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Abstract

Aim of this work is the examination of numerical methods for the solution of large systems
of PDE’s. The equations under consideration arise from chemically reacting flows.

A focal point is the analysis of a finite element discretization with stabilized finite elements
of degree two. Aspects of error estimation, solution techniques and mesh adaptivity are
discussed with regard to the Navier-Stokes equations. Using a well established Navier-Stokes
benchmark flow the discussed methods are verified.

To cope with the huge systems arising from reactive flow problems a parallel multigrid
method on locally refined meshes is presented.

Finally, we will perform a simulation of a methane burner in a complex three dimensional
geometry. We will use a detailed reaction mechanism with 39 chemical species.

Zusammenfassung

Gegenstand dieser Arbeit ist die Analyse von numerischen Verfahren zur Lösung von großen
Systemen partieller Differenzialgleichungen. Die betrachteten Gleichungen treten z.B. bei
der Simulation von reaktiven Strömungen auf.

Ein Schwerpunkt ist die Untersuchung einer stabilisierten Finite Elemente Diskretisierung
mit quadratischen Ansatzräumen. Anhand der Navier-Stokes Gleichungen werden Aspekte
wie das Lösen der Gleichungssysteme, Fehlerschätzung und Gitteradaption behandelt. Die
vorgestellten Verfahren werden an einem etablierten Navier-Stokes Benchmark verifiziert.

Bei der Simulation von reaktiven Strömungen vergrößert sich die Anzahl der Lösungskom-
ponenten um die Anzahl an chemischen Substanzen. Die implizit gekoppelte Lösung der
entsprechenden Gleichungen stellt hinsichtlich Rechen- und Zeitaufwand eine enorme An-
forderung an die Computer. Um eine Lösung überhaupt zu ermöglichen wird eine paralleles
Mehrgitterverfahren auf adaptiven Gittern vorgestellt.

Schließlich werden Simulationsrechnungen einer Methanflamme in einem Brenner mit kom-
plexer, dreidimensionaler Geometrie präsentiert. Die chemischen Reaktionen werden mit
einem detailierten Reaktionsmechanismus unter Berücksichtigung von 39 chemischen Sub-
stanzen modelliert.
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1. Introduction

1.1. Motivation

This work is devoted to the reliable solution of complex problems described by partial dif-
ferential equations. The problems under consideration originate from various processes of
nature specifically from flows and chemical reactions. Our focus here is the combination of
both. Thinking of chemical reactors or flames in burners, the reacting species – whether
fluid, gaseous, or a mixture of both – flow in some technical devices. In addition to basic
‘cold flow’ the reaction effects the flow by density variations of different species as well as
temperature gradients aroused by the reactions. In order to accurately solve such combined
problems, we have to treat the arising equations coupled simultaneously. Even with the use
of modern parallel computers, the sheer size of the resulting system overstresses available
capacity in terms of memory usage and computational time if we consider three dimensional
problems involving large reaction systems.

Hence, the usual approach for the numerical treatment of reactive flow problems is made
up of a two dimensional reduction of the geometry and a decoupling of the equations. This
decoupling is either done by splitting the equations into a flow and a reaction part and
iterating between the two or by some splitting scheme applied within the solution process.

However, if we like to apply adaptivity with reliable error control or if the problem is sub-
ject to some optimization, we need a coupled handling of the equations. Braack [Bra98]
proposed an adaptive finite element scheme for two dimensional chemically reacting flows.
The problem is treated fully coupled as a set of nonlinear equations. Error control and mesh
adaption is applied following the framework of the dual weighted residual method by Becker
& Rannacher [BR96], [BR01].

This work is dedicated to the extension of the already extensively analyzed adaptive finite
element method to the three dimensional case. Beside enhancing the finite element dis-
cretization, a crucial point is the parallelization of the solvers. Modern parallel computers
work with message passing protocols, in which the data is distributed to separate machines
by passing data packages through a network. Consequently this communication is decidedly
slow in comparison to local memory access. Communication between different machines has
to be limited to a minimum.

The parallelization of finite element methods is not new. Mainly two approaches are used:
one could split the computational domain into several parts and distribute local problems
to different processors, see e.g. Quarteroni & Valli [QV99] for these “domain decomposi-
tion” methods. The second approach is the parallelization of the linear solver while the
finite element method itself is kept unchanged. Details on the parallelization of an adaptive
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1. Introduction

multigrid solver are given e.g. in Bastian [Bas96]. This work is embedded into the finite
volume context, through the main ingredients directly carry over to finite elements. The
focus of the parallelization process in this work is not to obtain a highly efficient parallel al-
gorithm but to open up the capacity of modern parallel computers for the existing numerical
methods. The problems under considerations are highly coupled, a natural predetermined
breaking point is not given. Furthermore the usage of adaptive mesh refinement complicates
the parallelization from a technical viewpoint.

The remaining part of this chapter introduces two basic examples which will be used through-
out this work: first a Navier-Stokes benchmark problem which is already well examined and
will be used for verifying the developed methods, and second a configuration describing a
methane burner, sufficiently challenging to exhaust modern techniques.

The second chapter gives an introduction to the finite element methods and explains the
basic notations used in this work.

The used finite element discretization is discussed in the third chapter. We treat three di-
mensional Navier-Stokes flows since they already contain essential properties of the later on
considered chemically reacting flows. Since the Galerkin discretization of the Navier Stokes
equations yields various instabilities (e.g. Girault & Raviart [GR86]), efficient stabilization
techniques form a principal part of this chapter. Always keeping reactive flows in mind, we
address adaptive mesh refinement and error control in detail. Using well adapted meshes,
we can significantly reduce the problem dimension without giving up accuracy. The pre-
sented finite element discretization will finally be validated using a three dimensional flow
benchmark put forward by Schäfer & Turek [ST96].

In the fourth chapter, the parallelization of the given finite element solver is described.
We will start with a basic summary of parallelization techniques and methods necessary
for analyzing parallel algorithms. Considering parallel algorithms one is interested in the
efficiency of the algorithms depending on the problem size and on the number of processors
used, i.e. the scalability of the algorithm. Using the framework of iso-efficiency analysis
presented by Grama et al. [GGKK03] we will see that for studying the efficiency of parallel
algorithms we have to connect the problem size to the number of CPU. Roughly speaking, we
will call an algorithm scalable if its efficiency remains constant while connecting the problem
size to the number of processors by an algebraic coherency.

Further we will present the numerical methods used for solving the problems in detail and
describe their parallelization. The focal point is set on the multigrid solver on adaptively
refined meshes. Our primal interest is the preserving of the very robust coupled solution
techniques in the parallel setting.

Finally in the sixth chapter we apply the developed methods to chemically reacting flows. As
a model problem – which should not state an oversimplification – we use a methane burner
which is an image of a real life configuration used to heat water. The presented calculations
are to be understood as a feasibility study for three dimensional simulations of reacting flows
with robust and reliable methods. The burner will be described in the next sections of this
introduction.
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1.2. 3D Navier Stokes Benchmark Configuration

The computations presented in this thesis are done with the finite element toolbox Gascoigne

[BB+]. In the context of this work, Gascoigne was extended for the use of parallel computers.
Further various modifications where applied to many parts of the toolbox.

1.2. 3D Navier Stokes Benchmark Configuration

Under the Priority Research Program ‘Flow Simulation on High Performance Computers’
a set of benchmark problems has been defined by Schäfer & Turek [ST96]. The task is to
calculate certain coefficients of a three dimensional flow around an obstacle. Two different
obstacles – a cylinder with circular and with square cross-section – are considered. In both
cases the inflow velocity is specified and yields a Reynolds number Re = 20 leading to a
steady flow. The requested quantities are the drag coefficient, the lift coefficient and the
pressure difference in two points near the obstacle.

cdrag = C

∫

Γint

(
ν
∂vt
∂~n

ny − pnx

)
dS, C =

2

DHv̄2
=

500

0.41
,

clift = C

∫

Γint

(
ν
∂vt
∂~n

nx − pny

)
dS,

∆p = p(x2) − p(x1), x1 = (0.45, 0.2, 0.205), x2 = (0.55, 0.2, 0.205).

In summary, the searched quantities are three real numbers ∆p, cdrag, clift for each of the two
configurations. The configuration of the benchmark problem is drawn in Figure 1.1.
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Figure 1.1.: Configurations of the benchmark problems. The obstacle is a cylinder with
circular cross-section (Configuration 1, left) and square cross-section (Configu-
rations 2, right).

Velocity v and pressure p of the flow are searched in the computational domain Ω. The
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1. Introduction

governing equations are the stationary Navier-Stokes equations:

−ν∆v + v · ∇v + ∇p = f
div v = 0

in Ω. (1.1)

Considering the configuration displayed in Figure 1.1 the boundary of Ω is split into four
parts:

∂Ω = Γin ∪ Γwall ∪ Γout ∪ Γint.

A parabolic inflow is enforced as a Dirichlet boundary condition for the velocity on Γin, a
no-slip condition – i.e. homogeneous Dirichlet condition for the velocity – on the interior
obstacle and the wall Γint ∪ Γwall and a do-nothing outflow condition on Γout:

v = g on Γin,

v = 0 on Γwall ∪ Γint,

∂v

∂n
+ pn = 0 on Γout.

The outflow condition is called "‘do-nothing"’ condition, since arises from the variational
formulation without introducing artificial terms. It allows various model flows without in-
troducing boundary errors. Further, it fixes the absolute value of the pressure which is
initially only given up to a constant (see equation 1.1). A good introduction to the deriva-
tion and the theory of Navier-Stokes equations is given by Galdi [Gal94a, Gal94b], details
on the outflow condition are given in Heywood, Rannacher & Turek [HRT96].

1.3. 3D Methane Burner

The simulation of technical processes in realistic settings requires a huge computational
effort. As an example we consider a usual methane burner as displayed in Figure 1.2. From
below the fuel – methane – is introduced into the burner. In some mixing ducts the fuel
is mixed with air to yield a nearly stoichiometric composition. This fuel-air mixture flows
through lamellas to the surface of the burner. Settled atop these lamellas the fuel is burned.
The lamellas all have a fixed distance of each other but are of different height. After a
sequence of three different heights, the configuration is repeated (long - middle - short -
middle - . . . ). To prevent the flame from entering into the burner cooling pipes are fitted
into the lamellas. To allow a simulation of this specific flame we have to reduce the geometry
to be presentable in a computer. First we assume the surface of the burner to be of infinite
size with some periodicity and single out a small cuboid representing just the three different
lamella sizes and a small portion of the cooling pipe. On the lateral boundaries of this
imaginary cuboid we assume a symmetric continuation. Furthermore we consider a laminar
inflow of premixed fuel and do not simulate the mixing process. On the right hand side of
Figure 1.2 the computational domain is shown. Although these severe simplifications lead to
a rather simple geometry, we need roughly 1 000 000 degrees of freedom to simulate a “cold
flow” – i.e. just the simulation of the pressure and the velocity – within this domain. If
we take into account the additional degrees of freedom representing the chemical species a
corresponding simulation would overstress modern computers just in terms of memory usage.
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1.3. 3D Methane Burner

Inflow CH  , O  , N2 24

boundary condition
for temperature

Cooling

Symmetric boundary
condition

Figure 1.2.: Methane burner and reduced computational model of the geometry.

Relief is produced by the use of parallel computers. To cope with the size of the problem,
we split it into parts and distribute them to several separated computers. The common
way of parallelizing finite element simulations is done by domain decomposition methods,
see Quarteroni & Valli [QV99]: the finite element triangulation is partitioned into parts of
preferably the same size which are distributed to the different machines. In each subdomain
the problem is solved, while additional conditions on the interface assure the global correct-
ness of the solution. This decoupled way of solving the problem is not adequate for the
simulation of chemically reacting flows, where the coupling and transport of information is
essential to the character of the solution.

Hence we aim at transferring well established globally coupled algorithms such as a Newton
and multigrid solver to parallel computers. These global methods are inherently ill-suited for
parallelization since information in one point of the computational domain effects the whole
solution. Nevertheless we try to hold up as much of the original methods as possible. In the
next chapter the parallel solver is described in detail. We will see, that only the multigrid
smoother has to be modified.

