking free finite elements to resolve this model. However, most of these work  
focus on triangular and rectangular elements, the latter may be easily  
extended to parallelograms, but very few on quadrilaterals. 
   In this talk we will give an overview for the recent development of  
some low order quadrilateral elements and present our new results. 
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Energy-Stable Finite Element Schemes for
Multiphase Flow Problems

Masahisa Tabata

Faculty of Mathematics, Kyushu University
Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan

e-mail: tabata@math.kyushu-u.ac.jp

web page: http://www.math.kyushu-u.ac.jp/ t̃abata/

Abstract

We study numerical analysis of multiphase flow problems by finite element methods.
Let Ω be a bounded domain in R2 and T be a positive number. Suppose that Ω
is occupied by two immiscible fluids with densities ρk and viscosities µk, k = 1, 2,
governed by the unsteady Navier-Stokes equations

ρk


∂u

∂t
+ (u · ∇)u


−∇(2µkD(u)) +∇p = ρkf,

∇ · u = 0,

in each domain
Qk(T ) ≡ {(x, t); x ∈ Ωk(t), 0 < t < T},

where f is a given function, D(u) is the strain-rate tensor, and Ωk(t) are domains
to be found. On the interface ∂Ω1(t) ∩ ∂Ω2(t), t ∈ (0, T ), interface conditions

[u] = 0, [σ(µ, u, p)n] = γ0κn

are imposed, where [·] means the difference of the values approached from both
sides to the interface, κ is the curvature of the interface, γ0 is the coefficient of the
interfacial tension, n is the unit normal vector, and σ is the stress tensor. We impose
slip boundary conditions on the boundary of Ω, and initial conditions on u. Initial
fluids domains Ωk(0), k = 1, 2, are given.

We present finite element schemes for this problem, discuss the stability, and
apply them to rising bubble problems. The following figure shows a numerical
simulation of a bubble movement in a fluid.

1
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Figure 1: Ω1(t) at t = 0.0, 2.5, 5.0, 7.5, 10.0 (γ0 = 2.0)
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Least-squares mixed methods using RT0 × P1 space

for elliptic boundary value problems

Byeong-Chun Shin∗

Abstract

We first review the first-order system least-squares (FOSLS) approaches for elliptic bound-

ary value problems. The least-squares functionals are defined by summing L2-norm or H−1-

norm of residual equations. Also we review the first-order system LL∗ (FOSLL∗) developed

using adjoint equations in recent for elliptic problems. Such an adjoint approach employs the

developed extended first-order operator and its corresponding adjoint first-order operator for

a given second-order elliptic boundary value problem. Also the method uses H1-norm equiv-

alent least squares functional where the finite elements methods using the product piecewise

linear function space (P1)4 in 2D are used for approximations including a scalar variable, a

vector variable and one more auxiliary scalar variable.

In this talk, our main approach is using the lowest Raviart-Thomas element space, RT0,

for vector variable and conforming piecewise linear space, P1, for scalar variable. Using

these space we also develop FOSLL∗ using adjoint approach to solve general elliptic prob-

lems having corner singularities or discontinuous coefficients. Our least-squares functional is

equivalent to H(div)×H1-norm of the product space RT0 × P1.

1 Introduction

Let Ω be a bounded, open, simply connected domain in Rd, d = 2, 3. Consider the following

elliptic equation 



∇ ·A∇p− b · ∇p− c p = f, in Ω,

p = 0, on ΓD,

n ·A∇p = 0, on ΓN ,

(1.1)

∗Department of Mathematics, Chonnam National University, Gwangju 500-757, Korea (bcshin@jnu.ac.kr).
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∗Department of Mathematics, Chonnam National University, Gwangju 500-757, Korea (bcshin@jnu.ac.kr).
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where

L∗(ū, p̄) :=


A−1/2 −A1/2∇−A−1/2b

∇· −c


ū

p̄



with boundary conditions 
n · ū = 0 on ΓN ,

p̄ = 0 on ΓD.

The domain D(L∗) of L∗ is

D(L∗) = HN (div)×H1
D(Ω).

which is a Hilbert space under the norm

(v̄, q̄)2D(L∗) := v̄2H(div) + q̄21.

The primal problem is equivalent to minimizing the following functional

G(v, q) = L(v̄, q̄)− (0, f)t2

= A−1/2v −∇q2 + ∇ ·A1/2v − b ·A−1/2v − c q − f2

over (v, q) ∈ D(L). Then the corresponding variational problem is to find (u, q)t ∈ D(L) such
that

A

(u, p), (v, q)


= F


(v, q)


∀ (v, q) ∈ D(L),

where the bilinear form A(·; ·) is given by

A

(u, p),(v, q)


=

L(u, p), L(v, q)



=

A−1/2u−∇p, A−1/2v −∇q



+

∇ ·A1/2u− b ·A−1/2u− c p, ∇ ·A1/2v − b ·A−1/2v − c q



and the linear form F(·) is given by

F

(v, q)


=

(0, f)t, L(v, q)


=

f, ∇ ·A1/2v − b ·A−1/2v − c q


.
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over (v̄, q̄) ∈ D(L∗). The corresponding variational problem is to find (ū, q̄)t ∈ D(L∗) such that

A∗

(ū, p̄), (v̄, q̄)


= F∗


(v̄, q̄)


∀ (v̄, q̄) ∈ D(L∗),

3

where ∂Ω = ΓD ∪ ΓN denotes the boundary of Ω, f ∈ L2(Ω), 0 ≤ c ∈ L∞(Ω), b ∈ L∞(Ω) ∩
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


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n · (A∇p+ bp) = 0, on ΓN

(1.3)

also has the unique solution in H1(Ω).

Let u be a new vector variable such as

u = A
1
2∇p.

Then the equation (1.1) becomes

L(u, p) :=


A−1/2u−∇p = 0, in Ω,

∇ ·A1/2u− b ·A−1/2u− c p = f, in Ω

with boundary conditions
n ·A1/2u = 0, on ΓN ,

p = 0, on ΓD,

that is, the differential operator is given by

L(u, p) :=


A−1/2 −∇

∇ ·A1/2 − b ·A−1/2 −c


u

p


.

The domain D(L) of L is

D(L) = HN (divA1/2)×H1
D(Ω),

which is a Hilbert space under the norm

(v, q)2D(L) := v2H(divA1/2)
+ q21.

The FOSLL* approach is to approximate the solution (ū, p̄) of the corresponding dual problem

L∗(ū, p̄) = (A1/2∇p, p)t = (u, p)t, in Ω,

2
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where the bilinear form A∗(·; ·) is given by
A∗


(ū, p̄),(v̄, q̄)


=

L∗(ū, p̄), L∗(v̄, q̄)



=

A−1/2ū−A1/2∇p̄−A−1/2b p̄, A−1/2v̄ −A1/2∇q̄ −A−1/2b q̄



+

∇ · ū− cp̄, ∇ · v̄ − cq̄



and the linear form F∗(·) is given by
F∗


(v̄, q̄)


=

(u, p)t, L∗(v̄, q̄)


=

(0, f)t, (v̄, q̄)


=

f, q̄


,

where the unknown primal variable (u, p) was eliminated by property of the dual operator L∗.

In this paper we show the well-posedness for the operator L and L∗ and error estimates using

the Raviart-Thomas space RT0 for vector variable and continuous piecewise linear function space

P1 for scalar variable, and then we present several numerical experiments for elliptic problem

having discontinuous coefficients or corner singularities.
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In this paper, we are concerned with the following Dirichlet boundary value
problem of elliptic equations on a disk.

−∆u + c1(x, y)u = f1(x, y) in Ω1, (1)

u = g1(x, y) on Γ1 = ∂Ω1, (2)

where c1(x, y) ≥ 0, Ω1 = {(x, y) | x2 + y2 < R2} (R > 0).
By using ploar coordinates, the above problem can be rewritten as

−

1

r

∂

∂r


r
∂u

∂r


+

1

r2

∂2u

∂θ2


+ c(r, θ)u = f(r, θ) in Ω, (3)

u(R, θ) = g(θ) on Γ = ∂Ω, (4)

where Ω = {(r, θ) | 0 < r < R, 0 ≤ θ < 2π} and Γ = {(R, θ) | 0 ≤ θ < 2π}.
Let

ϕ(t) = R− (R− t)p+1/Rp (0 ≤ t ≤ 1),

which satisfies ϕ(0) = 0, ϕ(R) = R. We take the following partititon of Ω and
apply Swartztrauber-Sweet method to (3)–(4).

h =
R

m + 1
, ti = ih, ri = ϕ(ti), i = 0, 1, 2, · · · ,m + 1

ri+1/2 = (ri + ri+1)/2, i = 0, 1, 2, · · · ,m
hi = ri − ri−1, i = 1, 2, · · · ,m + 1

k =
2π

n
, θj = jk, j = 0, 1, 2, · · · , n

−
 1

ri


ri+1/2(Ui+1,j − Ui,j)

hi+1

− ri−1/2(Ui,j − Ui−1,j)

hi

hi + hi+1

2



+
1

r2
i k

2
(Ui,j+1 − 2Ui,j + Ui,j−1)


+ ci,jUi,j = fi,j,

i = 1, 2, · · · ,m; j = 0, 1, 2, · · · , n− 1

1
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4

h2
1


U0,0 − 1

n

n−1
j=0

U1,j


+ c0,0U0,0 = f0,0,

Ui,n = Ui,0 Ui,−1 = Ui,n−1, i = 0, 1, 2, · · · ,m+ 1

U0,j = U0,0, Um+1,j = gj, j = 0, 1, 2, · · · , n

We consider the approximate solutions when exact solutions of (3)–(4) have
some singular properies whose derivatives go to infinity at the boundary. Con-
vergence analysis results and numerical examples to illustrate will be given in the
talk.
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CRS: a fast algorithm based on Bi-CR for solving

nonsymmetric linear systems
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Abstract. Recently, the Conjugate Residual (CR) method has been extended to nonsymmetric linear
systems [8][9] and it is known that the algorithm (Bi-CR) often shows smoother convergence behavior
than Bi-CG [1] in terms of the residual 2-norm. In this paper, based on product-type methods of Bi-
CR, a Conjugate Residual Squared (CRS) method is proposed for solving nonsymmetric linear systems.
Numerical experiments show that CRS often converges faster and generates more accurate solutions than
CGS [10].

1 Introduction

We consider the solution of large and sparse nonsymmetric linear systems of the form

Ax = b with A ∈ RN×N , x, b ∈ RN .(1.1)

In the last few decades Krylov subspace (KS) methods have been recognized as a class of fast solvers for
the above systems and many solvers have been proposed according to the user needs; see, e.g., the recent
surveys [2][3][7] and books [6][13]. Of the KS methods, the bi-conjugate gradient (Bi-CG) method [1] that
can be regarded as a natural extension of the conjugate gradient (CG) method [4] plays a very important
role in designing recent fast solvers such as CGS [10], Bi-CGSTAB [12], and GPBi-CG [14]. Since these
successful variants of Bi-CG are obtained by the product of the corresponding matrix polynomial and
the Bi-CG residual, they are often referred to as product-type methods.

On the other hand, recently the bi-conjugate residual (Bi-CR) method [8][9] has been proposed for
solving (1.1), which is regarded as a natural extension of the conjugate residual (CR) method [11]. Since
Bi-CR often shows smoother convergence behavior than Bi-CG in the residual 2-norm, Bi-CR can be
expected to become an attractive basic solver for the product-type methods.

The purpose of this paper is to consider the product-type methods based on Bi-CR. In this paper, we
give one of the product-type methods on the analogy of CGS and the resulting algorithm is referred to as
conjugate residual squared (CRS).

This paper is organized as follows. In §2, we give a framework of the product type methods based
on Bi-CR and derive CRS from the analogy of CGS. In §3, we report the results of some numerical
experiments. Finally, we make some concluding remarks in §4.

2 A conjugate residual squared method

In this section, we give a framework of product-type methods based on Bi-CR and then describe the idea
and the algorithm of CRS.