We denote the velocity by v, the pressure by p, the temperature by T , the ns species mass
fractions by wk, k = 1, . . . , ns, and the density by ρ. The basic equations for reactive viscous
flows express the conservation of total mass, momentum, energy, and species mass in the
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1. Introduction

form

∂tρ+ div (ρv) = 0 , (1.2)

ρ∂tv + ρ(v · ∇)v − divπ + ∇p = ρg , (1.3)

ρcp∂tT + (ρcpv + α) · ∇T + div (−λ∇T + QDuf )

+π : ∇v − v · ∇p− ∂tp = −
ns∑

k=1

hkmkωk , (1.4)

ρ∂twk + ρv · ∇wk + divFk = mkω̇k, (1.5)

for k = 1 . . . ns, where cp is the heat capacity of the mixture at constant pressure, λ the
thermal conductivity, and for each species k, mk is its molar weight, hk its specific enthalpy,
ω̇k its molar production rate, and Fk its diffusion flux.

In the course of solving reactive flow equations, several problems occur. First of all, the
sheer complexity of the coupled systems is beyond the means of usual workstations. A
rough estimation of the system matrix’s expected size illustrates this issue: assume, a 3D
simulation is performed on N grid points. The simulation includes 5 components for the flow
problem (pressure, three velocity parts and the temperature) and further 20 chemical species.
This is to say, we have to comprise 25N degrees of freedom. Thinking of second order finite
elements, every grid point couples with all points at most 2 nodes away, i.e., on globally
refined meshes each matrix row has 53 = 125 couplings. In every node of the mesh nearly all
components are coupled with each other, i.e., one matrix entry consists of 252 = 625 entries.
If we combine these estimates, the system matrix for a mesh containing N nodes consists of
about 125 · 625N entries. If we finally assume a triangulation of a 3D domain with 100.000
mesh points, and utilize single-precision arithmetic, the system matrix would require about
30 gigabytes of memory. This estimation is far from being a worst case scenario, since the
assumed number of mesh points has to be regarded as an “entry-point” for technical settings
and the given memory estimation only involves the system matrix. Using parallel computers
and special storage techniques for the matrices we can reduce this aspect, but the capacity
of available computer systems will always limit the problems to be considered with fully
coupled solution strategies. The usage of numerical methods which no without assembling
matrices is not a cure-all for this problem, since the computational effort is also aligned to
the (then theoretical) matrix complexity and will then exhibit the bottleneck as matrix free
methods will downgrade the efficiency with regard to the computational cost. Parallelization
concepts and advanced storage techniques are described in later sections.
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2. Basic notations and finite element spaces

In this section we give a short introduction to the finite element method and the related
notations. We are interested in the solution u of the problem

Au = f in Ω,

Bu = g on ∂Ω,

in some domain Ω ⊂ R
d with a given right hand side f : Ω → R

n and a second order
(nonlinear) differential operator A and some boundary operator B with the usual boundary
conditions of Dirichlet type:

u = u0 on ∂ΩD,

of Neumann type
∂u

∂n
= g on ∂Ωn,

or of Robin type:

u+
∂u

∂n
= w on ∂Ωr,

with
∂Ω = ∂Ωd ∪ ∂Ωn ∪ ∂Ωr.

For example the inflow condition as well as the no-slip condition on the walls and the
obstacle of the Navier-Stokes benchmark in section 1.2 are of Dirichlet type, while the outflow
condition, the “do-nothing” condition is of Robin type.

2.1. Variational Formulation

By the usual route, problem 2.1 is transformed into the weak formulation (see e.g. Grossmann
& Roos [RR94]) with a (semi-)linear form a(·)(·). The solution u in the Hilbert space V is
searched as

a(u)(ϕ) = f(ϕ), ∀ϕ ∈ V.

The semilinear form is defined on the product space V × V .

Remark 2.1. For the treatment of Dirichlet boundary conditions on some part of the bound-
ary Γ0 ⊂ ∂Ω the solution u is searched in an affine space u ∈ û+V with û ∈ V̂ and u = 0 on
Γ0 for all u ∈ V , where û ∈ V̂ describes a prolongation of the Dirichlet boundary conditions
into the domain. For simplicity of notation we assume V̂ = V and û = 0.
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2. Basic notations and finite element spaces

Below, we introduce some notations from the theory of function spaces which will be used
throughout this work. Detailed properties of these spaces can be found in most books on
functional analysis, e.g. in Alt [Alt99], Riesz & Sz.-Nagy [RSN82] or Zeidler [Zei90].

For a domain Ω ⊂ R
d we denote the Lebesgue space of square-integrable functions on Ω by

L2(Ω). It is a Hilbert space with scalar product and norm:

(v,w)Ω =

∫

Ω

vw dx, ‖v‖Ω = (v, v)
1
2
Ω

Analogous, L2(∂Ω) describes the space of square-integrable functions on the boundary of Ω
equipped with the appropriate scalar product and norm. The Sobolev spaces Hm(Ω) consist
of those functions v ∈ L2(Ω) which possess (distributional) derivatives ∇mv ∈ L2(Ω)d×···×d

up to the order w. For these spaces we define the following half norms:

|v|Hm(Ω) := ‖∇mv‖Ω ,

and the norm

‖v‖Hm(Ω) :=

(
m∑

k=0

|v|2Hk(Ω)

) 1
2

.

Further there exists a continuous trace operator γ : H1(Ω) → L2(∂Ω) with v|∂Ω := γ(v). It
allows us to define the function space H1

0 (Ω) by:

H1
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}.

For simplicity we neglect the subscriptΩ of a norm or scalar product if the context is without
any doubt.

2.2. Finite Element Triangulation

Considering finite elements the utilized function spaces are strongly bound to the triangu-

lation. The domain Ω ⊂ R
d with polygonal boundary ∂Ω is partitioned into open quadri-

laterals (hexes in the three dimensional case) K – in the following called cells in two and
three dimension – which constitute a non-overlapping covering. The case of non-polygonal
boundaries is regarded later in this chapter. The triangulation is denoted by Th = {K} with
a mesh parameter h defined as the cell-wise constant function describing the diameter of
the cell: h|K = hK . The intersections of the closure of two adjacent cells are called faces

(regardless of the problems dimension). The intersections of two adjacent faces each with in
three dimensions are called edges.

Following the literature a mesh is called regular if it fulfills the standard conditions for
shape-regular finite element meshes (as proposed by Ciarlet [Cia78] or Braess [Bra03])

R1 Ω̄ =
⋃

K∈Th

K̄,

R2 K1
⋂
K2 = ∅, ∀K1,K2 ∈ Th with K1 6= K2,

8



2.2. Finite Element Triangulation

R3 Any face of any cell K1 ∈ Th is either a subset of the boundary ∂Ω, or a face of another
cell K2 ∈ Th.

Condition (R3) is weakened in two ways. To allow adaptive mesh refinement without using
connection elements, hanging nodes are introduced: cells are allowed to have nodes which
lie on midpoints of faces or edges of neighboring cells. At most one hanging node (see Figure
2.1) is permitted on each face.

Considering the non-polygonal boundary ∂Ω the requirements to a face being a subset of the
boundary is alleviated by the matching of the vertices of the face and possibly some inner
points of the face with the boundary. This is described in detail later.

Figure 2.1.: A 2d and 3d mesh with hanging nodes. In three dimensions hanging nodes on
faces and hanging nodes on edges are treated differently.

In addition we will sometimes require that the mesh is organized in a patch-wise manner.
This means that the triangulation Th results from global refinement of some mesh T2h or
even fourfold refinement of some mesh T4h. (Figure 2.2).

Figure 2.2.: A 2d mesh with hanging nodes and patch-structure with patchdepth one.
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2. Basic notations and finite element spaces

2.3. Finite Element Spaces

Following Ciarlet[Cia78], Brenner & Scott [BS94] or Johnson [Joh87] continuous finite ele-
ment spaces Vh ∈ V are constructed by

Vh = {v ∈ V |v|K ∈ Q(K),K ∈ Th},

where Q(K) denotes a suitable space of polynomial functions on the cell K ∈ Th. The
polynomial spaces are defined on a reference cell Q̂(K̂), K = (0, 1)d and mapped to the
computational cell TK : K̂ → K

Q̂p(K̂) = span

{
dim∏

i=1

xαi

i , αi ∈ {0, . . . , p}
}

The simplest case of bilinear functions in two dimensions results in

Q̂1(K̂) = span {1, x1, x2, x1x2}

Using quadrilateral cells (respectively hexes in three dimensions) the mapping from the
reference cell K̂ to the computational cell is not an affine one in the general case (See figure
2.3). In addition the faces are not even planes any more!

T

Figure 2.3.: Mapping TK from the reference cell K̂ to a computational cell K.

To accomplish this kind of mappings one uses isoparametric finite elements. The mapping
TK itself lies in the space Q̂(K̂). Functions in the finite element space Q(K) are therefore
established as

Q(K) = {TK(v̂)|v̂ ∈ Q̂(K̂)}.
As one necessary condition to the mapping we require its determinant to be bounded from
below away from zero.

Regarding partial differential equations with more than one solution components, we use
products of the presented function spaces. For example, for the Navier-Stokes equations in
three dimensions with one pressure component and three velocity components, we usually
denote the used function space by

Vh ×Qh,

where Vh itself consists of a threefold product of an one dimensional space. All discretizations
used within this work have the same order in all solution components, so called “equal order
discretizations”.

10



2.3. Finite Element Spaces

Considering isoparametric finite elements we get a clue for the treatment of non-polygonal
boundaries. Regarding higher order finite elements (i.e. elements of second and higher order)
we have degrees of freedoms placed on the midpoints of faces and edges. Using a biquadratic
mapping from K̂ to K there is one additional degree of freedom for the mapping on the
midpoint of the edges. In Figure 2.4, we display two possible distributions of the degrees
of freedom. The possibility on the left-hand side in the figure may lead to the wrong order
and deteriorate the accuracy of the finite element ansatz. We adjust the inner degrees of
freedom in the biquadratic ansatz to the boundary (right-hand side of Figure 2.4) in order
to obtain a boundary approximation of higher order.

Figure 2.4.: Two possibilities for biquadratic elements on curved boundaries. Left: linear
transformation, right: iso-parametric transformation (used in this work).

Using linear finite elements one may use a quadratic transformation onto the computational
cell. With this approach we obtain a better accuracy of the method. In the second-order
case one could even think of applying a third or fourth-order mapping. However, numerical
results can not back up a gain of accuracy.

There are no degrees of freedom in hanging nodes. Instead these nodes are treated by a suit-
able interpolation of neighboring degrees of freedom. This interpolation has the same order
as the finite element ansatz space. This implies continuity and therefore global conformity.
For details see e.g. Carey & Oden [CO84]. For implementational details we refer to further
sections.

In order to assure an approximation property of the finite element spaces additional condi-
tions to the geometry of the cells, i.e. to the mapping TK are required. A standard way of
describing allowed cells is the quasi-uniform condition (see e.g. Grossmann & Roos [RR94])
demands:

R4 hK

ρK
≤ C ∀K ∈ Th,

where ρK denotes the diameter of the biggest ball inscribed in K. Using the lemmas of Lax-
Milgram and Cea (see e.g. Alt [Alt99]) the approximation properties of finite element spaces
can be characterized by estimates for interpolation errors. Throughout we use two types of
interpolation operators ih : V → Vh: point-wise interpolation for continuous functions and

11



2. Basic notations and finite element spaces

a generalized interpolation for functions in H1(Ω), see Clement [Cle75] or Scott and Zhang
[SZ91]. In the following proposition we collect the basic interpolation estimates (valid for
the node-wise as well as the averaged interpolation operators of Clement or Scott & Zhang):

Lemma 2.2. Let Th be a quasi-uniform mesh and Vh a space of (isoparametric) finite el-
ements of order p, then there exists a constant CI depending on Cm and p such that there
holds for u ∈ Hm+1(Ω) and 0 ≤ m ≤ p:

|u− ihu|H1(Ω) ≤ CIh
m|u|Hm+1(Ω).

The proof is given e.g. in Braess [Bra03]. In fact, the statement of this lemma is also
valid for more general meshes, neglecting the quasi-uniformity condition. Throughout the
next chapter we will use strongly stretched (so called anisotropic) elements. Apel [Ape99]
gave interpolation estimates on very general meshes. However, these estimates require the
nonlinearity in the transformation to be small. In the following we give arguments why the
nonlinear part of the transformation can be neglected under mesh refinement.

Lemma 2.3. Let K be a cell transformed from the unit cell K̂ = [0, 1]2 by the bilinear
transformation TK :

TK(x, y) = Tlin(x, y) ◦ Tnl(x, y), Tnl(x, y) =

(
x+ αxy
y + βxy

)
(2.1)

The influence of the nonlinear part of the transformation is negligible under mesh refinement:
αr ≤ α ·

(
1
2

)r
, βr ≤ β ·

(
1
2

)r
.

For simplicity we restrict this considerations to the two-dimensional case. The transforma-
tion to the computational cell can be split into the linear and the nonlinear part

T (x, y) = Tlin(x, y) ◦ Tnl(x, y),

where the nonlinear part is given by

Tnl(x, y) =

(
x+ αxy
y + βxy

)
. (2.2)

The typical shape of a purely nonlinearly transformed element is given in Figure 2.5. We are
interested in the behavior of the nonlinear transformation after refinement of the cells, i.e.
in the nonlinearity of the children. Figure 2.6 illustrates the impact of the refinement on the
nonlinearity. The path of the lower-left element in this figure will be discussed analytically:

The initial transformation to this element will be denoted by T0(x, y) of type (2.2). Only
the upper-right corner of the cell is distorted from a regular square. The four corners are
given by

x1 =

(
0
0

)
, x2 =

(
1
0

)
, x3 =

(
1 + α
1 + β

)
, x4 =

(
0
1

)
.

The midpoint of this cell – and therefore the upper-right corner of the regarded child – is
determined by

1

4

4∑

i=1

xi =
1

2

(
1 + α

2

1 + β
2

)
,

12



2.3. Finite Element Spaces

K

Figure 2.5.: Element K originated from a purely nonlinear transformation Tnl.

Figure 2.6.: Refinement of a nonlinearly transformed element K. Children are scaled to
original size. Under multiple refinement they tend to regular parallelograms.

That is, the transformation T1(x, y) from the reference element to the lower-left child is given
by

T1(x, y) =
1

2

(
x+ α

2xy

y + β
2xy

)
,

and generally, to the i-th child

Ti(x, y) = 2−i
(
x+ 2−i · αxy
y + 2−i · βxy

)
.

The influence of the nonlinearity therefore vanishes under mesh refinement. Similar calcu-
lations can be performed for the other three element types. Those will not tend to squares,
but to parallelograms. During our further considerations we will treat all elements to be of
affine shape.
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3. FE discretization for 3D Navier-Stokes

In this chapter we study the finite element discretization of Navier-Stokes flows. As a model
problem we will always have in mind the benchmark described in the introduction, see
Figure 1.1 in Chapter 1.2. The finite element discretization presented in this chapter will be
validated using this problem.

In the progress of this chapter we will derive the Galerkin formulation of the Navier-Stokes
equations, followed by a detailed discussion of stabilization techniques with a focus on local
projection methods.

3.1. Galerkin Formulation

To derive the Galerkin formulation of the Navier-Stokes equations (1.1), we multiply these
equations by some function Φ := (ϕ, ξ) ∈ X := V × Q, V = [H1

0 (Ω)]3 and Q = L2(Ω) or
Q = L2(Ω)/R respectively if the Dirichlet boundary conditions are prescribed on the whole
boundary of the domain. With integration over the domain Ω, the momentum equation is
transformed to

(f, ϕ) =(−ν∆v + v · ∇v + ∇p, ϕ) (3.1)

=(ν∇v,∇ϕ) + (v · ∇v, ϕ) − (p,divϕ) −
∫

∂Ω

(
ν
∂v

∂n
− pn

)
ϕds,

for all ϕ ∈ V . Thus, on parts of the boundary where no Dirichlet condition is prescribed,
the functions ϕ do not vanish and partial integration yields the “natural” outflow condition

∫

∂Ωo

(
ν
∂v

∂n
− pn

)
ϕds = 0, ∀ϕ ∈ V.

The equation for the conservation of mass is kept unchanged:

(div u, ξ) = 0, ∀ξ ∈ Q. (3.2)

We define the semi-linear form a(·)(·) by

a(u)(Φ) := (ν∇v,∇ϕ)Ω + (v · ∇v, ϕ)Ω − (p,divϕ)Ω + (divu, ξ)Ω ,

and the functional F (·) by
F (Φ) := (f, ϕ)Ω .
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3. FE discretization for 3D Navier-Stokes

The weak formulation of the Navier-Stokes equations reads: find u = (v, p) ∈ X with

a(u)(Φ) = F (Φ), ∀Φ ∈ X. (3.3)

The standard Galerkin discretization consists in replacing the infinite dimensional Hilbert
spaces V and Q by discrete spaces Vh and Qh, i.e. find uh = (vh, ph) ∈ Xh := Vh×Qh with

a(uh)(Φh) = F (Φh), ∀Φh ∈ Xh. (3.4)

This approach does not lead to a stable discretization unless the pair of finite dimensional
spaces Vh and Qh fulfill the inf-sup condition (see for example Girault & Raviart [GR86]):

inf
ph∈Qh

sup
vh∈Vh

(ph,div vh)
‖ph‖‖∇vh‖

≥ γ > 0.

Especially simple equal-order spaces as piecewise trilinear elements for the velocity as well as
the pressure do not fulfill the inf-sup condition and the resulting discretization is therefore
not stable. To solve the equations in the standard Galerkin formulation one has to utilize
mixed interpolations, see Brezzi & Fortin [BF91] or the above mentioned book by Girault &
Raviart [GR86].

3.2. Residual Based Stabilization Techniques

Particularly implementational aspects suggest the usage of equal order finite elements for
all physical variables. Hughes et al. [HFM86] presented an alternative to the construction
of spaces satisfying the inf-sup condition. Their idea is to modify the bilinear form (3.4) in
order to get a stable discretization without introducing a noticeable additional error. This
is usually done by adding mesh-dependent least squares terms to the Galerkin formulation:

a(uh)(ψh) + s(uh, ψh) = F (ψh) + Fs(ψh), ∀ψh ∈ Xh.

The additional Galerkin Least Squares terms of Hughes read as follows:

sGLS(uh, ψh) =
∑

K∈Th

δK(−∆vh + vh∇vh + ∇ph,−∆ϕh + ϕh∇ϕh + ∇ξh),

FGLS(ψh) =
∑

K∈Th

δK(f,−∆ϕh + ϕh∇ϕh + ∇ξh),

where δK ≈ h2
K . The discrete equation to be solved for uh = (vh, ph) ∈ Xh is

a(uh)(ψh) + sGLS(uh, ψh) = F (ψh) + FGLS(ψh), ∀ψh ∈ Xh.

This discretization is “fully consistent” in the sense that if u is the strong solution, the
additional term fGLS(ψ) − sGLS(u, ψ) vanishes for all ψ. A drawback of this stabilization
method regarding Navier-Stokes equations is the introduction of boundary layers in the
numerical solution which lead to a decrease of accuracy close to the boundary.
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3.3. Local Projection Stabilization

Perhaps more serious for complex problems is the numerical effort aligned to this stabilization
technique. Within the stabilization terms, second derivatives are present. Using higher
discretization order or even for linear elements on isoparametric meshes these derivatives do
not vanish for the discrete functions. Their evaluation is very costly (mainly because second
derivatives of the inverse transformation are necessary); further they are only needed for the
stabilization. A negligence of these second derivatives would result in a loss of accuracy.

Regarding non stationary problems, the least squares term makes time stepping awkward:
in order to conserve the consistency of the scheme, one has to consider space-time finite
elements using discontinuous approximation in time. Further, mass lumping is impossible.

The algebraic structure of the stabilization term is quite nasty; artificial no-symmetric terms
are introduced as well as artificial couplings between pressure and velocity. Taking the liberty
of a preview to coming chapters, the effect of the least squares method on reactive flow
equations must be discussed. With a large set of convection reaction diffusion equations for
the chemical species added to the flow field, the least square terms introduce several artificial
couplings between all species with the flow components. The algebraic structures generated
by the stabilization terms are far more involved than the original Galerkin formulation itself.
Special storage techniques based on mass lumping are not compatible with residual-based
stabilization techniques. Details are given in Chapter 6.

3.3. Local Projection Stabilization

Becker & Braack [BB01] proposed a new stabilization technique based on the existence of
an inf-sup stable subspace X̃h = Vh × Q̃h ⊂ Xh and a projection operator iQ̃h

: Qh → Q̃h
into this subspace. In the cited paper they proved the stability of the equal order Qr −Qr
Stokes elements. In this section we will cover the Stokes equations. The application of local
projection methods to convective terms is given in Becker & Braack [BB04]

Lemma 3.1 (Local Projection Stabilization). Suppose that the inf-sup condition for the pair
of finite element spaces Vh× Q̃h is satisfied. Furthermore we require a continuous projection
operator iQ̃h

: Qh → Q̃h
‖iQ̃h

p‖ ≤ c1‖p‖,

and a stabilization bilinear form s(·, ·) defined on Qh ×Qh with the property

‖πp‖2 ≤ c2s(p, p), π := id− iQ̃h
, (3.5)

with constants c1, c2 > 0. Then there holds ∀p ∈ Qh,∃ϕ ∈ Vh, such that

‖∇ϕ‖ ≤ ‖p‖ and γ‖p‖2 ≤ (divϕ, p) + cs(p, p), (3.6)

with fixed constants c > 0 and 0 < γ.

The proof is given in Becker & Braack [BB01].
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3. FE discretization for 3D Navier-Stokes

As the underlying stable spaces we use the Taylor-Hood elements for higher order elements
with

π := id− iQr−1,

or the Qr/ iso Qr element:
π := id− i2h.

The iso Qr element is the piecewise p-th degree element on the triangulation with mesh-size
2h. This stabilization is established with help of the patch structure (see Chapter 2). With
the defined projection operators we use as stabilization bilinear form:

sLPS(p, ξ) =
∑

K∈TK

αK(∇πp,∇πξ), (3.7)

with αK ≈ h2
K . The stable discretization for the Stokes equations reads

a(uh)(ψh) + sLPS(uh, ψh) = F (Φh), ∀Φh ∈ Xh. (3.8)

The structure of the stabilization term is very easy; only (diagonal) couplings of the pressure
with the corresponding test function are introduced. The artificial boundary layers as known
from residual methods are no longer present, see Becker & Braack [BB01] for details. In
addition, we do not need second derivatives for the evaluation of the stabilization form. The
local projection scheme is not consistent in a way that the stabilization term applied on a
strong solution u vanishes, but the additional error is of the same order as the discretization
error.

3.4. Stokes Stabilization on Anisotropic Meshes

Considering anisotropic – i.e. stretched – finite elements the uniform choice of the stabiliza-
tion parameter δK in (3.16) leads to a bad conditioning of the linear system as well as to
an over-stabilization in certain directions. Figure 2.3 in Chapter 2 shows a typical stretched
element appearing if we use bilinear transformations TK : K̂ → K from the reference element
to the computational cell. Throughout this section we cover the two dimensional case, the
transfer to three dimensions is obvious. Further we only consider linear finite elements.