We define the nth residual vector of the product-type methods based on Bi-CR as the product of matrix
polynomial of order n and the nth Bi-CR residual vector as follows:

rn := Hn(A)rBiCR
n = Hn(A)Rn(A)r0,(2.1)

where Rn(A) is the Bi-CR residual polynomial and is explicitly written as coupled two-term recurrences
with scalar λ below.

R0(λ) = 1, P0(λ) = 1,(2.2)
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Rn(λ) = Rn−1(λ) − αn−1λPn−1(λ),(2.3)

Pn(λ) = Rn(λ) + βn−1Pn−1(λ), n = 1, 2, . . .(2.4)

We can see from (2.1) that the choice of Hn is important to accelerate the speed of convergence of Bi-CR.
Here, we choose Hn to be the same matrix polynomial of Bi-CR, i.e. Hn = Rn. This idea is closely
related to the choice for CGS [10], see also [14]. Then from (2.1) and the choice Hn = Rn we have

rn = Hn(A)rBiCR
n = Rn(A)2r0.(2.5)

Since the above residual vector is updated by the square of Bi-CR polynomials, we name the resulting
algorithm Conjugate Residual Squared (CRS). The rest of this section describes formulas for updating
(2.5) and the CRS algorithm. It follows from (2.5), the recurrence relations (2.2)-(2.4), and auxiliary
vectors

en := Pn(A)Rn(A)r0, hn := Pn(A)Rn+1(A)r0, pn := Pn(A)Pn(A)r0

that we obtain recurrences for updating rn+1 as follows:

Apn = Aen + βn−1(Ahn−1 + βn−1Apn−1),(2.6)

hn = en − αnApn,(2.7)

rn+1 = rn − αnA(en + hn),

en+1 = rn+1 + βnhn.(2.8)

The values of two parameters αn and βn must be equivalent to ones with Bi-CR [8]. Hence, we use the
following relations:

αn =
(rBiCR∗

n , ArBiCR
n )

(AT pBiCR∗
n , ApBiCR

n )
=

(Rn(AT )r∗
0, ARn(A)r0)

(AT Pn(AT )r∗
0, APn(A)r0)

=
(r∗

0, ARn(A)Rn(A)r0)
(r∗

0, A
2Pn(A)Pn(A)r0)

,

βn =
(rBiCR∗

n , ArBiCR
n )

(rBiCR∗
n+1 , ArBiCR

n+1 )
=

(Rn(AT )r∗
0, ARn(A)r0)

(Rn+1(AT )r∗
0, ARn+1(A)r0)

=
(r∗

0, ARn(A)Rn(A)r0)
(r∗

0, ARn+1(A)Rn+1(A)r0)
.

Then, from the definitions of rn and pn we have

αn =
(r∗

0, Arn)
(r∗

0, A
2pn)

, βn =
(r∗

0, Arn)
(r∗

0, Arn+1)
.(2.9)

Now, we can update CRS residuals by the above recurrences. However, in terms of computational cost,
it requires 4 matrix-vector multiplications per iteration. To reduce this cost, we introduce the following
auxiliary recurrences:

Ahn = Aen − αnA2pn, Aen+1 = Arn+1 + βnAhn.(2.10)

This leads to 2 matrix-vector multiplications per iteration. Here, we define qn := Apn, dn := Aen, and
fn := Ahn. Then, (2.6) and (2.10) are rewritten as

qn = dn + βn−1(fn−1 + βn−1qn−1),(2.11)

fn = dn − αnAqn,(2.12)

dn+1 = Arn+1 + βnfn.(2.13)

Finally, the (n + 1)th residual vector and the approximate solution are updated by

xn+1 = xn + αn(en + hn), rn+1 = rn − αn(dn + fn).(2.14)

From (2.7)-(2.9) and (2.11)-(2.14), we obtain the algorithm of CRS below.
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Algorithm 1. Conjugate residual squared (CRS) method

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),

set e0 = r0, d0 = Ae0, β−1 = 0,

for n = 0, 1, . . . ,until �rn� ≤ ��b� do:

qn = dn + βn−1(fn−1 + βn−1qn−1),

αn =
(r∗

0, Arn)
(r∗

0, Aqn)
,

hn = en − αnqn,

fn = dn − αnAqn,

xn+1 = xn + αn(en + hn),

rn+1 = rn − αn(dn + fn),

βn =
(r∗

0, Arn+1)
(r∗

0, Arn)
,

en+1 = rn+1 + βnhn,

dn+1 = Arn+1 + βnfn.

end

3 Numerical experiments

In this section, we report the results of numerical experiments on the problems from Matrix Market
(http://math.nist.gov/MatrixMarket/). The iterative solvers used in the experiments are CGS and CRS
with ILU(0) preconditioning [5], and we evaluate the two methods with respect to the number of itera-
tions (Its), computational time (Time), and log10 of the true relative residual 2-norm (TRR) defined as
log10 �b−Axn�/|b�. All experiments were performed on a work station with a 2.0GHz Opteron processor
846 using double precision arithmetic. Codes were written in Fortran 77 and compiled with g77 -O3. In
all cases the iteration was started with x0 = 0 and r∗

0 = r0 in both methods, the right-hand side b was
chosen as a vector with random entries from -1 to 1, and the stopping criterion was �rn�/�b� ≤ 10−12.

Table 1. Matrices, their sizes (N), and numerical results of CGS and CRS with ILU(0).

Its Time [sec] TRR
Matrix N CGS CRS CGS CRS CGS CRS

ADD20 2395 170 151 1.55E-1 1.44E-1 -12.39 -11.99
ADD32 4960 34 34 5.65E-2 6.12E-2 -12.16 -12.04
BFW782A 782 85 85 3.25E-2 3.35E-2 -12.34 -12.25
CAVITY05 1182 123 98 1.83E-1 1.51E-1 -9.52 -11.61
CAVITY10 2597 186 181 9.26E-1 9.28E-1 -10.77 -11.57
CDDE1 961 36 37 9.02E-3 9.91E-3 -12.01 -12.38
E20R0000 4241 134 127 1.39E 0 1.34E 0 -10.04 -11.90
E30R0000 9661 257 212 6.08E 0 5.06E 0 -8.62 -10.39
FIDAP036 3079 152 160 5.69E-1 6.27E-1 -9.62 -11.89
MEMPLUS 17758 327 310 2.57E 0 3.60E 0 -9.60 -11.61
ORSIRR1 1030 47 46 1.72E-2 1.76E-2 -12.54 -12.63
ORSIRR2 886 47 47 1.47E-2 1.51E-2 -12.39 -11.99
ORSREG1 2205 53 53 3.88E-2 4.08E-2 -12.32 -12.42
PDE2961 2961 42 43 3.38E-2 3.74E-2 -12.29 -12.51
SHERMAN1 1000 41 41 9.74E-3 1.06E-2 -12.06 -12.12
SHERMAN5 3312 32 32 4.35E-2 4.65E-2 -12.46 -12.47
WATT1 1856 60 59 2.59E-2 2.75E-2 -12.18 -12.39
WATT2 1856 112 110 7.67E-2 6.14E-2 -4.52 -5.92
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We evaluate the performance of CGS and CRS with ILU(0) preconditioning. The numerical results are
shown in Table 1.

With respect to Its and Time, CRS only required about 80% of the iteration steps and computational
time of CGS in CAVITY05 and E30R0000. There was little difference in the performance of CGS and
CRS in other problems since the ILU(0) preconditioner was quite effective in improving the convergence
behavior. In terms of TRR, TRRs of CRS were much better than those of CGS in CAVITY05, E30R0000,
FIDAP036, and MEMPLUS. In WATT2, TRRs of the two methods were extremely less than the stopping
criterion. In other problems, the two methods generated almost the same accuracy of the approximate
solutions as the stopping criterion.

4 Conclusions

In this paper, on the analogy of the relationship between CGS and Bi-CG, we obtained CRS from Bi-CR.
At the CJK conference we will report the residual 2-norm histories and the results of comparison of CRS
with other successful solvers such as Bi-CGSTAB and GPBi-CG.
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Convergence Analysis of Nonconforming Incomplete
Biquadratic Plate Element on Anisotropic Meshes∗

Dongyang Shi
(Department of Mathematics, Zhengzhou University, Zhengzhou, 450052, CHINA)

It is well known that the traditional finite element approximation theory relies on the regular
or quasi-uniform assumption[1], i.e., there exists a constant c > 0, such that for all element K,
hK/ρK ≤ c, or h/h̃ ≤ c, where h = max

K
hK , h̃ = min

K
hK , hK and ρK are the diameter and the

supremum of the largest inscribed circle in K respectively.
However, the domain considered may be narrow or irregular, if we seek their approximate

solution with numerical calculus methods on the domain by employing the regular partition,
the computing cost will be very high or can not be dealt with, it is an obvious idea to employ
the anisotropic triangulation in the applications. On the other hand, solutions of some elliptic
boundary problems may generate sharp boundary or interior layers, that means that the solution
varies significantly in certain direction. In such case it is natural to use the meshes with small size
in above direction and a large mesh size in the perpendicular direction to reflect this anisotropy
in the discretization.

In the above two cases, the above assumptions are no longer valid, therefore some basic
theories and techniques of the classical finite element methods are not effective. For example,
when the consistency error of nonconforming element is estimated with traditional technique,
meas(F )
meas(K) is presented and might be infinite if F is a longer edge, new tricks should be explored
in order to obtain convergence. On the other hand, the Sobolev interpolation theory can not
be directly used on anisotropic meshes, hence the researches on the posed-well and the stability
of interpolation operator are very difficult. The basic theory used to check the anisotropy of an
element was given by T.Apel et al.[2,3]. But it is not convenient in application. S.C.Chen et al.[4]

presented an improved one which was much easier to be used than that of [2,3]. However, the
main attention of the above studies were paid to the anisotropic interpolation error analysis for
the second order elliptic boundary value problems. Relatively, there are few articles considering
the anisotropic nonconforming elements for the fourth order plate elements.

The objective of this paper is to discuss the convergence analysis of the incomplete bi-
quadratic rectangular element for the fourth order plate bending problem on the anisotropic
meshes. The shape function space and the degrees of freedom of the element used here are
P (K) = span{1, x, y, x2, xy, y2, x2y, xy2} or P (K) = span{1, x, y, x2, xy, y2, x3, y3} and


K =

{vi,



i

∂v

∂n
ds} (i=1,2,3,4) respectively. The highlights of the work read as follows: firstly, the

interpolation error estimating manner is quite different from that of [2] and [3]; secondly, by tak-
ing full advantages of the orthogonality of the quadratic part and the higher one of the element
and the property of an introduced auxiliary operator, we obtain the optimal error estimate of
order O(h), which is similar to that of [5].

∗The research is supported by NSF of China (No.10371113).

1

－19－



Considering the following the biharmonic equation[1]

2u = f, in Ω,

u = ∂u
∂n = 0, on ∂Ω.

(1)

The corresponding variational form is to findu ∈ H2
0 (Ω), such that

a(u, v) = f(v), ∀ v ∈ H2
0 (Ω) (2)

where a(u, v) =


Ω
A(u, v)dxdy, f(v) =



Ω
fvdxdy, A(u, v) = ∆u∆v + (1 − σ)(2uxyvxy −

uxxvyy − uyyvxx), 0 < σ < 1
2 is the Poisson ratio.

Let Ω ⊂ R2 be a domain with sides parallel to the coordinate axes, Jh be a rectangular subdi-
vision of Ω. Let K ∈ Jh be a rectangle, with the central point (0, 0), 2hx and 2hy (hx >> hy) the
length of sides parallel to x axis and y axis respectively, a1(−hx,−hy), a2(hx,−hy), a3(hx, hy)
and a4(−hx, hy) the four vertices, i = −−−−→aiai+1, i = 1, 2, 3, 4,mod(4).

For every v ∈ H3(Ω), we define the interpolation operator Πh as follows: Πhv|K = ΠKv,

and ΠK satisfies v ∈ H3(K) → ΠKv ∈ P (K), such that ΠKv(pi) = v(pi),


li

∂ΠKv

∂n
ds =



li

∂v

∂n
ds, (i = 1, 2, 3, 4). Let Vh be the associated finite element space defined as follows:

Vh = {v; v|K ∈ P (K), ∀K ∈ Jh, vh(a) = 0,



[
∂v

∂n
]ds = 0,∀ node a ∈ ∂Ω, ∀  ⊂ ∂K}, (3)

Then the finite element approximation of (2) reads as: to find uh ∈ Vh, such that

ah(uh, vh) = f(vh), ∀ vh ∈ Vh, (4)

where ah(uh, vh) =


K∈Jh



K
A(uh, vh)dxdy, ∀uh, vh ∈ Vh.