For a detailed analysis of anisotropic elements, an exact survey of the transformation map-
ping is crucial. For general bilinear transformations, the mapping can be split into a trans-
lation Ttrans, the linear part Tlin and the nonlinear part Tnl:

T (x, y) = Ttrans(x, y) ◦ Tnl(x, y) ◦ Tlin(x, y). (3.9)

We will neglect the translation since it has no effect on the local approximation proper-
ties of the finite elements. Apel [Ape99] derived interpolation error estimates for general
meshes originated from bilinear transformations comparable to Lemma 2.2. For k ∈ N, v ∈
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3.4. Stokes Stabilization on Anisotropic Meshes

Hk+1(K), the following estimate was proven for cells K whose vertices are perturbed from
parallelograms within some limit.

|v − I
(k)
h v|2H1(K) ≤C

∑

|α|=k

h2α
K |Dαv|2H1(K)+ (3.10)

C

k∑

r=[k/2]+1

h
2(k−r)
2

∑

|α|=2r−k−1

∑

|β|=k+1−r

h2αa2β‖Dα+βv‖2
K ,

where a indicates the degree of perturbance from the linear transformation. However, those
estimates have two drawbacks or rather can be simplified for our purpose:

• Due to the nonlinearity, lower order terms are introduced for higher order (k ≥ 2)
elements. However, as discussed in Chapter 2, the nonlinearity can be neglected in
the context of mesh refinement. More precisely: initially nonlinear cells tend to par-
allelograms under refinement. The factor a in (3.10) corresponds to the nonlinear
perturbations α and β in (2.2) which asymptotically behave as the mesh size hK .

• Beside the usual interior angle condition, Apel [Ape99] calls for a coordinate system
condition: the angle ψ between the longest side of all quads and the x1 axis should be
bounded by the aspect ratio:

| sinψ| ≤ Ch2/h1,

where h1 is the longer side. This would rule out the possibility of anisotropic refinement
around e.g. a circle, as perhaps required in the model problem (Figure 1.1). However,
the coordinate system condition occurs due to the measurement of the derivatives
according to the Cartesian basis. Considering anisotropic elements this is not natural.
If we use (locally) adapted coordinate systems with directions ηi we can derive results
without this restriction.

Using linear finite elements and under the assumption of linear transformation to the com-
putational cells, the analysis interpolation estimates is far easier. We use an interpolation
operator ih : V → Vh of Clement-type adjusted for anisotropic meshes, see Becker [Bec95]
. The averaging of the node-values is done along the long edges of the elements. Beyond
the interior angle condition, Becker assumes the change of the aspect ratio h2/h1 between
neighboring cells to be bounded by some constant. The element-wise aspect ratio however
is allowed to be large. Becker showed the following stability estimates for the interpolation
operator on rectangular stretched elements K with hx ≥ hy:

‖∂xihv‖K ≤ c‖∇v‖N (K),

‖∂yihv‖K ≤ c‖∂yv‖N (K),

where N (K) is the patch of elements adjacent to K and the constant c is independent of
the shape and size of K.

We derive local interpolation estimates which measure the error according to local coor-
dinate systems. We restrict our considerations to cells obtained by affine transformations

19



3. FE discretization for 3D Navier-Stokes

of the reference element. Therefore, neglecting the translation, we can further split the
transformation (3.9) into a rotational part, and a scaling and shear part:

Tlin(x, y) = Trot(x, y) ◦ Tshear(x, y)
which reads in matrix notation

Tlin(x, y) =

(
cosϕ − sinϕ
sinϕ cosϕ

)(
hx shy
0 hy

)
. (3.11)

The x-axis of the local coordinate system will be aligned with the longer side of the cell,
the y axis with the orthogonal direction. I.e., we always have hx ≥ hy. The rotation can be
neglected in the analysis and the regarded transformation simplifies to

T (x, y) =

(
hx shy
0 hy

)
, (3.12)

which describes all parallelograms whose longer side lie on the positive x-axis. Since the
angle θ between the long and the short edge is estimated by

cot θ = s,

the interior angle condition can be rewritten as a condition to the shearing parameter s:

−s∗ ≤ s ≤ s∗, (3.13)

with s∗ fixed and particularly independent of the mesh parameter h.

Using this notation, we can give interpolation estimates for the regarded kind of cells. All
derivatives are expressed in the direction of the longest side and the according orthogonal
one:

Lemma 3.2 (Anisotropic Interpolation Estimate). Assume that K is a parallelogram with its
interior angles γi being bounded by 0 < γ∗ ≤ γi ≤ π−γ∗, i = 1, . . . , 4, where the constant γ∗ is
independent of K. The change of the anisotropy κK = hK,max/hK,min between adjacent cells
K, K ′ with K ′ ⊂ N (K) is bounded. Further let η1 be a unit vector aligned with the longer
sides of K and η2 the unit vector orthogonal on η1. Then, for v ∈ H2(N (K)), p ∈ H1(N (K))
the following estimates holds for the interpolation operator ih into linear elements:

‖v − ihv‖2
K ≤ C

(
h4

1‖∂η1η1v‖2
N (K) + h2

1h
2
2‖∂η1η2v‖2

N (K) + h4
2‖∂η2η2v‖2

N (K)

)

‖∂η1(v − ihv)‖2
K ≤ C

(
h2

1‖∂η1η1v‖2
N (K) + h2

2‖∂η1η2v‖2
N (K)

)

‖∂η2(v − ihv)‖2
K ≤ C

(
h2

1‖∂η1η1v‖2
N (K) + h2

1‖∂η1η2v‖2
N (K) + h2

2‖∂η1η2v‖2
N (K)

)
,

‖p − ihp‖2
K ≤ C

(
h2

1‖∂η1p‖2
N (K) + h2

2‖∂η2p‖2
N (K)

)

‖∂η1(p − ihp)‖2
K ≤ C

(
‖∂η1p‖2

N (K) + κ−2
K ‖∂η2p‖2

N (K)

)

‖∂η2(p − ihp)‖2
K ≤ C

(
‖∂η1p‖2

N (K) + ‖∂η2p‖2
N (K)

)

with the constant C independent of K, h1, the length of K in direction η1 and h2 = |K|/h1.
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3.4. Stokes Stabilization on Anisotropic Meshes

Proof: Since we will cell-wise align the coordinate system with the longer edge (w.l.o.g. the
edge with length hx, so that hy ≤ hx), the rotation will be neglected and the transformation
to be analyzed simplifies to (3.12).

The estimates are mainly a result of integral transformation back and forth to the reference
element and usage of the stability of the interpolation operator proven by Becker [Bec95]
and the Bramble Hilbert Lemma [Bra03] respectively. In the following we give the proof for
one of these estimates:

‖∂y(v − ihv)‖2
K = hxhy

∫

K̂

[∂y(v̂ − ihv̂)(T
−1(x))]2dx̂

= hxhy

∫

K̂

[
− s

hx
∂x̂(v̂ − ihv̂)(x̂) +

1

hy
∂ŷ(v̂ − ihv̂)(x̂)

]2

dx̂

≤ C1Cbhlhxhy

∫

K̂

s2

h2
x

[
∂x̂∇̂v̂(x̂)

]2
+

1

h2
y

[
∂ŷ∇̂v̂(x̂)

]2
dx̂

= C1Cbhl

∫

N (K)

s2

h2
x

[
∂x̂∇̂v(T (x̂))

]2
+

1

h2
y

[
∂ŷ∇̂v(T (x̂))

]2
dx

= C1Cbhl

∫

N (K)

s2 [(hx + shy)vxx + hyvxy]
2 +

[
(shx + s2hy)vxx + (hx + 2shy)vxy + hyvyy

]2

≤ C2
1s

4
∗Cbhl

(
h2
x‖vxx‖N (K) + h2

x‖vxy‖2
N (K) + h2

y‖vyy‖2
N (K)

)

The constant Cbhl is given by the Bramble Hilbert Lemma, C1 originates from (
∑N

i=1 ai)
2 ≤

C1(N)
∑N

i=1 a
2
i and s∗ originates from (3.13). Combining the constants and after rotation of

the coordinate system, the proof is finished.

�

To ensure a good behavior of the linear solver, the stabilization has to be aligned to the
essential arrangement of the cells. We split the LPS stabilization term (3.8) into different
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3. FE discretization for 3D Navier-Stokes

directions ηi, i = 1, . . . , d with (ηi, ηj) = δij :

sLPS(p, ξ) =δ0
∑

K∈Th

(
d∑

i=1

√
δK,i (ηi,∇πp) ηi,

d∑

i=1

√
δK,i (ηi,∇πξ) ηi

)

K

=δ0
∑

K∈Th

d∑

i,j=1

√
δK,iδK,j

(
∂ηi
πp · ηi, ∂ηj

πξ · ηj
)
K

=δ0
∑

K∈Th

d∑

i=1

δK,i (∂ηi
πp, ∂ηi

πξ)K . (3.14)

The specific choice of the stabilization parameters can be determined as result of an a-priori
error estimate which follows later in this section. Another problem is the detection of the
optimal directions ηi. If the transformation TK : K̂ → K would just be a composition of
translation, scaling and rotation, the image of the Cartesian unit vectors would notify the
dominant directions. But considering the admitted elements (see Figure 2.3) the transfor-
mation also features a shear part and further is nonlinear.

Following the above discussion, we neglect the nonlinearity and replace the transformation
by the linearization T ′(x, y) in the midpoint of the reference element

T ′(x, y) := T

(
1

2
,
1

2

)(
x
y

)
+ x0.

This linearization can be split into the basic mapping types: rotation, scaling and shearing
as (3.11). The directions ηi are defines as follows: let

η̃i = T ′(ei),

be the images of the Cartesian basis vectors and

h̃i = |ẽi|

their length. Further assume hi ≥ hi+1. Due to the shearing, the vectors η̃i are not neces-
sarily orthogonal. The final directions ηi are the orthogonalization of η̃i (while maintaining
η1 = η̃1). Finally we set hi = |ηi| and normalize the directions.

Recapitulating the proof for the a-priori estimate given in Becker & Braack [BB01], we get
a hint for the optimal choice of the stabilization parameters δK,i. The following lemma is a
modification of Theorem 3 in Becker & Braack [BB01] regarding the anisotropy:

Lemma 3.3. Suppose the following regularity of the exact solution v ∈ H2(Ω), p ∈ H1(Ω)
of the Stokes equations. Then with s(·, ·) defined as in (3.14) and

δK,iδK,i = δ0h
2
i ,

there holds for piecewise bilinear elements:

‖∇(v − vh)‖ + ‖p− ph‖ ≤ c
∑

i

hi(‖∂ip‖ + ‖∂i∇v‖).
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3.4. Stokes Stabilization on Anisotropic Meshes

Proof: To simplify the proof, we introduce some notations:

‖p‖2
δ = s(p, p),

‖|u‖|2 = ‖∇v‖2 +
γ2

4
‖p‖2 + ‖p‖2

δ .

Following [BB01], the error u− uh is split into the interpolation error η and the projection
error ξ:

u− uh = (u− ihu)︸ ︷︷ ︸
η

+ (ihu− uh)︸ ︷︷ ︸
ξ

.

Using Lemma 3.2 we can directly treat the interpolation error η:

‖∇(v − ihv)‖2 + ‖p − ihp‖2 =
∑

K∈T

{
‖
∑

i

(∇(v − ihv), ηi)ηi‖2 + ‖p − ihp‖2
K

}

≤
∑

K∈T

{(
∑

i

‖∂ηi
(v − ihv)‖2

K

)
+ ‖p− ihp‖2

K

}

≤ C
∑

K∈T

{
h2

1‖∂η1η1v‖2
K + (h2

1 + h2
2)‖∂η1η2v‖2

K + h2
2‖∂η2η2v‖2

K +

h2
1‖∂η1p‖2

K + h2
2‖∂η2p‖2

K

}

From the stability condition (3.6)

sup
ψ∈Vh×Qh,‖|ψ‖|=1

{a(u, ψ) + s(u, ψ)} ≥ 1

4
‖|u‖|,

we get
1

4
‖|ξ‖| ≤ sup

‖|ψ‖|=1
sup(a+ s)(ξ, ψ).

This equals

(a+ s)(ξ, ψ) = −(a+ s)(η, ψ) + (a+ s)(u− uh, ψ)

= −a(η, ψ) − s(u− ihu, ψ) + (a+ s)(u− uh, ψ)

= −a(η, ψ) + a(u, ψ) − (a+ s)(uh, ψ) + s(ihu, ψ)

= −a(η, ψ) + s(ihu, ψ).