∀v ∈ H3(K), let ΠKv = ΠKv + Π∗
Kv, where ΠKv, Π∗

Kv be the quadratic term and the
higher order term of ΠKv respectively. It can be verified that the following orthogonality and
the estimate hold

|ΠKv|22,K = |ΠKv|22,K + |Π∗
Kv|22,K , Π∗

Kv0,K ≤ Ch2|ΠKv|2,K . (5)

Now, we give the following important Lemma.
Lemma 1. ∀ v ∈ H3(K), α = (α1, α2), |α| = 2, there holds

Dαv −DαΠKv0,K ≤ h

π
|v|3,K . (6)

Proof. We first prove the case α = (2, 0). Since


K
DαΠ∗

Kvdxdy = 0, we have



K
DαΠKvdxdy =



K
Dαvdxdy. (7)

In the same way, (7) holds for the case α = (0, 2). While for the case α = (1, 1),


K
DαΠKvdxdy =



K
DαΠKvdxdy =



K

∂2ΠKv

∂x∂y
dxdy =



∂K

∂ΠKv

∂y
· nxds

= [v(a3)− v(a1)]− [v(a1)− v(a4)] =


K
Dαvdxdy

2
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i.e., (7) still holds. From Poincare inequality [6], we have

Dαv −DαΠKv0,K ≤ h

π
|Dαv|1,K ≤ h

π
|v|3,K . (8)

Let u and uh be the solutions of (2) and (4) respectively, then by Strang’s second Lemma,
we have

u− uhh ≤ C( inf
vh∈Vh

u− vhh + sup
vh∈Vh

Eh(u, vh)
vhh ), (9)

where Eh(u, vh) = ah(u, vh) − f(vh),  · h = (


K∈Jh
| · |22,K )

1
2 . Here and later, C is a constant

independent of hKρK and h.
From Lemma 1, we have the following interpolation error estimate

inf
vh∈Vh

u− vhh ≤ u−ΠKuh ≤ Ch|u|3,Ω, (10)

Introducing the operator T : H1(K)→ P = span{1, y} which is defined by


i

Tvds =


i

vds, i = 1, 3. (11)

We can prove the following conclusion.
Theorem 1. Assume u ∈ H3(Ω) ∩H2

0 (Ω), f ∈ L2(Ω), then we have

Eh(u, vh) ≤ Ch(|u|3,Ω + hf0,Ω)vhh, (12)

Proof. Let v̄h and v∗h be the quadratic part and the higher order term of vh, PK
0 u =

1
|K|



K
udxdy, then



K
v∗hxxdxdy =



K
v∗hxydxdy =



K
v∗hyydxdy = 0, thus



K∈Jh



K
∆u∆v∗hdxdy =



K∈Jh



K
(∆u−PK

0 ∆u)∆v∗hdxdy ≤ C


K∈Jh
h|∆u|1,K |v∗h|2,K ≤ Ch|u|3,Ωvhh.

With the similar argument, we can prove that


K∈Jh



K
upqv

∗
hpqdxdy ≤ Ch|u|3,Ωvhh, p, q ∈

{x, y}, which implies
ah(u, v∗h) ≤ Ch|u|3,Ωvhh. (13)

It is easy to check that v̄hyy = (T v̄hy)y, v̄hxx = (T v̄hx)x, v̄hxy = (T v̄hx)y = (T v̄hy)x.
Let Ih be the piecewise bilinear interpolation on Ω then we have

ah(u, v̄h)− f(vh) = f(Ihv̄h − v̄h) + f(v̄h − vh) +


K∈Jh



K
(∆u)x(IK v̄h − v̄h)xdxdy

+


K∈Jh



K
(∆u)y((IK v̄h)y − T v̄hy)dxdy +



K∈Jh

4

i=1



i

∆u(v̄hxnx + T v̄hyny)ds

+(1− σ){ 
K∈Jh



K
uxxy(T v̄hy − v̄hy)dxdy +



K∈Jh



K
uxxy(v̄hx − T v̄hx)dxdy

+


K∈Jh

4
i=1



i

uxyv̄hynxds−


K∈Jh

4

i=1



i

uxxT v̄hynyds

+


K∈Jh

4
i=1



i

uxyT v̄hxnyds−


K∈Jh

4

i=1



i

uyyv̄hxnxds} =
4

i=1

Ai + (1− σ)
10

i=5

Ai,

(14)
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Applying Schwartz inequality and the result of [2] , we have

Ai ≤ Ch2f0,Ωvhh, i = 1, 2, 3, 5, 6. (15)

For the term A4, we can rewrite it as A4 = A41 +A42, where

A41 =


K∈Jh

4

i=1



i

∆uv̄hxnxds, A42 =


K∈Jh

4

i=1



i

∆uT v̄hynyds.

According to the result of [3], ny|F2 = ny|F4 = 0, and T v̄hy ∈ span{1, y}, we have

A41 ≤ C


K∈Jh

4
i=1



i

|i||nx|
|K| (



q∈{x,y}
h2q∂q∆u20,K)

1
2 (



q∈{x,y}
h2q∂qv̄hx20,K)

1
2 ≤ Ch|u|3,Ωvhh

A42 ≤ C


K∈Jh

4
i=1



i

|i||ny|
|K| (



q∈{x,y}
h2q∂q∆u20,K)

1
2 (



q∈{x,y}
h2q∂qT v̄hy20,K)

1
2

≤ C


K∈Jh

hx
hxhy

(


q∈{x,y}
h2q∂q∆u20,K)

1
2hy(T v̄hy)y0,K ≤ Ch|u|3,Ωvhh.

Thus, A4 ≤ Ch|u|3,Ωvhh. Similarly, we have Ai ≤ Ch|u|3,Ωvhh, i = 7, 8, 9, 10.
Combining (13), (14), (15) and the above estimates follows the desired result.
Theorem 2. Under the hypothesis of Theorem 1, we have

u− uhh ≤ Ch(|u|3,Ω + hf0,Ω). (16)

Finally, some numerical experiments are carried out, the results of which confirm our the-
oretical analysis and demonstrate a good convergence behavior of the element on anisotropic
meshes.
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Abstract

We report on an ongoing effort to build a Dynamic
Data Driven Application System (DDDAS) for short-
range forecast of weather and wildfire behavior from
real-time weather data, images, and sensor streams. The
system changes the forecast as new data is r eceived.
We encapsulate the model code and apply an out of
time-order ensemble Kalman filter in time-space with a
highly parallel implementation. In this talk, we discuss
how we will demonstrate that our system works using
a DDDAS testbed approach and data collected from an
actual fire, mathematical and computational models,
and how intelligent sensors provide a symbiotic relation
between data collection and modeling.

1 Introduction

We describe the current state of a dynamic data driven
application system (DDDAS) for simulating wildland
fires (Douglas, Beezley, Coen, Deng, Li, Mandel, Man-
del, Qin, and Vodacek ).

DDDAS is a paradigm whereby application (or simu-
lations) and measurements become a symbiotic feedback
control system. DDDAS entails the ability to dynami-
cally incorporate additional data into an executing ap-
plication, and in reverse, the ability of an application to
dynamically steer the measurement process. Such capa-
bilities promise more accurate analysis and prediction,
more precise controls, and more reliable outcomes. The
ability of an application to control and guide the mea-
surement process and determine when, where, and how
it is best to gather additional data has itself the potential
of enabling more effective measurement methodologies.
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Furthermore, the incorporation of dynamic inputs into
an executing application invokes new system modalities
and helps create application software systems that can
more accurately describe real world, complex systems.
This enables the development of applications that in-
telligently adapt to evolving conditions and that infer
new knowledge in ways that are not predetermined by
the initialization parameters and initial static data.

The motivation for our research is the following:

• The obvious societal value of an accurate fore-
cast compounded with the inherent challenge
in modeling nonlinear, rapidly changing phe-
nomena.

• The difficulty in obtaining remote or in situ
data.

• The challenges of communicating the on site,
out of sequence data of unknown quality to
remote supercomputers and using it to steer
simulations.

The work necessarily extends beyond data assimila-
tion work in progress in atmospheric or ocean sciences
due to the specific application challenges: the model
is strongly nonlinear and irreversible, the data arrives
out of sequence from disparate data sources, and error
distributions cannot be considered

Components have been developed and added to the
coupled atmosphere-wildfire model which

• save, modify, and restore the state of the model,
• apply ensemble data assimilation algorithms to

modify ensemble member states by comparing
the data with synthetic data of the same kind
created from the simulation state,

• retrieve, process, and ingest data from both
novel ground-based sensors and airborne plat-
forms in the near vicinity of a fire, and

• provide computational results visualized in sev-
eral ways adaptable to user needs.

DDDAS requires sensors capable of dynamically
supplying data to a simulation. An ideal sensor would
be sensitive, selective, and able to communicate high
level spatial and chemical information to the simulation
rapidly using negligible bandwidth.

Data that come into the data center must go through
a process consisting of up to six steps.

1. Retrieval: Get the data from sensors. This may
mean receiving data directly from a sensor or
indirectly through another computer or storage
device (e.g., a disk drive).

2. Extraction: The data from some sensors may be
quite messy in raw form, thus the relevant data

may have to be extracted from the transmitted
information.

3. Conversion: The units of the data may not be
appropriate for our application.

4. Quality control: Bad data should be removed
or repaired if possible. Missing data (e.g., in a
composite satellite image) must be repaired.

5. Store: The data must be archived to the right
medium (or media). This might mean a disk,
tape, or computer memory, or no storage de-
vice at all (or only briefly) if data is not being
archived permanently or only temporarily.

6. Notification: If a simulation is using the data
as it comes into the data center, the application
needs to be informed of the existence of new
data.

2 Wildland Fire Model

The original modeling system is composed of two parts:
a numerical weather prediction model and a fire behavior
model that models the growth of a wildfire in response to
weather, fuel conditions, and terrain (Clark, Coen, and
Latham 2004, Coen 2005). These models are two way
coupled so that heat and water vapor fluxes from the fire
are released into the atmosphere, affecting the winds in
particular, while the fire affected winds feed back upon
the fire propagation. This wildfire simulation model can
thus represent the complex interactions between a fire
and the atmosphere.

The meteorological model is a three-dimensional
non-hydrostatic numerical model based on the Navier-
Stokes equations of motion, a thermodynamic equation,
and conservation of mass equations using the anelastic
approximation. Vertically-stretched terrain-following
coordinates allow the user to simulate in detail the airflow
over complex terrain. Gridded natioinal weather fore-
casts are used to initialize the domain and update lateral
boundary conditions. Two-way interactive nested grids
capture the outer forcing domain scale of the synoptic-
scale environment while allowing the user to telescope
down to tens of meters near the fireline through hori-
zontal and vertical grid refinement. Weather processes
such as the production of cloud droplets, rain, and ice
are parameterized using standard treatments.

In the original model, local fire spread rates de-
pend on the modeled wind components, fuel proper-
ties, and terrain slope through an application of the
semi-empirical Rothermel fire spread formula (Rother-
mel 1972). We are replacing the Rothermel model with
a simple physics and PDE based model (Mandel, Chen,
Franca, Johns, Puhalskii, Coen, Douglas, Kremens, Vo-
dacek, and Zhao 2004). This PDE model uses the
reaction-convection-diffusion equation for the tempera-
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ture T and fuel supply S,

c
∂T

∂t
=−∇d∇T − av · OT + e

∂Sk

∂t
− b (T − Ta) , (1)

∂S

∂t
=− f(T )S. (2)

(1) is the balance of heat. The term −∇d∇T models
the heat diffusion, −av · OT is the convection by wind
with speed v, e∂Sk

∂t is the heat generated by burning the
fuel, and −b (T − Ta) is the heat lost to the ambient
environment with temperature Ta. (2) is the balance
of fuel. This simple model is capable of producing a
reasonable fire behavior with an advancing fire front. A
more advanced version of this model is under develop-
ment, which will include several species of fuel, radiative
heat transfer between fuel species, and evaporation of
moisture. It is anticipated that this model will replace
the empirical fire model and it will be coupled to the
atmospheric model. For related physics based fire mod-
els in the literature, see, e.g., (Linn, Reisner, Colman,
and Winterkamp 2002, Serón, Gutiérrez, Magallón, Fer-
ragut, and Asensio 2005).

Forecasting with the coupled atmosphere fire model
is achieved using the Ensemble Kalman Filter (EnKF).
Ensemble filters work by advancing in time a collec-
tion of simulations started from randomly perturbed
initial conditions. When the data is injected, the en-
semble (called forecast) is updated to get a new ensemble
(called analysis) to achieve a least squares fit using two
conditions: the change in the ensemble members should
be minimized, and the data d should fit the ensemble
members state u,

h(u) ≈ d, (3)

where h is called the observation function. The weights
in the least squares are obtained from the covariances of
the ensemble and of the data error. For comprehensive
surveys of EnKF techniques, see (Evensen 2003, Evensen
2004, Tippett, Anderson, Bishop, Hamill, and Whitaker
2003). In general, EnKF works by forming the analysis
ensemble as linear combinations of the forecast ensemble.

We are using filters based on the EnKF with
data perturbation (Burgers, van Leeuwen, and Evensen
1998). But, even with the simple wildfire model (1)-
(2), the data assimilation produces an ensemble with
nonphysical solutions causing the simulations to break
down numerically. Therefore, we have proposed a reg-
ularization by adding a term involving the change in
the spatial gradient of ensemble members to the least
squares (Johns and Mandel rint). Existing ensemble
filter formulas assume that the observation function is
linear, h(u) = Hu, and then compute with the observa-
tion matrix H. To simplify the software, we have derived

a mathematically equivalent ensemble filter that only
needs to evaluate h(u) for each ensemble member.

For the issue of assimilating of out-of-order data
we will use system states that combine states at several
times (Mandel, Chen, Franca, Johns, Puhalskii, Coen,
Douglas, Kremens, Vodacek, and Zhao 2004). The
parallel computing framework we have developed was
designed with this in mind.

Data comes from fixed ground sensors that measure
temperature, radiation, and local weather conditions
(Kremens, Faulring, Gallagher, Seema, and Vodacek
2003). These systems will survive burn-over by low in-
tensity fires andare intended to supplement other sources
of weather data derived from permanent and portable
automated weather stations. The temperature and ra-
diation measurements provide the direct indication of
the fire front passage and the radiation measurement
can also be used to determine the intensity of the fire.

Data also come from images taken by sensors on ei-
ther satellites or airplanes. The primary source of image
data is the Wildfire Airborne Sensor Project (WASP)
(Li, Vodacek, Kremens, Ononye, and Tang 2005). This
three wavelength digital infrared camera system is car-
ried on an airplane that is flown over the fire area. Cam-
era calibration, an inertial measurement unit, GPS, and
digital elevation data are used in a processing system
to convert raw images to a map product with a latitude
and longitude associated with each pixel. The three
wavelength infrared images can then be processed using
a variety of algorithm approaches (Li, Vodacek, Kre-
mens, Ononye, and Tang 2005, Dozier 1981) to extract
which pixels contain a signal from fire and to determine
the energy radiated by the fire (Wooster, Zhukov, and
Oertel 2003, Smith, Wooster, Drake, Perry, Dipotso,
Falkowski, and Hudak 2005).

The data are related to the model by the obser-
vation equation (3). The observation function h maps
the system state u to synthetic data, which are the
values the data would be in the absence of modeling
and measurement errors. Knowledge of the observation
function, the data, and an estimate of the data error
covariance is enough to find the correct linear combina-
tions of ensemble members in the ensemble filter. The
data assimilation code also requires an approximate in-
verse g of the observation function. For a system state
u and data d, g (h(u)− d) is the direction in which the
system state can change to decrease a norm of the data
residual h (u) − d. For an observation function that is
simply the value of a variable in the system state, the
natural choice of approximate inverse can be just the
corresponding term of the data residual, embedded in
a zero vector.

Building the observation function and its approx-
imate inverse requires conversion of physical units be-
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tween the model and data and conversion and interpo-
lation of physical coordinates. In addition, synthetic
data at instants of time between the simulation time
of ensemble members need to be interpolated to the
data time. The data injection itself is done by updating
the ensemble to minimize a weighted sum of the data
residual and the change in the ensemble.

The data items enter in a pool maintained by the
data acquisition module. The assimilation code can
query the data acquisition module to determine if there
are any new data items available, request their quanti-
tative and numerical properties, and delete them from
the pool after they are no longer needed.

3 Conclusions

The wildland fire DDDAS provides a rich, multidisci-
plinary environment where researchers in mathematics,
atmospheric sciences, imaging sciences, and sensor de-
sign. There are open questions in each of these fields
related to this one DDDAS project that need to be ad-
dressed in order to provide a comprehensice and solid
scientific basis for the computations.
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Analysis of conforming and nonconforming finite element methods

in wave propagation
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National University, Seoul 151-747, Korea

In the first part of this presentation we will review several nonconforming elements in two and
three dimensions. In 1973 the linear nonconforming finite elements for triangles or tetrahedrons
and a cubic nonconforming element for triangles by Crouzeix and Raviart citecr73. Corresponding
quadrilateral elements have been proposed [23] by Han [10], and Rannacher and Turek, and later
the DSSY nonconforming element introduced by Douglas et al. [6]. Such nonconforming elements
have been proved very effectively applicable to fluid mechanics [25] and elasticity [3, 16, 13, 14].

The P1-nonconforming quadrilateral and hexahedral finite element introduced [22, 8]. A quadratic
nonconforming element on rectangle has been proposed [18]. Notice that our element is different
from the incomplete biquadratic element [24]. The incomplete biquadratic element has degrees
of freedom similar to those of Morley’s element [20], which consist of values at vertices and nor-
mal derivative values at midpoints of edges, while our element has those similar to the element of
Fortin and Soulie [7, 17], which consist of values at two Gauss points of each edge. Instead of using
standard conforming finite elements in domain decomposition methods, the use of nonconforming
finite elements has shown to have certain advantages as the amount of interchange of informations
between neighboring processors is reduced compared to using conforming elements. Also, an actual
radius of convergence of domain decomposition iteration can be shown if nonconforming elements
are used instead of conforming elements [6, 15, 9]. Several aspects of comparative analyses of the
above three elements in two or three dimensional problems will be discussed. The construction of
basis functions and their dimensions will be discussed depending on the choice between Dirichlet
and Neumann type boundary conditions.

In the second part of the presentation we analyze the numerical dispersion relation of some
conforming and nonconforming quadrilateral finite elements. The finite difference method has
been widely used to solve wave propagation problems due to its simplicity in implementation
[2, 19] However, if the underlying domain geometries are irregular or the wave speed is highly
discontinuous, the finite element method with suitable adaptive mesh generation will give more
precise numerical solutions at reasonable computational costs, compared to the finite difference
method. Three-dimensional problems usually require huge memories and long computation time,
and thus parallelization techniques, such as domain decomposition methods, are usually adopted.

The first finite element error analysis for Helmholtz problem was given by Douglas-Santos-
Sheen-Bennethum [5] for one dimension. Among other contributions made by this paper, obtained
were important error bounds that depend on both the spatial mesh size h and frequency ω. Based

∗E-mail: sheen@snu.ac.kr; http://www.nasc.snu.ac.kr; currently visiting Department of Mathematics, Purdue
University, West Lafayette, IN 47907, USA.
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2 Dongwoo Sheen

on this work, Babuska and Ihrenburg [12], and their colleagues, raised an important issue, what is
called a “pollution effect”, and have studied extensively to resolve it. The discrete solutions using
the standard Galerkin finite element method results in inaccurate solutions if the mesh size is not
sufficiently small compared to the size of wave number [1, 12, 11, 21, 5, 4], and numerical dispersion
seems to be a major source for the pollution effect. Therefore, unless the size of wave number k is
sufficiently small, some kind of specific finite element techniques, such as hp methods, need to be
employed.

We will then examine the dispersion effects in solving Helmholtz problems by the finite element
method using quadrilateral or rectangular elements of lowest order. Specifically the following
three conforming and nonconforming element methods will be analyzed: (1) the standard Q1

conforming element (abbreviated as the “Q1 element”); (2) the DSSY nonconforming element
introduced by Douglas et al. [6] (abbreviated as the “DSSY NC” element, or the “DSSY” element)
which is a modified rotated Q1 element of Rannacher and Turek [23]; and (3) the P1-nonconforming
quadrilateral(hexahedron) element [22] (abbreviated as the “ P1 NC element”). Santos et al. [27]
and Zyserman et al. [26] gave detailed dispersion analyses for solving the Helmholtz equation, and
elastic and viscoelastic equations comparing between the Q1 conforming and the DSSY NC finite
element methods. It is shown [1, 27, 26] that the L2 error behavior of the DSSY NC element
behaves better in reducing numerical dispersion than that of Q1 element based on the same size
of grids. However, it has been questionable if the DSSY NC element is actually cheaper than the
Q1 conforming element to achieve desired accuracy. One of the purposes of the our paper is to
investigate in the actual costs of computation to reduce errors up to certain tolerance instead of
estimating errors based on the size of meshes.

Presenting our numerical experiments, we will conclude that all the three elements selected
are affected by pollution effects; however, we analyze the number of elements and the degrees of
freedom necessary to guarantee the L2 and broken H1 errors are smaller than given tolerance ǫ.
Our results imply that the P1 NC quadrilateral elements require the least degrees of freedom among
the three elements.
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Moving Mesh Methods for Singular Problems Using 

Perturbed Harmonic Mappings

Tao Tang 
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In this talk, we will extend Dvinsky's method to provide an efficient and practical moving mesh 
algorithm for solving partial differential equations. 

The key idea is to construct the harmonic map between the physical space and a parameter 
space by an iteration procedure. Each iteration step is to move the mesh closer to the harmonic 
map. Thisthe map harmonic even after long time of numerical integration. 

We will also discuss a recent work in developing moving mesh strategies for solving problems 
defined on a sphere. To construct mappings between the physical domain and the logical domain, 
it has been demonstrated that harmonic mapping approaches are useful for a general class of 
solution domains. However, it is known that the curvature of the sphere is positive, which makes 
the harmonic mapping on a sphere not unique. To fix the uniqueness issue, we follow Sacks and 
Uhlenbeck [Ann. Math., 113, 1-24 (1981)] to use a perturbed harmonic mapping in mesh 
generation. A detailed moving mesh strategy including mesh redistribution and solution updating 
on a sphere will be presented. 

*This work is joint with Y. Di, R. Li and P.-W. Zhang of Peking University. 
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Semi-Implicit Schemes with Multilevel Wavelet-like Incremental 
Unknowns for a Reaction-Diffusion Equation* )

Yu-Jiang Wu 
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 Lanzhou 730000, China) 
Email: myjaw@lzu.edu.cn

Abstract 

Incremental unknowns have been developed as a means to approximate inertial 
manifolds when finite differences are used. They play evidently an important role in 
the study of the long time behavior of the solutions of partial differential equations 
and in fact they produce a new and different efficient concept in finite differences 
which are fundamental and very useful in the field of numerical solution of partial 
differential equations (see e.g. [5,9,11]). 

Much effort about incremental unknowns methods has been devoted in the past 
to the approximation of the linear elliptic equations and also some dissipative 
evolution equations, among them are the two-dimensional Navier-Stokes equations, 
the Kuramoto-Sivashinsky equations and the Burger�s equations. (See also [2,6,7,12] 
and the references therein.) 

Wavelet-like incremental unknowns (WIU) deserve special stress because they 
enjoy the 2L orthogonality property between different levels of unknowns. This 
makes multilevel wavelet-like incremental unknowns particularly appropriate for the 
approximation of evolution equation ( see e.g. [3,4]). 