The Galerkin terms can be estimated by

a(η, ψ) = (∇(v − ihv),∇ϕ) − (p− ihp,divϕ) + (div (v − ihv), ξ)

≤ ‖∇(v − ihv)‖‖∇ϕ‖ + ‖p− ihp‖‖∇ϕ‖ + ‖∇(v − ihv)‖‖ξ‖
≤ (‖∇(v − ihv)‖ + ‖p− ihp‖)(‖∇ϕ‖ + ‖ξ‖).
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3. FE discretization for 3D Navier-Stokes

Using the interpolation estimates we get the result. For the stabilization term we have

s(ihu, ψ) =
∑

i,K∈T

δK,i (∂ηi
πihp, ∂ηi

πξ)

≤ ‖ihp‖δ‖ξ‖δ

≤


 ∑

i,K∈T

δK,i‖∂ηi
(πihp)‖2

K




1
2

‖|Ψ‖|

Finally, using πp = (id− i2h)p and Lemma 2.2, we have
∑

i

δK,i‖∂ηi
πihp‖2

K ≤
∑

i

δK,i‖∂ηi
(p− ihp)‖2

K + δK,i‖∂ηi
πp‖2

K

≤ C
∑

i

δK,i‖∂ηi
(p− i2hp)‖2

K

≤ C
(
(δK,1 + δK,2)‖∂η1p‖2

K + (δK,1κ
−2
K + δK,2)‖∂η2p‖2

K

)

With δK,i = δ0h
2
i and κK = h1/h2 we get

∑

i

δK,i‖∂ηi
πihp‖2

K ≤ Cδ0
∑

i

h2
i ‖∂ηi

p‖2
K ,

and finish the proof with the announced choice of the cell-wise stabilization parameters δK,i:

δK,i = δ0h
2
ηi
.

�

The application of the anisotropic stabilization is rather easy. If we reformulate (3.12) in
the Cartesian basis, we get

sLPS(p, ξ) = δ0
∑

K∈Th

d∑

i,k,l=1

δK,i(ηi)k∂kπp(ηi)l∂lπξ

= δ0
∑

K∈Th

d∑

i,k,l=1

δK,i(ηi)k(ηi)l∂kπp∂lπξ

= δ0
∑

K∈Th

(∇πp,DK∇πξ)K ,

with the matrix DK ∈ R
d×d given as

(DK)k,l =

d∑

i=1

δK,i(ηi)k(ηi)l.

For the validation of this stabilization scheme we analyze a simple driven cavity problem.
The configuration is given in Figure 3.1. We consider Navier-Stokes flow in a square driven
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3.4. Stokes Stabilization on Anisotropic Meshes

κ
u=1

u=0

1

u=0

u=0

1

Figure 3.1.: Computational domain for driven cavity test. The anisotropy is controlled via
adjusting the cells in the coarse mesh, i.e. by adjusting the size κ of the corner
cells. The flow is driven by a prescribed velocity on the upper boundary.

by a prescribed velocity in horizontal direction on the upper boundary. On this part of the
boundary the x-component of the velocity is set to vx = 1. With the viscosity ν = 0.0005
the problem yields the Reynolds number Re = 2000. As quantity of interest we measure the
normal derivative of the horizontal velocity on the lower boundary:

j(u) =

∫

Γlow

∂ux
∂n

ds.

The anisotropy of the discretization is controlled by adjusting the 9 cells of the coarse mesh.
In Table 3.1 we list the convergence rate of the linear solver and the discretization error for
different anisotropies 1 : κ on a sequence of globally refined meshes. While we have to face
problems with the isotropic stabilization scheme in the linear solver, we can solve all problems
with a stable multigrid convergency using the modified LPS stabilization. Nevertheless, the
convergence rates of the linear solver is not very good. This is aroused by the usage of a
standard incomplete LU decomposition of the matrix as a smoother, which is well known
to have problems with anisotropies. However, the analyzed aspect ratios in Table 3.1 cover
the complete range used throughout this work. In the case of reactive flows – discussed in
Chapter 6 – the correct application of the stabilization on anisotropic meshes decides about
convergence or divergence of the solver. In this work, anisotropic meshes will be used to
get simple coarse meshes of complex geometries. Thus, the aspect ratios keep bounded and
smoothing can be performed with the standard ILU.
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3. FE discretization for 3D Navier-Stokes

std. LPS anisotropic LPS
1 : κ = 1 j(e) ρ

9 216 5.14 · 10−2 0.41
36 864 1.93 · 10−2 0.40

1 : κ = 5 j(e) ρ j(e) ρ

9 216 1.99 · 10−2 0.67 2.01 · 10−2 0.55
36 864 1.01 · 10−2 0.75 1.01 · 10−2 0.54

1 : κ = 10 j(e) ρ j(e) ρ

9 216 6.06 · 10−3 0.82 5.67 · 10−3 0.63
36 864 1.86 · 10−3 0.88 1.88 · 10−3 0.55

Table 3.1.: Discretization error and convergence rate ρ of the multigrid solver on a sequence
of meshes. The ratio between long and short side in the meshes is 1 : 1 in the
upper table and 1 : 5 in the middle and 1 : 10 in the lower one. The values on
the left side are obtained using isotropic LPS, for the values on the right side,
the anisotropic modification of LPS was used.

3.5. Quadratic Adaptive Finite Elements

In this section we describe the finite element discretization of second order which we mainly
use throughout this work. The solution is approximated in the space uh = (vh, ph) ∈ Vh×Qh
with

Vh = {v ∈ [H1(Ω)]d | v|K ∈ Q2(K)},
Qh = {p ∈ L2(Ω)/R | p|K ∈ Q2(K)}.

As mentioned in the previous section this function space does not fulfill the inf-sup condition,
the resulting discretization is not stable. However this equal order ansatz with degrees of
freedom in the nodes of the mesh simplifies the implementational effort.

3.5.1. Pressure Stabilization

Since this finite element space is not stable in the sense of the inf-sup condition we apply local
projection stabilization with respect to the stable Q2 − Q1 Taylor-Hood element X̃h ⊂ Xh

with
Q̃h = {p ∈ L2(Ω)/R | p|K ∈ Q1(K)}, (3.15)

the continuous space of piecewise trilinear functions on the same triangulation Th. This is
the well known stable Taylor-Hood element, see Cuvelier, Segal & Steenhoven [CSvS86]. The
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3.5. Quadratic Adaptive Finite Elements

LPS projection operator iQ̃h
: Qh → Q̃h is the node-wise interpolation. The stabilization

bilinear form sLPS(·, ·) is chosen as:

sLPS(p, ξ) =
∑

K∈Th

δK (∇πp,∇πξ)K . (3.16)

We mainly favor this stabilized formulation over e.g. the Taylor-Hood element due to the
easier handling of data structures using equal order spaces for all components of the solution.
The drawback of an increased number of matrix couplings using the equal order element gets
negligible for larger systems of equations as addressed in Chapter 6.

To apply the LPS stabilization, we have to check condition (3.5) in Lemma 3.1:

‖πp‖2 ≤
∑

K∈Th

δK (∇πp,∇πp)K .

This is easily seen by transformation of πp to the reference cell K̂ and the fact that ‖∇(·)‖K̂
is a norm for all functions (πp) with p ∈ Vh. Using the equivalence of norms on finite
dimensional spaces the estimate is proven with a constant δK ≈ h2

K .

3.5.2. Convection Stabilization

Considering problems with dominant convection, i.e. large Reynolds numbers the convective
term

(vh · ∇vh, ϕh)
imposes values to the secondary diagonals of the system matrix leading to numerical instabil-
ities. This instabilities are corrected by the introduction of an additional stabilization term
sconv(·, ·) (and possibly additional right hand side terms fconv(·)). Well-known techniques
for convection stabilization are the Upwind-Discretization of artificial diffusion, described
i.e. in [CSvS86] or the streamline upwind Petrov-Galerkin method (SUPG) originally pro-
posed by Brooks & Hughes [BH82]. All this methods impose a reduction of the convergence
order, to O(h) in the case of Upwind-Diffusion or artificial Diffusion and O(h

3
2 ) consider-

ing Streamline-Diffusion. All methods introduce additional diffusion to the problem. The
following stabilization term was suggested by Becker & Braack [BB04]:

sconv(uh)(ψ) =
∑

K∈Th

δK ((vh · ∇)πvh, (vh · ∇)πϕ)K

with π as described for the pressure stabilization and the cell-wise constant δK depending
on the local balance of convection and diffusion:

δK = δ0
h2
K

6ν + hK‖vh‖K
.

This stabilization scheme can be regarded as a specification of the theory of Guermond
[Gue99] with a special filter function. We add control over the fluctuations of the convective
term with regard to a coarser mesh. For higher Reynolds numbers oscillation with exactly
this frequency appear.
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3. FE discretization for 3D Navier-Stokes

The usage of the Taylor-Hood element as the underlying stable subspace results in a loss
of accuracy for highly convective problems. We have to use the Q2/ iso Q2 element as the
stable space we project into. In a later section we will give details on the implementation and
approximation properties of the local projection method based on the Q2/ iso Q2 element.
However for the Stokes equations, there are no problems.

For both choices of the fluctuation operator π, the stabilized discrete problem reads: find
uh ∈ Xh with

a(uh)(ψ) + sLPS(ph, ξ) + sconv(vh)(ϕ) = F (ψ), ∀ψ ∈ Xh.

For abbreviation both stabilization terms are combined in s(·, ·).

3.5.3. Implementational Aspects

φ
3

φ
2

φ
1

φ
5

φ
6

φ
4

φ
7

φ
8

φ
9

Φ2Φ1

Φ3 Φ4

Figure 3.2.: Distribution of the basis functions in one Q2 cell. The Q1 basis functions
Φ1, . . . , Φ4 can be represented by using the Q2 functions ϕ1, . . . , ϕ9.

For simplicity we only present the two dimensional case and the projection into a space of
lower degree. Considering higher order finite elements the degrees of freedom are settled in
a nested sense (as shown in Figure 3.2 for biquadratic Q2 finite elements). On the reference
element we have a representation of the Q1 basis functions by use of the quadratic functions.
If we denote the 9 Q2 ansatz functions on a cell K by ϕ1, . . . , ϕ9 and the corresponding 4
Q1 functions by Φ1, . . . , Φ4, we get a algebraic coherency between the vectors (ϕ)i and (Φ)i

by the linear operator Ih : V
(2)
h → V

(1)
h :

Φ = Ihϕ

Ih =




1 1
2 0 1

2
1
4 0 0 0 0

0 1
2 1 0 1

4
1
2 0 0 0

0 0 0 1
2

1
4 0 1 1

2 0
0 0 0 0 1

4
1
2 0 1

2 1




28



3.5. Quadratic Adaptive Finite Elements

Further if we represent the local solution uK on a cell K by

uK = (U,ϕ),

where U denotes the nodal vector of the solution in all degrees of freedom on the cell K and
we further name the restriction of U to the 4 Q1 degrees of freedom by RQ1 ∈ R

4×9, the
projection operator π := (id− iQ1) is given by

πuK = uK − iQ1uK

= (U,ϕ) − (RQ1U, Ihϕ)

= (U, (I −RTQ1
Ih)︸ ︷︷ ︸

Π

ϕ),

with

Π =




0 −1/2 0 −1/2 −1/4 0 0 0 0
0 1 0 0 0 0 0 0 0
0 −1/2 0 0 −1/4 −1/2 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 −1/2 −1/4 0 0 −1/2 0
0 0 0 0 0 0 0 1 0
0 0 0 0 −1/4 −1/2 0 −1/2 0




.

Only ansatz functions which correspond to the Q1 element have to be changed. The projec-
tion into a space of equal order on a coarse mesh can be handled in a simular way. Instead
of really assembling this matrix – which is fixed for all elements in the triangulation – the
modification is done e.g. by

Πϕ1 = −1

2
ϕ2 −

1

2
ϕ4 −

1

4
ϕ5.

Instead of representing linear test functions Φi with help of the quadratic test functions
ϕi, we represent test functions in the coarse function space V2h with the fine test functions.
Another, yet comparable matrix Π describes this projection on a algebraic level. See [BR05c]
for details.

Similar techniques are applied for the treatment of hanging nodes concerning higher order
finite element spaces: if we regard two adjacent cells with different refinement levels (see
Figure 2.1 in Chapter 2) the hanging nodes on the fine cell are replaced by interpolated
values from the coarse cell. This interpolation is performed using a representation of the
‘coarse’ basis functions Φi with the ‘fine’ functions ϕi on a patch of fine cells.




Φ1

Φ2
...
Φc


 = H




ϕ1

ϕ2
...
ϕf




If we have to ‘condense’ hanging nodes in a solution vector uh =
∑
uiϕi, i.e. interpolate

into the coarse ansatz space, we patch-wise multiply the vector of indices (u1, · · · , uN ) with
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3. FE discretization for 3D Navier-Stokes

α/δ 0.05 0.1 0.2 0.5 1.
0.05 1.72e−3 1.36e−3 7.82e−4 −3.41e−4 −1.45e−3

0.10 1.57e−3 1.21e−3 6.29e−4 −4.85e−4 −1.58e−3

0.20 1.48e−3 1.11e−3 5.25e−4 −5.85e−4 −1.67e−3

0.50 1.40e−3 1.03e−3 4.45e−4 −6.65e−4 −1.76e−3

1.00 1.37e−3 9.98e−4 4.13e−4 −6.98e−4 −1.78e−3

α/δ 0.2 0.5 1.
0.2 1.33e−3 −1.44e−4 −4.07e−3

0.5 6.33e−4 −8.71e−4 −4.78e−3

1. −5.71e−4 −1.88e−3 −7.39e−3

Table 3.2.: Dependency of the accuracy on the choice of the stabilization parameters. Up-
per table: Q2 − Q2 LPS stabilized, lower table Q2 − Q2 PSPG/SUPG. The
calculations are done on a structured mesh with 983 040 degrees of freedom.

the transformation matrix H. The same procedure is applied to the system matrix. First
we cell-wise assemble the matrix using the fine space and afterwards we apply the matrix
H from the left and from the right side. The matrix H has to assembled only once for a
specific finite element space.

3.5.4. Computational Study

Since no computational experience with the stabilization techniques for higher order ele-
ments in three dimensions exists, we perform a numerical study to illustrate the behavior
of the proposed scheme in comparison the residual type stabilization schemes PSPG/SUPG
presented e.g. by Hughes et al. [HFM86], [BH82].

We are mainly interested in the robustness regarding the accuracy as well as the solver’s
behavior with respect to the choice of the stabilization parameters. Further we measure
the numerical effort in terms of computational time. As model problem we use the already
described Benchmark “laminar flow around a cylinder” and measure the error of the drag
coefficient. For this specific configuration the influence of the convective terms is rather
small, a loss of accuracy due to the stabilization term based on the Taylor-Hood element
is not observed. Table 3.2 demonstrates the accuracy depending on different choices of
the stabilization parameters for a fixed mesh with about 1 000 000 degrees of freedom. As
one can see, the errors dependency on the pressure stabilization parameter α is very small.
Depending on δ, i.e. the convection stabilization, the error in the drag value changes its
sign. Needless to say, while passing zero, the error is reduced. Nevertheless, on “both sides”
of zero, the absolute value of the error is rather the same. The residual bases stabilization
technique shows a severe dependence of the accuracy on the correct choice of the parameters.
For low values of α and δ, the linear systems could not be solved.
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3.5. Quadratic Adaptive Finite Elements

δ 0.05 0.1 0.2 0.5 1.
LPS 26 25 23 19 20

PSPG/SUPG - - 59 70 74

Table 3.3.: Dependency of the linear solving on the choice of the stabilization parameters.
The pressure stabilization parameter is fixed to α = 0.1, δ is changing. The
calculations are done on a structured mesh with 983 040 degrees of freedom.
Missing values in the lower line indicate severe solver problems with bad or even
no convergency.

Table 3.3 gives the number of linear iterations necessary to solve the linear problems up to a
given tolerance. While we keep a fixed value of the pressure stabilization parameter α = 0.1,
we vary the convection stabilization parameter δ. For a large range the number of linear
steps necessary is almost constant regarding the local projection stabilization. As already
mentioned, the residual method was not able to deliver results for all choices of α, further-
more, the number of steps necessary is much bigger and increasing with the stabilization
parameter α.

In addition to different convergence behavior of the linear solver, we expect the local pressure
stabilization to involve far less numerical effort. Since the LPS stabilized Q2 −Q2 results in
the same matrix stencil as the PSPG/SUPG Q2−Q2 element, all differences are connected to
the integration of the residuals and the system matrix. In particular the evaluation of second
derivatives on cells which differ from parallelograms is costly, since it requires evaluation of
derivatives of the inverse transformation. However the correct evaluation of all derivatives
is essential to obtain the optimal accuracy of the discretization. In Table 3.4 we sum up the
times needed for residual and matrix assembling in three dimensions. Table 3.5 gathers the
computational cost for the three-dimensional benchmark problem. The number of nonlinear
as well as linear steps is the same for both stabilization techniques, i.e. the differences only
occur because of the numerical integration. Further we give the discretization errors for LPS,
PSPG/SUPG and for PSPG/SUPG with reduced second derivatives. For this last method we
neglect all parts of the second derivatives belonging to nonlinearities in the transformation
from the unit cell to the computational cell. In the following we denote by ϕ the basis
functions on the computational cell K and by ϕ̂ the basis functions on the reference cell K̂,
with T : K̂ → K. Instead of using the correct second derivatives given by

∇2ϕ = D2T−1∇̂ϕ̂+ (DT−1)2∇̂2ϕ̂,

we assume DT−1 to be constant and the evaluation of the second derivatives simplifies to

∇2ϕ ≈ (DT−1)2∇̂2ϕ̂.

Although the cells in the triangulation are nearly parallelograms, a large lack in accuracy
occurs, whereas the computational cost cannot be significantly decreased with this simplified
approach.
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3. FE discretization for 3D Navier-Stokes

dof’s per second
dof’s LPS PSPG/SUPG PSPG/SUPG (*)

matrix 7 900 2 000 2 100
residual 23 000 18 000 21 000

Table 3.4.: Integration effort for the assembly of the system matrix and the residual. Values
are given for a three dimensional problem as treated dof’s per second since there
is a linear dependency between the effort and the problem size. Pentium IV,
2800 MHz. (*) PSPG/SUPG with simplified second derivatives (assumption of
linear transformation).

LPS PSPG/SUPG PSPG/SUPG (*)
dof’s error time(s) error time(s) error time(s)

81,231 2.41e−2 61 1.99e−2 158 4.81e−2 121
312 342 5.13e−4 212 5.51e−4 623 9.41e−3 523

Table 3.5.: Comparison of numerical effort for LPS and PSPG/SUPG. Q2 − Q2 elements
applied to the 3D benchmark flow around a cylinder. (*) PSPG/SUPG with
simplified second derivatives (assumption of linear transformation).

3.5.5. LPS based on the Q2/ iso Q2 element

For problems with dominant convection, the projection into a space of one degree less will
result in a loss of one order of accuracy. For the velocity we will only get the accuracy of
the coarse space. Considering the pressure stabilization the projection into a space of lower
polynomial degree does not reduce the order, since one degree less in the pressure accuracy
is already optimal. Using the subspace

Ṽh = {v ∈ [H1(Ω)]dim, v|P ∈ [Q2(P )]dim, ∀P ∈ T2h},

instead of (3.15) we get the correct order for the velocities. The implementation of the
corresponding fluctuation operator π := id − i2h is performed analog to the discussion in
Section 3.5.3, now a local matrix describes the representation of the basis functions Φ ∈ Ṽh =
V2h with help of the basis functions ϕ ∈ Vh. For a detailed discussion we refer to [BR05c].

In Table 3.6 we give a comparison of both fluctuation operators with respect to the ap-
proximation properties. As test-case we use the two dimensional simplification of the flow
around a cylinder (see [ST96] or Chapter 1) at Reynolds numbers Re = 20 and Re ≈ 66.
The stabilization parameters α0 and δ0 are chosen as 0.2 for both cases. As indicated, for
low Reynolds numbers the projection into the equal order space is not preferable in terms
of accuracy. However, if the influence of the convection gets larger, accuracy is lost if we
project into a subspace of lower degree. While we get a reduction factor of approximately
16 – indicating fourth order convergency of the drag evaluation – using the Q2/ iso Q2 el-
ement and for both projection types in the low Reynolds number case, the reduction rate
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Re = 20 Re = 66
cells Q2/Q1 Q2/ iso Q Q2/Q1 Q2/ iso Q
640 6.87 · 10−3 7.57 · 10−3 3.60 · 10−2 2.49 · 10−2

2 560 1.38 · 10−3 1.10 · 10−3 1.49 · 10−2 1.56 · 10−2

10 240 6.72 · 10−5 6.27 · 10−5 1.14 · 10−3 9.41 · 10−4

40 960 4.38 · 10−6 3.59 · 10−6 1.33 · 10−4 3.11 · 10−5

Table 3.6.: Comparison between LPS with projection into space of lower degree and pro-
jection into equal order space on a coarser mesh. For two different Reynolds
numbers 20 and 66 we list the relative errors in the drag evaluation on a se-
quence of globally refined meshes for the 2d Navier-Stokes benchmark.

for Re = 66 only yields a value of about 10 considering the projection into the lower order
subspace.

The projection into a patched space of the same order requires a larger stencil in the system
matrix. In three spacial dimensions using triquadratic finite elements, one patch includes
2 744 matrix couplings instead of 512 couplings necessary for the Galerkin part (or the
stabilization based on the Taylor-Hood element). For this calculation one has to treat the
different kind of unknowns separately: in every cell there are 6 unknowns on faces, each of
it couples with 45 unknowns and is shared by 2 cells; this leads to 3 · 45 = 135 couplings per
cell by unknowns on faces. Corresponding calculations are added for the unknowns on the
edges and corners of each cell.

Thus, local projection stabilization with respect to the Q2/ iso Q2 element significantly
increases the memory usage. Furthermore, patched meshes complicate the possibility of
generating efficient locally refined meshes. This will be discussed in the next chapter. We
can produce relief by applying the projection into a lower degree space as a preconditioner for
the linear systems. This allows the usage of meshes without patches and reduces the memory
demand. For the Newton residual the projection into the equal order space is utilized.

Conclusion

The local projection method for stabilizing the pressure coupling as well as convective terms
seems to be a promising alternative to the standard residual methods PSPG/SUPG. The
numerical examples confirm the advantages already mentioned: no additional couplings are
introduced between different solution components, stabilization of pressure and of velocity
are separated. Due to the easy structure an efficient implementation is possible which leads
to a large reduction of the computational effort.

LPS is superior to the residual methods in terms of the robustness of the linear solver as
well as regarding the robustness of the discretization error with respect to the choice of the
stabilization parameters α0 and δ0.
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3. FE discretization for 3D Navier-Stokes

In Chapter 6 where reactive flows will be considered, the separated structure of the local
projection method will be of fundamental importance. Because no artificial couplings be-
tween different chemical species will be fed into the equations, we will be able to use special
storage techniques which allow for a considerable reduction of the memory usage.
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4. Error Estimation & Mesh Adaptation

The discussed adaptive finite element methods aim at efficiently calculating functional values
of the solution, in our case the drag coefficient, the lift coefficient and the pressure drop at the
obstacle. The basis of the adaptive approach is the dual-weighted-residual method (DWR)
introduced in 1995 by Becker and Rannacher [BR96] and since then successfully applied to
various problems such as parameter identification [BV04], chemically reactive flows [Bra98],
optimization [Bec01], nonconforming finite elements and seceral others.

The new aspect in this work considering the error estimation and adaption process is the
rigorous application to three dimensional problems with finite elements of degree two.

In this section we present our approach for a posteriori error control for output functionals
and quadratic finite elements as well as our algorithm for mesh adaptation. The basis is
the standard approach of dual weighted residuals by Becker & Rannacher [BR96, BR01], in
which a dual solution is used for computing weights entering in the estimator. The focus
of this section is on the approximation of the weights using second order finite elements
and on an algorithm, to adapt the mesh. First we derive the error estimator and discuss
implementational aspects. Afterwards we describe methods for mesh adaption.