The purpose of this paper is to establish multilevel wavelet-like incremental 
unknowns methods for some reaction diffusion equation, especially for an equation 
with a polynomial growth nonlinearity of arbitrary order. 

In general case, we denote by Ω an open bounded set of nR with boundary 
Ω∂=Γ . Consider the following initial-boundary value problem involving a scalar 

function ),( yxuu = ; u satisfies 







Ω=

Ω=+∆−
∂
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(1) 

together with one of the following boundary conditions. 
(i) Dirichlet type boundary condition 

0| =Γu . (2) 
(ii) Neumann type boundary condition 

0=
∂
∂

Γν
u . (3) 

---------------------------------------------- 
* ) 1. A work with coauthor A. L. She 

2. Project partially supported by Gansu Natural Science Foundation (Grant No. 3ZS041-A25-011) and ME 
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(iii)Periodicity type boundary condition 
,),0( nL=Ω u is Ω -periodic.                    (4) 
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One of the examples of our equation is the so-called Chafee-Infante equation 
(see e.g. [1,8]) 

)0,(,03 >=−+∆−
∂
∂ βαβα uuu

t
u (7) 

Another example we give is a certain reaction diffusion equation ( see [4,8,10]) 
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For the sake of simplicity, we shall consider mainly the one dimensional case and 
focus particularly on the equation (8) with initial-boundary conditions. First of all, we 
recall the definition of the wavelet-like incremental unknowns and the exploration of 
the multilevel space discretization of the above problem. The equation, e.g., (8) will 
be expressed in terms of decomposed spaces by 
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Then we establish two types of semi-implicit schemes which read 
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Scheme II 
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They are typically of nonlinear Galerkin type.  
Based on two discrete function spaces (composed of step functions) 

{ }NiihMspanY d
dMhd d

1
,2 2,,2,1,2| −=== Lψ ,
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{ }NihiMspanZ d
dMhd d

1
,2 2,,2,1,)12(| −=−== Lχ ,

we are able to obtain the equivalent variational formulations of our finite differences 
in wavelet-like incremental unknowns. Afterwards, we analyze the stability of the 
schemes through the variational formulations and prove the stability theorems. The 
limitation of time mesh t∆=τ is obviously better than that obtained with standard 
one-level spatial discretization. The stability conditions are improved when compared 
with explicit schemes in WIU. Stability conditions both for Scheme II and classic 
implicit scheme are comparable if d is sufficiently large. Finally, we show some 
numerical results and give probably further expectation. 

Keywords: Wavelet-like incremental unknowns, reaction diffusion equation, 
 nonlinear Galerkin method, semi-implicit schemes 

AMS Subject Classification: 65M60, 65M06, 35K60 
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Conformal Mappings to Exterior Jordan Domains
and their Finite Element Approximation
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1 The problem and main idea

Let B := {(x, y) ∈ R2|x2 + y2 < 1} be the unit disk. Let also Γ : ∂B → R2 be a closed
Jordan curve, and D, Ω be the exterior and interior domains of Γ, respectively. By the
Riemann mapping theorem, there exist conformal mappings

ϕ : B → D, ϕ̃ : B → Ω, : conformal,

ϕ : B − {0} → D, ϕ̃ : B → D : homeomorphism,

ϕ(0) = ∞.
In this lecture, we discuss finite element approximation of the conformal mapping ϕ.

In [1], [2], [3], [4], we considered finite element approximation of ϕ̃ : B → Ω based on
the following Dirichlet principle: Let

XΓ :=
�
ψ ∈ C(B;R2) ∩H1(B;R2)}

�� ψ(∂B) = Γ, ψ|∂B : monotone
�
.

We then have
Area(Ω) = DB(ϕ̃) = min

ψ∈XΓ

DB(ψ),

where DB is the Dirichlet integral defined by

DB(ψ) :=
1

2

�

B

|∇ψ|2dx.

Now, Let {Th} be a family of regular and quasi-uniform triangulations of B and
Sh ⊂ H1(B) be the finite element space of piecewise linear functions on Th. Using the
Dirichlet principle, we may define the piecewise linear finite element conformal
mapping ϕ̃h by a standard way of finite element method. Moreover, we have shown
some convergence results on FE conformal mappings.

For the conformal mappings to the exterior Jordan domain D, however, we have
DB(ϕ) = Area(D) =∞ and the above method may not be applied directly.

The main idea of this lecture is based on the fact the stereographic map (projection)
π : C → C∗ is conformal, where C∗ := C ∪ {∞}, C∗ ∼= S2 is the Riemann sphere.

Therefore, letting �D := π(D) ⊂ C∗, we construct a conformal mapping φ : B → �D,
φ(0) = ∞, since for this φ, we have the Dirichlet principle similar to the above which can
be used to define finite element approximation. Then, ϕ := φ ◦ π−1 should be the desired
conformal mapping to the exterior Jordan domain. Detailed definitions and numerical
examples will be given in the lecture.
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The cell boundary element methods
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Abstract

We consider the model second-order elliptic problem:

−∇ · K∇u = f in Ω, (1)

u = 0 on ∂Ω,

where Ω is a bounded polygonal domain in R2. Assume that Ω is composed of disjoint
polygonal subdomains Ω1, · · · ,ΩJ and that K is a function such that 0 < K∗ ≤ K(x) ≤
K∗ < ∞ and K(x) = Kj in Ωj for each j.

The localized problem becomes

−KT∆u = f in T, (2)�
K

∂u

∂ν

�
:≡ KT

∂u

∂ν
+KT �

∂u�

∂ν � = 0 on ep = ∂T ∩ ∂T �.

The continuity of the flux can be weakened as follows:

�

ep

�
K

∂u

∂ν

�
= 0

and this is the motivation of the CBE method. Introduce FT , a particular solution of (2)
so that

FT (x) =
1

KT

�

T

Γ(x − y)f(y)dy, x ∈ T,

where Γ(x) = − 1

2π
log |x| is the fundamental solution of −∆. Then u admits the following

decomposition:
u = v + (F − H(F )) on T,

where ∆v = 0 and u = v on ∂T . The function (F −H(F )) is the Green buuble function.
Our nonconforming CBE method is to find the finite dimensional solution vh ∈ V0,h

such that
�

ep

�
K

∂vh

∂ν

�
ds =

�

ep

�
K

�
∂Hh(F )

∂ν
− ∂F

∂ν

��
ds for all p ∈ V i

h.

Here, Hh is the harmonic interpolation. Then uh = vh + (F − Hh(F )) is the solution we
are looking for.

The advantage of the CBE method is that

1. It derives a naturally flux conserving derivative formulae as the finite volume method.

2. The cost for mesh generation is the same as that of the finite element method.
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Therefore, the CBE method can be regarded as an FEM version of the FVM.

Numerical Experiments

The computational domain is taken as the unit square Ω := [0, 1]× [0, 1] and a quasi-
uniform mesh: the vertices are given as

xi =
2ti
1 + ti

and yj =
1.5tj
1 + .5tj

, 0 ≤ i, j ≤ n,

where {tj = j/n, j = 0, · · · , n} and the triangular mesh is then generated by bisecting
each rectangle by the diagonal line from the top right to the bottom left.

The P1 method uses the usual P1 element, while our P ∗
2+1/2

methods use the following
unconventional basis by the nature of our method:

VT = span{1, x, y, xy, x2 − y2, x3 − 3xy2}, (3)

Vh = {vh|vh ∈ ⊕T∈Th
VT , vh is continuous at each node}.

Example 1. We consider the following Poisson equation:

−∆u = −4− 6x in Ω,

u = g on ∂Ω,

where the function g is chosen so that the exact solution is u(x, y) = ex cos(y)+x2+y2+x3.
Then the total flux on D = [0, 2/3]× [0, 3/5] is 2.4.

n2 �u − uh�0,h α �∇u −∇uh�0,h α flux
52 7.0473e-3 6.3160e-1
102 2.0732e-3 1.7652 3.2263e-1 0.9691 2.4
202 5.4437e-4 1.9292 1.6256e-1 0.9889 2.4
402 1.3817e-4 1.9781 8.1498e-2 0.9961 2.4

Table 1: Numerical results for the P1 nonconforming method

n2 �u − uh�0,h α �∇u −∇uh�0,h α flux
52 1.0365e-4 8.9443e-3
102 3.4297e-5 1.5956 2.2992e-3 1.9599 2.4 + 1.57e-4
202 9.1723e-6 1.9027 5.7823e-4 1.9914 2.4 + 1.32e-8
402 2.3202e-6 1.9830 1.4464e-4 1.9992 2.4 +�

Table 2: Numerical results for the P ∗
2+1/2

-method

n2 �u − uh�0,h α �∇u −∇uh�0,h α flux
52 1.5516e-4 9.0081e-3
102 4.5665e-5 1.7646 2.3189e-3 1.9578 2.4
202 1.1795e-5 1.9530 5.8307e-4 1.9917 2.4
402 2.9673e-6 1.9909 1.4587e-4 1.9990 2.4

Table 3: Numerical results for the modified P ∗
2+1/2

-method
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Figure 1: Snapshots of S at t = 1 for the P1 CBE-FV method and FV-FV couplings,
respectively

n2 �u− uh�∞,h α �∇u−∇uh�0,h α
52 1.5989e-005 6.8047e-3
102 1.2601e-006 3.6654 1.7463e-3 1.9622
202 9.6459e-008 3.7075 4.4266e-4 1.9800
402 6.9356e-009 3.7978 1.1146e-4 1.9897

Table 4: Numerical results for the P2+1/2-method on the square mesh

Example 2. We consider a subsurface flow problem.

∆u = 1 in Ω,
∂S

∂t
= − σ · ∇S + 0.01∆S in Ω,

where σ = −∇u. The boundary condition for u is given as follows:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂ν
= −1 on {x1 = 0, 0 < x2 < 1/2},

∂u
∂ν
= 2 on {x1 = 1, 1/2 < x2 < 1},

u = 0, elsewhere.

The initial and boundary conditions for S are as follows:

S(x, 0) =

�
1, x ∈ (0, 1/2)× (0, 1/2),
0, elsewhere,

and S(x, t) = 0, x ∈ ∂Ω.

[1] Y. Jeon, The cell boundary element method for elliptic PDEs, Technical report, 2001.

Therefore, the CBE method can be regarded as an FEM version of the FVM.

Numerical Experiments

The computational domain is taken as the unit square Ω := [0, 1]× [0, 1] and a quasi-
uniform mesh: the vertices are given as

xi =
2ti
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and yj =
1.5tj
1 + .5tj

, 0 ≤ i, j ≤ n,

where {tj = j/n, j = 0, · · · , n} and the triangular mesh is then generated by bisecting
each rectangle by the diagonal line from the top right to the bottom left.

The P1 method uses the usual P1 element, while our P ∗
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methods use the following
unconventional basis by the nature of our method:

VT = span{1, x, y, xy, x2 − y2, x3 − 3xy2}, (3)

Vh = {vh|vh ∈ ⊕T∈Th
VT , vh is continuous at each node}.