4.1. Dual Weighted Residual Method

The aim is to get an a posteriori error estimate η for the discretization error measured in an
output functional:

η ≈ j(u) − j(uh).

The error estimator is derived with a Lagrangian ansatz: minimize the error j(u) − j(uh),
while the equation serves as a constraint: a(u)(ψ) = f(ψ) for all ψ ∈ X. The Lagrange
functional

L(u, z) = j(u) − f(z) − a(u)(z)

inherits the Lagrangian multiplier z ∈ X and yields the following essential conditions:

L′
u(u, z)(δu) := j′(u)(δu) − a′u(u)(δu, z) = 0, ∀δu ∈ X, (4.1)

L′
z(u, z)(δz) := f(δz) − a(u)(δz) = 0, ∀δz ∈ X. (4.2)

Equation (4.2) equals the original equation to be solved, whereas we introduce an additional
dual problem with equation (4.1). Both equations (4.1) and (4.2) have to be solved in the
appropriate discretized space Xh:

L′
u(uh, zh)(δuh) := j′(uh)(δuh) − a′u(uh)(δuh, zh) = 0, ∀δuh ∈ Xh, (4.3)

L′
z(uh, zh)(δzh) := f(δzh) − a(uh)(δzh) = 0, ∀δzh ∈ X. (4.4)
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For solutions (u, z) ∈ X ×X and (uh, zh) ∈ Xh ×Xh we have the identity

j(u) − j(uh) = L(u, z) − L(uh, zh).

To be precise, this identity even holds in the following way:

j(u) − j(uh) = L(u, ψ) − L(uh, ψh), ∀ψ ∈ X and ∀ψh ∈ Xh. (4.5)

In the following we combine the primal and the dual solutions x = (u, z) and xh = (uh, zh)
and denote the error by ex = x− xh, the error identity (4.5) can be rewritten as

j(u) − j(uh) =

1∫

0

L′(xh + sex)(ex) ds

which we approximate with the trapezoidal rule

j(u) − j(uh) =
1

2
L′(xh)(e

x) +
1

2
L′(x)(ex) + R(3)

h , (4.6)

with the remainder term

R(3)
h =

1

2

1∫

0

L′′′(xh + sex)(ex, ex, ex)s(s − 1) ds,

which is cubic in the error if L is three times differentiable. Due to Galerkin orthogonality
the middle part of (4.6) 1

2L′(x)(ex) is zero for stationary points x, xh. Denoting the residuals
of the discretized primal equation (4.4) and the dual equation (4.3) by ρ(·)(·) and ρ∗(·, ·)(·)
respectively,

ρ(uh)(ϕh) = f(ϕh) − a(uh)(ϕh)
ρ∗(uh, zh)(ϕh) = j′(uh)(ϕh) − a′u(uh)(ϕh, zh)

(4.7)

we get from the error representation (4.5) using (4.3, 4.4) for all yh ∈ Xh

j(u) − j(uh) =
1

2
L′(xh)(x− yh) + R(3)

h

=
1

2
ρ(uh)(z − ϕh) +

1

2
ρ∗(uh, zh)(u− ψh) + R(3)

h .

Especially for any interpolation operator ih : X → Xh we get with

j(u) − j(uh) =
1

2
ρ(uh)(z − ihz) +

1

2
ρ∗(uh, zh)(u− ihu) + R(3)

h , (4.8)

an error representation that only depends on the residuals of the two equations tested with
some interpolation errors. A computable error estimator which differs from the error rep-
resentation (4.8) only in higher order is achieved if we can approximate the interpolation
errors of the continuous solutions u ∈ X and z ∈ X:

j(u) − j(uh) ≈ η =
1

2
ρ(uh)(ẑ − ihz) +

1

2
ρ∗(uh, zh)(û− ihu). (4.9)
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4.2. Error Estimation with Q2 Elements

If we can approximate x̂− ihx only with knowledge of the discrete solution xh all the con-
stituent parts of the error estimator η are known with the additional effort of computing the
discrete dual solution (one auxiliary linear problem).

A well established way of approximating the interpolation error is the comparison of the
discrete solutions uh and zh with their interpolation to a higher order space on a coarser
mesh: i∗2h : Vh → V ∗

2h.

u− ihu ≈ uh − i∗2huh.

If the triangulation possesses the patch structure denoted in Chapter 2 this interpolation
is easily established. A detailed comparison for different kind of approximation techniques
considering linear finite element spaces is e.g. found in Richter [Ric01]. However using for
example second order finite elements the technique mentioned above would require the usage
of a fourth order reconstruction for approximating the interpolation error. The associated
numerical integration cost is very high. In addition this procedure requires a patch structure
of the mesh. With increasing order of the finite element spaces, mesh refinement has to
be “more locally” to give optimal complexity results. A very accurate refinement cannot
be realized with a patch structured mesh. This aspect is discussed in more detail in the
following section. It is not possible to use a simple equal order approximation of z − ihz
since due to the Galerkin orthogonality the residuals ρ(uh)(ϕh) and ρ∗(uh, zh)(ϕh) vanish
for all ϕh ∈ Vh.

4.2. Error Estimation with Q2 Elements

If we are mainly interested in quantities usable for mesh refinement we apply a simplified
version of the error estimator. Details are found in Becker & Rannacher [BR01]:

Lemma 4.1. For the Galerkin approximation of the Euler-Lagrange system (4.1, 4.2), we
have the a posteriori error representation

j(u) − j(uh) = ρ(uh)(z − ϕh) + R(2)
h ,

with the residual ρ(uh)(·) defined in (4.7). The remainder term R(2)
h is of second order in

(x− xh) and vanishes if a(·)(·) and j(·) are linear.

We have lost on order of magnitude in the remainder term, but the error representation is
far easier, since we only need to evaluate the primal residual.

The traditional way of evaluating error estimators of residual type is to apply partial integra-
tion and use the strong operator form of the equation, see e.g. Becker & Rannacher [BR96]
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for the dual weighted residuals methods or Verfürth [Ver96] for other error estimators:

j(u) − j(uh) = ρ(uh)(z − ihz) + R(2)
h

≈ ρ(uh)(z − ihz)

= f(z − ihz) − a(uh)(z − ihz)

⇒ |j(u) − j(uh)| ≤

∣∣∣∣∣∣

∑

K∈Th

(f −Auh, z − ihz)K + (Euh, z − ihz)∂K

∣∣∣∣∣∣
,

≤ ccs
∑

K∈Th

{
‖f −Auh‖K +

1

2
h
− 1

2
K ‖[Euh]‖∂K

}
ωK ,

ωK = max{‖z − ihz‖K , h
1
2
K‖z − ihz‖∂K}.

where A is the strong operator and E are edge remainder terms appearing since the deriva-
tives of uh are not steady across the edges. The constant ccs is caused by the Cauchy-Schwarz
inequality. Since this constant is unknown we cannot expect |j(u) − j(uh)|/η → 1 for de-
creasing h. Therefore we don’t get a real error estimator but cell-wise error indicators:

ηK =

{
‖f −Auh‖K +

1

2
h
− 1

2
K ‖[Euh]‖∂K

}
max{‖z − ihz‖K , h

1
2
K‖z − ihz‖∂K}. (4.10)

However as a benefit of this simplified method we can apply approximations for ‖z − ihz‖
which lie in the finite element space Vh. In addition, practical experience justifies the possi-
bility of separating error estimation and obtaining error indicators for mesh adaption.

In the following we compare different approximation techniques for the interpolation error.
All of them rely on super-approximation properties where theoretical results are missing
for general type of equations and locally refined meshes. We separate two approaches for
approximating the interpolation error. First we consider possibilities with û− ihu 6∈ Vh,
i.e. approximations that are suitable for application of the error identity (4.9). Second we
introduce approximations of the norm of the interpolation error ‖u− ihu‖K .

One possibility for estimating the interpolation error would be to compute the discrete func-
tion uh in a higher order finite element space u∗2h ∈ X∗

2h on a coarse mesh and approximate
the interpolation error by

u− ihu ≈ u∗2h − i∗hu
∗
2h, i∗h : X∗

2h → Xh. (A1)

This approximation should deliver very good results but requires an even higher effort for
the error estimator than for the solution of the problem and will therefor not be considered.
As in the first order case a higher order reconstruction of the discrete solution is possible:

u− ihu ≈ i∗2huh − uh, i∗2h : Xh → X∗
2h. (A2)

This does not require the solution in the higher order space but it requires the numerical
integration of higher order functions as well as the wasteful patch structure. The numerical
integration effort is of order O(pd) if p is the order of the ansatz space and d the spacial
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4.2. Error Estimation with Q2 Elements

dimension, i.e. integration of a higher order function is eight times more expansive. Another
approach to approximate the interpolation error is to compare the discrete solution uh not
with a better but with a slightly less accurate one:

‖u− ihu‖ ≈ ‖uh − i2huh‖, i2h : Xh → X2h. (A3)

This equal-order interpolation to the patch is also element of the original ansatz space Vh,
therefore this approximation is only feasible considering the simplified estimator (4.10). The
interpolation to the coarser space X2h could also be substituted with the calculated solution
on this coarser mesh. This solution is in general available since we use a geometric multigrid
solver for the solution of our problems. But again, this procedure requires the patched mesh.

A completely different approach to the approximation would be the use of an interpolation
error estimate (for piecewise polynomials of order p) ‖u− ihu‖K ≤ cIh

p+1
K ‖∇p+1u‖K and try

to guess the high derivatives ∇p+1u. A major drawback of this method is the introduction
of the unknown interpolation constant cI . Further this interpolation estimate is only valid
if the function u contains enough regularity properties. Considering problems with entering
edges, the solution of the Navier-Stokes equation is not even in H2(Ω). But it is possible
to gain knowledge of ∇p+1u by a reconstruction process without utilizing a higher order
approximation or requiring the patch structure of the mesh.

Using finite elements of degree p we get an approximation for the p-th derivatives:

∇pu|K ≈ ∇puh|K =: qK .

This discontinuous function qK is element of some space V ∗,disc
h which contains at least the

cell-wise constant functions P 0,disc
h ⊂ V ∗,disc

h . The function qK is a tensor of dimension dp.
We now apply a projection of qK into our original finite element space [Vh]

dp
:

gh ∈ [Vh]
d×d×···×d : (gh − qK , ϕ) = 0, ∀ϕ ∈ Vh.

The gradient of the tensor g is an approximation for the searched ∇p+1u:

‖u− ihu‖ ≈ hp+1
K ‖∇gh‖. (A4)

The projection can be replaced by a node-wise averaging of the unsteady values of ∇puh:

(gh)i :=
∑

K∈N (i)

qK(xi).

This algorithm can be arranged without the patch structure and without higher order inte-
gration. On the other hand, the dimension of the tensor of the p-th derivatives is dp which
results in a comparable integration effort, which is even dominant for really high order spaces
p >> d.

A simular approach with a local balancing of the gradient is used in the error estimator of
Zienkiewicz & Zhu [ZZ87].

All theoretical results concerning the different approximation techniques are all based on
super-approximation properties which asymptotically require meshes with patch-size of or-
der O(1). This conflicts with the necessity of accurate local mesh refinement. From there we
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4. Error Estimation & Mesh Adaptation

compare the presented methods in a computational study with respect to the approximation
of the interpolation error, the numerical cost and particularly the usability for error esti-
mation and mesh refinement. We won’t consider the first possibility (A1) utilizing a higher
order solution since the aligned numerical effort is not expected to be worthwhile.

As a first test we measure the approximation qualities of interpolation error by methods
(A3) and (A4). We approximate a function with singularities in the derivatives

u(x, y, z) =
√
x+ y + z, (4.11)

of the unit box Ω = [0, 1]3. This function is not in H2(Ω) but in some H2−α(Ω) with α
small. On a sequence of meshes we compare the interpolation error ‖u−ihu‖Ω with its coarse
mesh approximation (A3) ‖uh− i2huh‖Ω and the interpolation estimate (A4) h‖∇3

huh‖Ω . In
Table 4.1 we compare the absolute values of the (approximated) interpolation error as well
as the cell-wise approximation quality q(A) := ‖u− ihu‖K/‖û− ihu‖(A)

K .