Example 1. We consider the following Poisson equation:

−∆u = −4− 6x in Ω,

u = g on ∂Ω,

where the function g is chosen so that the exact solution is u(x, y) = ex cos(y)+x2+y2+x3.
Then the total flux on D = [0, 2/3]× [0, 3/5] is 2.4.

n2 �u − uh�0,h α �∇u −∇uh�0,h α flux
52 7.0473e-3 6.3160e-1
102 2.0732e-3 1.7652 3.2263e-1 0.9691 2.4
202 5.4437e-4 1.9292 1.6256e-1 0.9889 2.4
402 1.3817e-4 1.9781 8.1498e-2 0.9961 2.4

Table 1: Numerical results for the P1 nonconforming method

n2 �u − uh�0,h α �∇u −∇uh�0,h α flux
52 1.0365e-4 8.9443e-3
102 3.4297e-5 1.5956 2.2992e-3 1.9599 2.4 + 1.57e-4
202 9.1723e-6 1.9027 5.7823e-4 1.9914 2.4 + 1.32e-8
402 2.3202e-6 1.9830 1.4464e-4 1.9992 2.4 +�

Table 2: Numerical results for the P ∗
2+1/2

-method

n2 �u − uh�0,h α �∇u −∇uh�0,h α flux
52 1.5516e-4 9.0081e-3
102 4.5665e-5 1.7646 2.3189e-3 1.9578 2.4
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New Singular Value Decomposition Algorithm with High Performance
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Singular value decomposition (SVD) of matrices is a basic tool in a very wide area
of information processing as a solver for least square problems. A new algorithm
with a shift of origin (mdLVs) for computing singular values σk of bidiagonal

matrices is presented. A shift θ(n)2 is introduced into the recurrence relation

w̄
(n+1)
2k−1 = v

(n)
2k−2 + v

(n)
2k−1 − w̄

(n+1)
2k−2 − θ(n+1)2, w̄

(n+1)
2k =

v
(n)
2k−1v

(n)
2k

w̄
(n+1)
2k−1

defined by a discrete-time integrable dynamical system. A shift strategy

θ(n)2 = max{0, #(n)
1

2 − ε}, #
(n)
1 := min

k

(r
w

(n)
2k−1 −

1

2

√r
w

(n)
2k−2 +

q
w

(n)
2k

!)
,

for any small positive ε, is given so that the singular value computation becomes
numerically stable and has a cubic convergence rate and a higher relative accuracy.
Therefore the mdLVs algorithm is implemented in DLVS routine which is more
accurate and faster than a credible LAPACK routine for singular values.

Secondly, a new double Cholesky factorization of symmetric tridiagonal matrices

B>B −
µ

1

δ(0)
− 1

δ(±1)

∂
I = (B±)>B±.

is also presented by using certain discrete-time integrable systems, which gives rise
to a fast algorithm for the associate singular vectors. By taking a suitable δ(0) we
can improve orthogonality of the resulting singular vectors.

A new bidiagonal SVD algorithm (I-SVD) is then designed which is separated
into two parts. The first is the mdLVs for accurate singular values. The second
part is the double Cholesky factorization. The I-SVD has good properties with
respect to both the computational time and the numerical accuracy. The I-SVD
algorithm is now implemented in DBDSLV routine which has a better performance
with respect to speed, accuracy and scalability than the LAPACK routine for large
scaled bidiagonal SVD problem.
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A new look at restarted GMRES method∗
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ABSTRACT

For a nonsymmetric matrix A, a popular choice for solving the large sparse system of
linear equations

Ax = b

is the famous restarted GMRES algorithm or GMRES(m). However, since GMRES(m)
only keeps the the current approximate solution as the new initial guess for the next cycle,
restarting would lose most information obtained from the previous cycle of the iteration,
the convergence may slow down and even stagnation occurs. Stagnation means that there
is no decrease in the residual norm at the end of a restart cycle and is often encountered in
the GMRES(m), especially when m is small(but there are exceptions).

After a detailed analysis of occurrence of stagnation of restarted GMRES algorithm, we
present a different viewpoint on the implementation of restarted GMRES. Our main idea
is that the starting vector at the each restart cycle of GMRES(m) can be chosen flexibly
for mitigating occurrence of stagnation or for accelerating the convergence.

Different from usual GMRES(m), the flexibility of choosing the starting vector of the new
method provides us a frame work of using inner-outer iterations, in which other iterative
methods can be used to get the next starting vector. A simple strategy of taking the
harmonic vector associated with the harmonic Ritz value closest to zero as the starting
vector is discussed in details. Numerical experiments are done to compare the variant of
GMRES(m) combining with this strategy with the original GMRES(m) and demonstrate
the former superiority. More precisely, for problems with small eigenvalues well-separated,
the numerical experiments show that the new method always outperforms GMRES(m) on
moderately restart parameters.

∗This is a joint work with Qiang Niu and Michael Ng.

1

Preconditioning and parallelization of I-SVD are also discussed. Combining the
algorithm with the block Householder transform and the Murata-Horikoshi-Lang
algorithm for bidiagonalization a new fast SVD algorithm for full matrices will be
completed.
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1 Introduction

In this paper, we consider a parallel method for computing a limited set of
eigenvalues and their corresponding eigenvectors of the generalized eigenvalue
problem

Ax = λBx

in a certain region of the complex plane. The generalized eigenvalue problems
arise in many scientific and engineering applications. In such applications,
the matrices are typically very large, and iterative methods are used to gen-
erate a subspace that contain the desired eigenvectors. Approximations are
extracted from the subspace through a Rayleigh-Ritz projection. Various
methods can be derived from this scheme.

In [4], a moment-based method that finds eigenvalues in a given domain
is presented which is based on a root finding method described in [1, 2, 3].
In the method, a small matrix pencil that has only the desired eigenvalues
is derived by solving systems of linear equations constructed from A and B.
These systems can be solved independently, and we solve them on remote
servers using asynchronous remote procedure calls. This approach is suitable
for master-worker programming models. A parallel implementation of the
method using a GridRPC system and MPI is presented in [5].

Our purpose is to improve numerical stability of the method in [4]. The
computation of eigenvalues using explicit moments is sometimes numerically
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unstable. We show that a Rayleigh-Ritz procedure can be used to avoid the
use of explicit moments.
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N
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We study numerical solution of the nonsymmetric algebraic Riccati equation (ARE)

R(X) = XCX − XD − AX + B = 0, (1)

where A, B, C and D are real matrices of sizes m×m, m×n, n×m and n×n, respectively.

ARE(1) may arise in many areas of scientific computing and engineering applications
such as the total least squares (TLS) problems with or without symmetric constraints [3],
the spectral factorizations of rational matrix functions [2, 5], the linear and nonlinear
optimal controls [18, 21], the constractive rational matrix functions [14, 6], the structured
stability radius [11], the transport theory [13], the Wiener-Hopf factorization of Markov
chains [22], the computation of matrix sign function [19, 16] and the optimal solutions of
linear differential systems [15].

There are many studies about theoretical properties and numerical algorithms for
ARE(1) as well as its special cases, see [4, 17, 20] and references therein. To compute
the minimal positive solution of ARE(1) under certain assumptions, Guo and Laub [9]
recently established and studied the following Newton iteration method and fixed-point
iteration method:

The Newton and The Fixed-Point Iteration Methods.
Set X0 = 0 ∈ R

m×n. For k = 0, 1, 2, . . . until the matrix sequence {Xk} convergence,

compute Xk+1 from Xk by solving the Sylvester equation

(A − XkC)Xk+1 + Xk+1(D − CXk) = B − XkCXk, for Newton iteration, (2)

or

MAXk+1 +Xk+1MD = NAXk + XkND + XkCXk + B, for fixed-point iteration. (3)
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2 Z.-Z. Bai

Here, A = MA−NA and D = MD−ND are prescribed splittings of the matrices

A and D, respectively.

Let
W = I ⊗ A+ DT ⊗ I.

Then Guo and Laub proved in [9] that ARE(1) has at least a positive solution when the
matrices A, B, C and D satisfy the assumption:

(A1) B > 0, C > 0 and W is a nonsingular M -matrix.

Moreover, they showed that both the Newton and the fixed-point iterations monotonically
increasingly converge to the minimal positive solution of ARE(1), provided for the fixed-
point iteration the involved splitting matrices satisfy that MA and MD are Z-matrices and
NA and ND are nonnegative matrices. In particular, they verified that ARE(1) arising
from the transport theory automatically satisfy assumption (A1), see also [12, 13]. Latter,
in [8] Guo further relaxed assumption (A1) to the following:

(A2) B ≥ 0, C ≥ 0 and W is a nonsingular M -matrix,

or sometimes (A2) and

(A3) B �= 0, C �= 0 and W−1 · vec(B) > 0,

and proved the following results:

(i) when assumptions (A2) and (A3) are satisfied, if there exists a positive matrix Xf

such that R(Xf ) ≤ 0, then ARE(1) has a minimal positive solution S such that
S ≤ Xf and the Newton iteration starting from X0 = 0 converges to S monotonically
increasingly and quadratically; and

(ii) when assumption (A2) is satisfied, if there exists a positive matrix Xf such that
R(Xf ) ≤ 0, then ARE(1) has a minimal positive solution S such that S ≤ Xf

and the fixed-point iteration starting from X0 = 0 converges to S monotonically
increasingly and linearly, provided that the splitting matrices MA and MD are Z-
matrices and NA and ND are nonnegative matrices.

In addition, he derived a sufficient and necessary condition for guaranteeing the existence
of the minimal nonnegative solution S of ARE(1), and described a Schur factorization
method for computing the S.

More recently, Guo and Bai [10] gave the sensitivity analysis of the minimal nonnega-
tive solution of ARE(1) and described a matrix sign function method for computing this
solution.

However, either the Newton iteration method or the fixed-point iteration method re-
quires solving a Sylvester equation at each step of the iterations. This is very costly and
complicated in actual applications, in particular, when the matrix sizes are very large,
although several feasible and efficient Sylvester-equation solvers, e.g., the Bartels-Stewart
method [1] and the Hessenberg-Schur method [7], are available.
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In this talk, we establish a class of alternately linearized implicit (ALI) iteration meth-
ods for solving the minimal nonnegative solutions of the nonsymmetric algebraic Riccati
equations (1) based on technical combination of alternate splitting and successive approxi-
mating of the algebraic Riccati operators. These methods include one iteration parameter,
and suitable choices of this parameter may result in fast convergent iteration methods;
and they only involve matrix operations and are, hence, more convenient for being im-
plemented in parallel computing environments. Under suitable nonnegativity and mono-
tonicity assumptions about the involved matrices A, B, C and D, we prove the monotone
convergence and estimate the asymptotic convergence factor of the ALI iteration matrix
sequences. Numerical experiments show that the ALI iteration methods are feasible and
effective, and can outperform the Newton iteration method and the fixed-point iteration
methods. Besides, we further generalize the known fixed-point iterations discussed in [9],
obtaining an extensive class of relaxed splitting iteration methods, such as the SOR-type
fixed point iteration and the AOR-type fixed point iteration 1 as well as their blockwise
variants, for solving the nonsymmetric algebraic Riccati equations (1).

We remark that for ALI iteration method the choice of a practically optimal parameter
is often problem-dependent and, therefore, is considerably difficult in the viewpoints of
both theory and application. This is equally true for the SORFP and the AORFP iteration
methods.
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Abstract. The adaptive finite element method based on a posteriori error estimates
provides a systematic way to refine or coarsen the meshes according to the local a pos-
teriori error estimator on the elements. One of the remarkable properties of the method
is that for appropriately designed adaptive finite element procedures, the meshes and
the associated numerical complexity are quasi-optimal in the sense that in two space di-
mensions, the finite element discretization error is proportional to N−1/2 in terms of the
energy norm, where N is the number of elements of the underlying mesh. The purpose
of this talk is to report some of the recent advances in the a posteriori error analysis and
adaptive finite element methods for partial differential equations.

We consider to use AFEM to solve the Helmholtz-type scattering problems with
perfectly conducting boundary

∆u+ k2u = 0 in R2\D̄, (0.1a)

∂u

∂n
= −g on ΓD, (0.1b)

√
r

∂u

∂r
− iku → 0 as r = |x| → ∞. (0.1c)

Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD) is
determined by the incoming wave, and n is the unit outer normal to ΓD. We assume
the wave number k ∈ R is a constant. We study an adaptive perfectly matched layer
(APML) technique to deal with the Sommerfeld radiation condition (0.1c) in which the
PML parameters such as the thickness of the layer and the fictitious medium property are
determined through sharp a posteriori error estimates. The APML technique combined
with AFEM provides a complete numerical method for solving the scattering problem in
the framework of finite element which has the nice property that the total computational
costs are insensitive to the thickness of the PML absorbing layers. The quasi-optimality
of underlying FEM meshes is also observed.

Things become much more complicated when applying AFEM to solve time-dependent
partial differential equations. One important question is if one should use the adaptive
method of lines (AML) in which variable timestep sizes (but constant at each time step)
and variable space meshes at different time steps are assumed, or one should consider
the the space-time adaptive method in which space-time domain is considered as a whole
and AFEM is used without distinguishing the difference of time and space variables. Our
recent studies in [2, 3, 4] reveal that with sharp a posteriori error analysis and carefully

∗The author is grateful to the support of China National Basic Research Program under the
grant 2005CB321701 and the China NSF under the grant 10025102 and 10428105.

4 Z.-Z. Bai

[8] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization
for M -matrices, SIAM J. Matrix Anal. Appl., 23:1(2001), 225-242.

[9] C.-H. Guo and A.J. Laub, On the iterative solution of a class of nonsymmetric
algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 22:2(2000), 376-391.

[10] X.-X. Guo and Z.-Z. Bai, On the minimal nonnegative solution of nonsymmetric
algebraic Riccati equation, J. Comput. Math., 23:3(2005), 305-320.

[11] D. Hinrichsen, B. Kelb and A. Linnemann, An algorithm for the computation of the
structured complex stability radius, Automatica J. IFAC, 25:5(1989), 771-775.

[12] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory,
Linear Algebra Appl., 230(1995), 89-100.

[13] J. Juang andW.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-
like matrices, SIAM J. Matrix Anal. Appl., 20:1(1999), 228-243.

[14] P. Lancaster and L. Rodman, Solutions of the continuous and discrete-time algebraic
Riccati equations: A review, In The Riccati Equation, S. Bittanti, A.J. Laub and
J.C. Willems eds., Springer-Verlag, Berlin, 1991.

[15] P. Lancaster and L. Rodman, Algebraic Riccati Equations, The Clarendon Press,
Oxford, 1995.

[16] A.J. Laub, Invariant subspace methods for the numerical solution of Riccati equations,
In The Riccati Equation, S. Bittanti, A.J. Laub and J.C. Willems eds., Springer-

Verlag, Berlin, 1991.

[17] H.-B. Meyer, The matrix equation AZ +B −ZCZ−ZD = 0, SIAM J. Appl. Math.,
30:1(1976), 136-142.

[18] I.R. Petersen, Disturbance attenuation and H∞-optimization: A design method
based on the algebraic Riccati equation, IEEE Trans. Automat. Control, 32:5(1987),
427-429.

[19] J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function, Intern. J. Control, 32:4(1980), 677-687.

[20] G.W. Stewart, Error and perturbation bounds for subspaces associated with certain
eigenvalue problems, SIAM Rev., 15:4(1973), 727-764.

[21] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control, 2nd
Edition, Springer-Verlag, London, 2000.

[22] D. Williams, A “potential-theoretic” note on the quadratic Wiener-Hopf equation for
Q-matrices, In Seminar on Probability XVI, Lecture Notes in Math. 920, Springer-

Verlag, Berlin, 1982, pages 91-94.

－56－



A Posteriori Error Analysis and Adaptive

Methods for Partial Differential Equations

Zhiming Chen∗

Abstract. The adaptive finite element method based on a posteriori error estimates
provides a systematic way to refine or coarsen the meshes according to the local a pos-
teriori error estimator on the elements. One of the remarkable properties of the method
is that for appropriately designed adaptive finite element procedures, the meshes and
the associated numerical complexity are quasi-optimal in the sense that in two space di-
mensions, the finite element discretization error is proportional to N−1/2 in terms of the
energy norm, where N is the number of elements of the underlying mesh. The purpose
of this talk is to report some of the recent advances in the a posteriori error analysis and
adaptive finite element methods for partial differential equations.

We consider to use AFEM to solve the Helmholtz-type scattering problems with
perfectly conducting boundary

∆u+ k2u = 0 in R2\D̄, (0.1a)

∂u

∂n
= −g on ΓD, (0.1b)

√
r

∂u

∂r
− iku → 0 as r = |x| → ∞. (0.1c)

Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD) is
determined by the incoming wave, and n is the unit outer normal to ΓD. We assume
the wave number k ∈ R is a constant. We study an adaptive perfectly matched layer
(APML) technique to deal with the Sommerfeld radiation condition (0.1c) in which the
PML parameters such as the thickness of the layer and the fictitious medium property are
determined through sharp a posteriori error estimates. The APML technique combined
with AFEM provides a complete numerical method for solving the scattering problem in
the framework of finite element which has the nice property that the total computational
costs are insensitive to the thickness of the PML absorbing layers. The quasi-optimality
of underlying FEM meshes is also observed.

Things become much more complicated when applying AFEM to solve time-dependent
partial differential equations. One important question is if one should use the adaptive
method of lines (AML) in which variable timestep sizes (but constant at each time step)
and variable space meshes at different time steps are assumed, or one should consider
the the space-time adaptive method in which space-time domain is considered as a whole
and AFEM is used without distinguishing the difference of time and space variables. Our
recent studies in [2, 3, 4] reveal that with sharp a posteriori error analysis and carefully

∗The author is grateful to the support of China National Basic Research Program under the
grant 2005CB321701 and the China NSF under the grant 10025102 and 10428105.

4 Z.-Z. Bai

[8] C.-H. Guo, Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization
for M -matrices, SIAM J. Matrix Anal. Appl., 23:1(2001), 225-242.

[9] C.-H. Guo and A.J. Laub, On the iterative solution of a class of nonsymmetric
algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 22:2(2000), 376-391.

[10] X.-X. Guo and Z.-Z. Bai, On the minimal nonnegative solution of nonsymmetric
algebraic Riccati equation, J. Comput. Math., 23:3(2005), 305-320.

[11] D. Hinrichsen, B. Kelb and A. Linnemann, An algorithm for the computation of the
structured complex stability radius, Automatica J. IFAC, 25:5(1989), 771-775.

[12] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory,
Linear Algebra Appl., 230(1995), 89-100.

[13] J. Juang andW.-W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-
like matrices, SIAM J. Matrix Anal. Appl., 20:1(1999), 228-243.

[14] P. Lancaster and L. Rodman, Solutions of the continuous and discrete-time algebraic
Riccati equations: A review, In The Riccati Equation, S. Bittanti, A.J. Laub and
J.C. Willems eds., Springer-Verlag, Berlin, 1991.

[15] P. Lancaster and L. Rodman, Algebraic Riccati Equations, The Clarendon Press,
Oxford, 1995.

[16] A.J. Laub, Invariant subspace methods for the numerical solution of Riccati equations,
In The Riccati Equation, S. Bittanti, A.J. Laub and J.C. Willems eds., Springer-

Verlag, Berlin, 1991.

[17] H.-B. Meyer, The matrix equation AZ +B −ZCZ−ZD = 0, SIAM J. Appl. Math.,
30:1(1976), 136-142.

[18] I.R. Petersen, Disturbance attenuation and H∞-optimization: A design method
based on the algebraic Riccati equation, IEEE Trans. Automat. Control, 32:5(1987),
427-429.

[19] J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function, Intern. J. Control, 32:4(1980), 677-687.

[20] G.W. Stewart, Error and perturbation bounds for subspaces associated with certain
eigenvalue problems, SIAM Rev., 15:4(1973), 727-764.

[21] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control, 2nd
Edition, Springer-Verlag, London, 2000.

[22] D. Williams, A “potential-theoretic” note on the quadratic Wiener-Hopf equation for
Q-matrices, In Seminar on Probability XVI, Lecture Notes in Math. 920, Springer-

Verlag, Berlin, 1982, pages 91-94.

－57－



Adaptive Finite Element Methods 3

[3] Chen, Z. and Ji, G., Adaptive computation for convection dominated diffusion prob-
lems, Science in China, 47 Supplement (2004), 22-31.

[4] Chen, Z. and Ji, G., Sharp L1 a posteriori error analysis for nonlinear convection-
diffusion problems, Math. Comp. 75 (2006), 43-71.

[5] Chen, Z. and Liu, X., An Adaptive Perfectly Matched Layer Technique for Time-
harmonic Scattering Problems, SIAM J. Numer. Anal. 43 (2005), 645-671.

[6] Chen, Z., Nochetto, R.H., and Schmidt, A., A characteristic Galerkin method with
adaptive error control for continuous casting problem, Comput. Methods Appl. Mech.
Engrg. 189 (2000), 249-276.

[7] Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic prob-
lems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43-77.
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2 Zhiming Chen

designed adaptive algorithms, the AML method produces the very desirable quasi-optimal
decay of the error with respect to the computational complexity

|||u− U |||Ω×(0,T ) ≤ CM−1/3 (0.2)

for a large class of convection-diffusion parabolic problems in two space dimensions using
backward Euler scheme in time and conforming piecewise linear finite elements in space.
Here |||u−U |||Ω×(0,T ) is the energy norm of the error between the exact solution u and the
discrete solution U , and M is the sum of the number of elements of the space meshes over
all time steps. Thus if one takes the quasi-optimality of the computational complexity as
the criterion to assess the adaptive methods, then the space-time adaptive method which
is less studied in the literature will not have much advantage over the AML method.

A posteriori error analysis for parabolic problems in the framework of AML has
been studied intensively in the literature. The main tool in deriving a posteriori error
estimates in [7, 8, 6, 9, 1] is the analysis of linear dual problems of the corresponding
error equations. The derived a posteriori error estimates, however, depend on the H2

regularity assumption on the underlying elliptic operator. Without using this regularity
assumption, energy method is used in [10, 2] to derive an a posteriori error estimate for the
total energy error of the approximate solution for linear heat equations. A lower bound
for the local error is also derived for the associated a posteriori error indicator in [10, 2].
In [2] an adaptive algorithm is constructed which at each time step, is able to reduce
the error indicators (and thus the error) below any given tolerance within finite number
of iteration steps. Moreover, the adaptive algorithm is quasi-optimal in terms of energy
norm. In [3] an quasi-optimal AML method in terms of the energy norm is constructed
for the linear convection-dominated diffusion problems based on L1 a posteriori error
estimates.

We study the AML method for the initial boundary value problems of nonlinear
convection-diffusion equations of the form

∂u

∂t
+ divf(u)−∆A(u) = g.

We derive sharp L∞(L1) a posteriori error estimates under the non-degeneracy assump-
tion A(s) > 0 for any s ∈ R. The problem displays both parabolic and hyperbolic be-
havior in a way that depends on the solution itself. It is discretized implicitly in time via
the method of characteristic and in space via continuous piecewise linear finite elements.
The analysis is based on the Kružkov “doubling of variables” device and the recently
introduced “boundary layer sequence” technique to derive the entropy error inequality
on bounded domains. The derived a posteriori error estimate leads to a quasi-optimal
adaptive method in terms of the L∞(L1) norm of the error.
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Solutions of elliptic boundary value problems on a domain with corners have singu-
lar behavior near the corners. This occurs even when data of the underlying problem are
very smooth. Such singular behavior affects the accuracy of the finite element method
throughout the whole domain. We are concerned about the cure of this phenomenon.

We consider two Model problems;
The first one is the Poisson equation;

(1) The Poisson equation with the Dirichlet boundary condition in a non-convex poly-
gon Ω ∈ R2: 

−∆u = f, in Ω,

u = 0, on ∂Ω,
(0.1)

where ∆ stands for the Laplacian operator, f is a given function in L2(Ω), and Ω is
an open, bounded polygonal domain in R2.( For simplicity assume Ω have only one
re-entrant angle.)

The second one is the Interface Problem;
(2) Let Ωj (j = 1, ..., J) be open, polygonal subdomains of Ω:

Ωi ∩ Ωj = ∅ for i = j and
J

j=1

Ω̄j = Ω̄.

The Model interface problem is: find u ∈ H1
0 (Ω) such that

−aj ∆u = f in Ωj (0.2)

for j = 1, ... , J with interface conditions

ai
∂u

∂ni

|Γij
+ aj

∂u

∂nj

|Γij
= 0 (0.3)

for i, j = 1, ... , J such that Γij = ∅. Denote by Γij = ∂Ωi ∩ ∂Ωj the common edge
of Ωi and Ωj and let nj be the outward unit normal vector to the boundary ∂Ωj of

1
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Ωj. Assume that the diffusion coefficient a is piecewise constant with respect to the
partition:

a(x) = aj > 0 in Ωj (0.4)

for j = 1, ... , J .
We developed a new finite element method for the Poisson equations (0.1) with

homogeneous Dirichlet boundary conditions on a polygonal domain with one re-entrant
angle. It is well-known that the solution of such problem has a singular representation:
u = w+ληs where w ∈ H2(Ω)∩H1

0 (Ω), λ ∈ R and η are the respective stress intensity
factor and cut-off function, and s is a known singular function depending only on the
re-entrant angle. By using the dual singular and an extra cut-off functions, we are
able to deduce a well-posed variational problem for w and an extraction formula for
λ in terms of w. Standard continuous piecewise linear finite element approximation
yields O(h) and O(h1+ π

ω
−) accuracy for w in the respective H1 and L2 norms, where

ω is the internal angle and  is any positive number. These, in turn, imply O(h1+ π
ω
−)

approximation for λ in the absolute value and O(h) and O(h1+ π
ω
−) approximation for

u in the repective H1 and L2 norms(see [1, 2, 3]). This method can be regarded as a
kind of SFM.
Now we applied this new SFM to the interface problem (0.2).
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We propose the use of multiple-precision arithmetic and high-accurate discretizations for numerical com-
putations of ill-posed or unstable problems. Two different kinds of computational errors are considered in
the research: discretization errors which come from the discretization of differential or integral operators,
and rounding errors which are included in the discretization of real numbers and their arithmetic. Round-
ing errors are not matter in stable numerical method. In numerically unstable processes rounding error is
artificial high-frequency disturbance and its rapid growth is crucial.

Numerically unstable processes appear in numerical method of inverse problems which are important in
engineering, geophysics or medicine as non-destructive tests, computer tomography or remote sensing. They
are ill-posed in the sense of Hadamard in most cases, especially instability breaks their direct numerical
method. We define a problem is well-posed in the sense of Hadamard if and only if there exists a unique
solution and it continuously depends on data. Ill-posedness is the opposite concept to well-posedness and
instability is most defect in numerical analysis because it leads the rapid growth of errors in numerical
processes. We give a remark that unstable process arises from mathematically stable problems.

Stability is one of the most important issues in numerical analysis. Mathematical stability of a partial
differential equation or an integral equation usually derives stability of its discretization scheme, however,
stability of its numerical processes is not derived straightforwardly. In other words, numerical implementation
of the mathematically stable scheme may be unstable. For example Tikhonov regularized equation [11]
is mathematically well-posed and stable for any regularization parameters, however its numerical process
becomes unstable for small regularization parameters. Stability of numerical processes depends on the each
computational environments including user programs statements, approximation of real numbers, and its
precision.

To discuss precisely we denote the problem as

Au = f, (1)

and its discretization scheme as
Ahuh = fh, (2)

where h denotes discretization parameters. In numerical computation, we intend to implement (2) on digital
computers. However the equation (2) contains real numbers and exact arithmetic then we can not obtain
the exact values uh in numerical computations with computer arithmetic. We consider a relation

Ah,puh,p ≈ fh,p (3)

as numerical process of (2), where we denote p to show numerical results uh,p depend on a program and
precision of arithmetic. We obtain uh,p as numerical results which approximates the exact solution uh of
(2), and differences between uh and uh,p are caused by rounding errors. Even if (1) or (2) is mathematically
stable, its implementation (3) is possibly unstable processes. For example, let us consider a recursion formula

an+2 =
34
11

an+1 − 3
11

an, n = 0, 1, 2, 3, · · · , N. (4)

The exact solution of (4) is an = c1(1/11)n + c23n, where c1 and c2 are linear combinations of the initial
values a0 and a1, and aN continuously depends on a0 and a1 for a fixed N . However its numerical processes
is unstable because the solution contains an exponentially growing term 3n. Indeed for a0 = 1, a1 = 1/11,
we obtain different solutions {an} on different computers shown in Figure 1, and both solutions diverge
and do not approximate the exact solutions an = (1/11)n. On the other hand we obtain good numerical
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Figure 1: Numerically Unstable Processes for Recursion Formula (4)

solutions with multiple-precision arithmetic. The result shows that stability of numerical processes depends
on arithmetic precision in the processes.

In the standard numerical computation the real numbers and their arithmetic are discretized with
IEEE754 standard [7], in which real number is approximated with a floating-point number [9, 5] which
consists of a sign part, a exponent part, and a fraction part. IEEE754 double is most widely used today, and
it have about 15 digits accuracy in its fractional part. Multiple-precision arithmetic is one of the ways to
extend the fractional digits to improve accuracy of approximation of real numbers. Because rounding errors
are quite artificial disturbance qualitative approaches like stability analysis or stabilization techniques are
sometimes not effective for evaluation of numerical results. We propose quantitative a posteriori approach
with interval arithmetic with multiple-precision to analyze the influence of rounding errors.

Multiple-precision arithmetic is expensive in both time and memory costs for large scale problems. For
a request of fast computing we implement a new multiple-precision arithmetic [2] which works with the
programming language C++ or Fortran90. It runs on personal computers, clusters, or supercomputers with
parallel computation.

We must also reduce discretization error for unstable problems. Spectral methods [1, 6] give high-
accurate discretization manners. For integral equations of the first kind with analytic kernel, Chebyshev
spectral methods are applied and realize numerical simulations [8, 3]. For partial differential equations
spectral collocation patch method or spectral element method [10] are known as a high-accurate numerical
method for the purpose of direct numerical computation of unstable problems.

From a view point of inverse problems, stabilization such as Tikhonov regularization is effective to hide
the influence of various errors. On the other hand strong stabilizations hide important characteristics like
singularities of solutions and problems at the same time. The balance of mathematical stabilization technique
is important [4].High-accurate numerical method is required for precise numerical analysis with stabilization
techniques.

In the talk, we shall introduce our multiple-precision arithmetic computation environment and show some
numerical examples with the proposed environment.
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A NEUMANN-DIRICHLET PRECONDITIONER
FOR A FETI-DP FORMULATION WITH MORTAR METHODS

CHANG-OCK LEE∗

This talk is concerned with a preconditioner for an iterative method for the paral-
lel solution of the elliptic problem, the two-dimensional Stokes problem and the three-
dimensional compressible elasticity problem with nonconforming discretizations. Of
the many methods for nonmatching meshes, including [4] and [16], we consider the
mortar method [1, 3, 18, 19].

Recently the dual-primal FETI (FETI-DP) method introduced by Farhat, Lesoinne,
and Pierson [7] has been applied to mortar finite elements methods [5, 6, 17]. For
FETI-DP methods on nonmatching grids, Dryja and Widlund [5] proposed a precon-
ditioner, so-called Dirichlet preconditioner, which gives a condition number bound
C(1 + log(H/h))2 with the Neumann–Dirichlet ordering of substructures, where H
and h denote the maximum diameter of subdomains and the minimum size of meshes
of all subdomains, respectively. Moreover, in [6], they proposed a different precon-
ditioner, which is similar to one in [12], and proved the condition number bound
C(1 + log(H/h))2. However, the constant C in the condition number bound depends
on the ratio of meshes between neighboring subdomains. This restriction is imprac-
tical when the coefficients of elliptic problems are highly discontinuous between sub-
domains (see Wohlmuth [19]).

In [10], a FETI-DP operator was formulated in a different way from that of Dryja
andWidlund [5, 6] and a Neumann–Dirichlet preconditioner was proposed, which gives
the condition number bound Cmaxi=1,··· ,N


(1 + log (Hi/hi))

2

with the constant C

not depending on the ratio of meshes between neighboring subdomains. The proposed
preconditioner is similar to the previous FETI-DP preconditioners except that it solves
local problems with Neumann boundary conditions on nonmortar interfaces and with
a zero Dirichlet boundary condition on mortar interfaces. The additional complication
caused by mortar discretizations can be handled by using this preconditioner.

The extension of the FETI-DP method in [10] has been done to the three di-
mensional problem [8]. In the FETI-DP formulation, we need redundant continuity
constraints to get the same condition number bound as the two dimensional prob-
lem. The redundant constraints are that averages of the solution across subdomain
interfaces are the same, which is so called face constraints in [14]. With the similar
idea to the previous work in [10], a Neumann-Dirichlet preconditioner is proposed,
and it is shown that the same condition number bound as the two-dimensional elliptic
problem holds for the three-dimensional elliptic problems whose coefficients do not
change rapidly across subdomain interfaces. Further, with an assumption on mesh
sizes according to the magnitude of coefficients, we get the same condition number
bound for elliptic problems with discontinuous constant coefficients. In this case, the
constant C does not depend on the coefficients.

In [11] the FETI-DP algorithm developed in [10] was extended to the two-dimensional
Stokes problem. The inf-sup stable P1(h)− P0(2h) finite element space is considered
in each subdomain. The mortar matching conditions are imposed on the velocity
functions. An optimal approximation of mortar methods for the Stokes problem was
proved by Belgacem [2]. If the inf-sup constant is independent of mesh sizes and
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preconditioner is similar to the previous FETI-DP preconditioners except that it solves
local problems with Neumann boundary conditions on nonmortar interfaces and with
a zero Dirichlet boundary condition on mortar interfaces. The additional complication
caused by mortar discretizations can be handled by using this preconditioner.

The extension of the FETI-DP method in [10] has been done to the three di-
mensional problem [8]. In the FETI-DP formulation, we need redundant continuity
constraints to get the same condition number bound as the two dimensional prob-
lem. The redundant constraints are that averages of the solution across subdomain
interfaces are the same, which is so called face constraints in [14]. With the similar
idea to the previous work in [10], a Neumann-Dirichlet preconditioner is proposed,
and it is shown that the same condition number bound as the two-dimensional elliptic
problem holds for the three-dimensional elliptic problems whose coefficients do not
change rapidly across subdomain interfaces. Further, with an assumption on mesh
sizes according to the magnitude of coefficients, we get the same condition number
bound for elliptic problems with discontinuous constant coefficients. In this case, the
constant C does not depend on the coefficients.

In [11] the FETI-DP algorithm developed in [10] was extended to the two-dimensional
Stokes problem. The inf-sup stable P1(h)− P0(2h) finite element space is considered
in each subdomain. The mortar matching conditions are imposed on the velocity
functions. An optimal approximation of mortar methods for the Stokes problem was
proved by Belgacem [2]. If the inf-sup constant is independent of mesh sizes and
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2 CHANG-OCK LEE

subdomain sizes, then the optimal order of approximation follows independently of
the number of subdomains and mesh sizes as in the case of elliptic problems. As
in [8, 15], the primal constraints, i.e., edge average and vertex constraints, are intro-
duced to solve the Stokes problem efficiently and correctly. Then a Neumann-Dirichlet
preconditioner is proposed and the same condition number bound is analyzed.

The FETI-DP algorithm of [10] was extended to the three-dimensional compress-
ible elasticity problem [9]. Klawonn and Widlund [13] considered various primal con-
straints for elasticity problems with discontinuous Lamé parameters. In their work,
some faces and edges are selected as fully primal faces and fully primal edges. They
work with edge average constraints on a fully primal face, and edge average and edge
moment constraints on a fully primal edge. However, edge constraints are not com-
patible with mortar matching constraints. In [9], the face average and face moment
constraints on the faces are introduced. Further, the number of primal constraints are
reduced by selecting only some of the faces as primal faces for which the face average
and face moment constraints are applied.
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Abstract

The Rayleigh-Bénard heat convection problems are approximated by
the Oberbeck–Boussinesq equations on the unbounded horizontal domain
to find u the velocity field, p the pressure and T the temperature of the
fluid satisfying the followings:

ρ0 [ut + (u · ∇)u] + ∇p = µ∆u − ρge3, (1)

ρ0Cp [Tt + (u · ∇)T ] = k∆T, (2)

where ρ0 is a reference density, µ dynamic viscosity, g gravity accel-
eration, ei unit vector along xi direction, Cp specific heat at constant
pressure, and k thermal conductivity. And the density ρ depends on T :
ρ = ρ(T ) = ρ0[1 − αT (T − T0)] with thermal expansion coefficient αT

and temperature T0 on the top. We consider the numerical verification
method for stationary solutions of equations (1) and (2) in two and three
space dimensions. Under some appropriate boundary conditions, based
on a Fourier spectral method and the constructive error estimates, we
succeeded to verify numerically several nontrivial solutions which are bi-
furcating from trivial solutions near the critical Rayleigh number as well
as the bifurcation point itself. Numerical examples will be presented in
the talk.
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