(A3) (A4), cI = 10−2

# cells ‖u− ihu‖Ω ‖uh − i2huh‖ q(A3) cIh
3‖∇3

h
uh‖ q(A4)

8 3.56 · 10−3 4.13 · 10−3 q ∈ [0.86, 0.86] 3.59 · 10−3 q ∈ [0.91, 0.91]
64 8.92 · 10−4 11.9 · 10−4 q ∈ [0.05, 0.81] 8.42 · 10−4 q ∈ [0.14, 1.08]

512 2.23 · 10−4 3.01 · 10−4 q ∈ [0.02, 0.80] 2.10 · 10−4 q ∈ [0.05, 1.08]
4096 5.58 · 10−5 7.73 · 10−5 q ∈ [0.01, 0.80] 5.25 · 10−5 q ∈ [0.02, 1.30]

Table 4.1.: Approximation of the interpolation error with methods (A3) and (A4). We
compare the overall approximation of the interpolation error as well as the range
of the cell-wise approximation property.

As expected the approximation of the interpolation error via the coarse mesh interpolation
(method A3) is quite good. Using the a priori unknown interpolation constant cI = 10−2 the
overall approximation with method (A4) is even better. The good approximation property
of method (A4) is perhaps misleading since this result depends on the right choice of the
interpolation constant cI . If we e.g. consider the smooth function

u(x, y, z) = sin(πx) sin(2πy) sin(πz), (4.12)

we get a simular result for method (A3), but we have to choose the interpolation constant
as 2cI ≈ 10−2 to get a comparable result. The cell-wise values for the coarse mesh approxi-
mation are very accurate, we get q ∈ [0.38, 0.45] for a mesh with 4096 cells using the smooth
function.

Since we cannot detect a crucial benefit of one method we will further only consider method
(A4) with the major advantage of not requiring the patch structure. Next we analyze
the usability of the different approximation techniques for error estimation and for mesh
adaption. In a first test we consider a simple model problem and test the ability of the
methods for error estimation. Finally we apply the methods for mesh adaption on a three
dimensional Navier-Stokes Flow.

Now we approximate the smooth function (4.12) as the solution of the Laplace equation

−∆u = f,
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4.2. Error Estimation with Q2 Elements

with f chosen appropriate. On a sequence of meshes we compare the numerical effort and the
effectivity η/|j(u)−j(uh)| of two error estimators using (A2) and (A4) for approximating the
weights. We do not regard method (A1) since the aligned numerical effort is to high, further
we neglect method (A3) since is needs the patch structure without producing superior results
compared to (A4). In Table 4.2 we list for a sequence of meshes the error, and the effectivity
of the error estimator. The interpolation constant for method (A4) is set to cI = 10−4. The
comparison is done for methods (A2) (uh − i∗2huh) and (A4) (h3

K‖∇3
huh‖K):

(A2) (A4)
cells |j(u) − j(uh)| eff eff

8 1.10 · 10−1 3.01 1.72
64 2.01 · 10−2 12.22 1.28

512 1.05 · 10−3 0.95 1.33
4.096 6.16 · 10−5 1.24 0.95

32.768 3.79 · 10−6 1.10 0.54

Table 4.2.: Effectivities for the error estimator with approximation methods (A2) and (A4).
The solution is smooth: u ∈ C∞(Ω).

The results in Table 4.2 first of all indicate the lack of accuracy due to the Cauchy-Schwarz
inequality. Although the approximation quality of the interpolation error with method (A4)
is promising the method is not useful for error estimation. The effectivity for method (A2)
is o.k.

Finally we compare the usability of both methods for mesh adaption applied to a three
dimensional Navier-Stokes flow. We consider a flow in long direction through a channel of
size 15 × 2 × 7 with an obstacle of size 1 × 1 × 1 fixed on the bottom of the channel. The
quantity of interest is the drag coefficient of the obstacle. Due to the entering edges this
problem involves singularities in the derivatives of the solution.

In Table 4.3 the achieved error, the effectivity and the numerical cost of the error estimator
is listed for the application of methods (A2) and (A4). At first glance both methods deliver
good results for adaptive mesh refinement. The effectivity of the estimator considering (A4)
is subject to the discussed restrictions. Regarding this problem the trouble with patched
meshes gets obvious. The calculation using method (A2) starts on a mesh with 1672 cells
which equals 63540 degrees of freedom. After only two steps of local refinement the memory
requirements of the system matrix exceeds a small workstation (half a gigabyte). Method
(A4) is suitable for producing more economical meshes.

Conclusion

Using local recovery of derivative information, high qualitative mesh adaption is possible.
However to ensure error estimation with good effectivities, the usage of Cauchy-Schwarz
inequality has to be prevented. As discussed, evaluation methods with higher accuracy
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(A2)
cells |j(u) − j(uh)| eff cost

1.672 6.19 · 10−2 0.03 0.11
5.144 3.90 · 10−3 2.81 0.14

17.464 2.12 · 10−3 1.31 0.15

(A4)
cells |j(u) − j(uh)| eff cost
209 6.94 · 10−1 0.27 0.08
832 6.15 · 10−2 0.84 0.09

2.316 3.61 · 10−3 5.80 0.12
6.306 1.90 · 10−3 6.51 0.13

Table 4.3.: Effectivity and numerical cost for the error estimator with approximation meth-
ods (A2) and (A4) for a Navier-Stokes test on adaptively refined meshes.

are linked with patched meshes which lead to wasteful refinements. But also the analysis of
methods without the need of patch-structured meshes reveals a basic limit of adaptive meth-
ods based on total bisection of meshes, i.e. refining one cell into 8 small cells. The required
amount of memory swells so rapidly that even large parallel computers are overstressed with-
out having resolved singularities, boundary layers or regions of turbulence. For the solution
of three dimensional problems with high Reynolds numbers anisotropic refinement seems to
be necessary.

Though, the presented method for evaluating the error indicators leads to an efficient way
of generating meshes adapted to the problem.

4.3. Mesh Adaption

In the previous section we have derived an a-posteriori error estimator η which has a cell-wise
representation:

η =
∑

K∈Th

ηK .

We have to choose a subset of cells S ⊂ Th for refinement. Several standard approaches exist
for choosing this subset. Throughout this work we use a scheme for adaption which differs
from most other methods and was presented in [Ric01]. The cells Ki ∈ Th are ordered with
respect to the error indicators:

ηKi
≥ ηKi+1 .

The subset of cells to refine is always chosen as coherent queue Sr = {K1, . . . ,Kr}. We
assume a local convergency of the error indicators after refinement of one cell K as

∑

K ′∈K

ηK ′ =

(
1

2

)α
ηK . (4.13)
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If we consider global refinement α = 2 stands for quadratic convergence η ≤ ch2. This
cell-wise convergence order α usually is not constant in the whole domain. Near singularities
α should be chosen smaller. In [Bra98] it is shown, that under some regularity assumptions
on the product of the primal and dual solution if we use optimal mesh refinement and if N
denotes the number of nodes of the mesh, p the order of the finite element space and d the
dimension, the error behaves as

E ≈ CN− 2p
d .

The number r of cells to be refined is calculated as the minimal argument of

C(r) = E(r) ·N(r)
2p
d , (4.14)

where E(r) is as prediction of the error on the new mesh after refinement of r cells. This
value is approximated using (4.13)

E(r) =

#cells∑

i=1

ηKi
−

r∑

i=1

(
1 −

(
1

2

)α)
ηKi

.

The value N(r) is a prediction of the number of nodes on the new mesh:

N(r) = N + r(2d − 1).

The minimum of (4.14) is determined by testing E(r) with r = 1, · · · ,N .

For regular functionals it is known (see [Bra98]), that after an balancing of the cell-wise error
indicators, global refinement is optimal. Contrary to this adaptation scheme, the standard
approaches for mesh adaptation (fixed fraction, fixed number, ...) do not meet this request:

Remark 4.2. If the error estimators are equilibrated ηK = ηK ′ the described adaption process
results in global refinement.

If we fixate ηK = η/N the resulting function for E(r) has minimal values for r = 0 and
r = #cells leading to global mesh refinement r = N , Sr = Th.

4.4. Numerical Results

In this section the described finite element method is applied to the 3D Navier-Stokes bench-
mark problem already given in Chapter 1, Figure 1.1. The results are taken from Braack &
Richter [BR05a].

Although this problem has been formulated a couple of years ago accurate reference solutions
are only determined for the regular geometry by John [Joh02]. A reference solution for the
square cross-section is still missing. The entering edges bring about singularities in the
derivatives of the solution which weaken the benefit of higher order finite elements. The
use of adaptive mesh refinement combined with higher order finite elements is a promising
way to handle this problem. Nevertheless the dimension of the discrete three-dimensional
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#cells #dof ∆p cdrag clift

9 360 98 128 0.1482 5.8431 6.14e-3
75 776 771 392 0.1605 5.9731 5.95e-3

606 208 6 116 608 0.1672 6.1043 7.92e-3

Table 4.4.: Values obtained by Schreiber [Sch96] with the Qrot1 element for the circular cross-
section.

#cells #dof ∆p cdrag clift

9 440 97 736 0.1590 7.3069 3.48e-2
75 520 768 544 0.1683 7.5622 5.03e-2

604 160 6 094 976 0.1729 7.6138 6.00e-2

Table 4.5.: Values obtained by Schreiber [Sch96] with the Qrot1 element for the square cross-
section.

problems swiftly gets very large, therefore we further have to utilize parallel computers to
obtain reliable reference solutions.

The quantities of interest in this benchmark problems where the drag value of the obstacle,
its lift value and the pressure drop in two points adjacent to the obstacle.

In 1996, Schreiber [Sch96] – whose results are also published in Schäfer & Turek [ST96] – did
an extensive study of the benchmark using the Rannacher-Turek element [RT92] with rotated
trilinear velocities and piecewise constant pressure. In Tables 4.4 and 4.5 results for the drag
value the lift and the pressure difference of both configurations are given. Although about
6 million unknowns were used, at most one digit can be assured, regardless of the specific
configuration and the considered functional. At the time of this study, the values obtained
by Schreiber can be regarded as the summit in terms of accuracy and effort (measured in
number of unknowns). Nevertheless, the three dimensional benchmark was not considered
to be managed.

Almost all participants of the study published by Schäfer & Turek utilized finite elements
of degree one or finite volume discretizations. In the following we will apply the stabilized
Q2 −Q2 element on the benchmark.

One achieves a higher order of accuracy, if the drag (as well as the lift) is not directly
evaluated as the boundary integral

cD = C

∫

S

(
ν
∂vt
∂n

ny − pnx

)
ds,

instead transformed to an integral over the complete domain. With the tangential direction
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t = (ny,−nx, 0) on the obstacle, we get

∂vt
∂n

ny =
∂vx
∂n

n2
y −

∂vy
∂n

xnny =
∂vx
∂n

− nx

(
∂vx
∂n

nx −
∂vy
∂n

ny

)

=
∂vx
∂n

− nxdiv v =
∂vx
∂n

.

Now if u = (p, v) is the strong solution of the problem and with some test function Φ̂ =
(ϕ̂0, ϕ̂1, ϕ̂2, ϕ̂3) ∈ [H1(Ω)]4, ϕ̂i = 0 for i 6= 1 we get

a(u)(Φ) =(ν∇vx,∇ϕ̂1) + (v · ∇vx, ϕ̂1) − (p, ∂xϕ̂1)

=(−ν∆vx + v · ∇vx + ∂xp, ϕ̂) +

∫

∂Ω

(
ν
∂vx
∂n

− pnx

)
ϕ̂1 ds

=

∫

∂Ω

(
ν
∂vx
∂n

− pnx

)
ϕ̂1 ds.

If we take as test function for the horizontal velocity component ϕ̂1|∂Ω/S = 0 and ϕ̂1|S = 1
we obtain the drag coefficient as

a(u)(ϕ̂) = cdrag.

This property can be used numerically by taking ϕ̂1 as a quadratic test function with Dirichlet
values on ∂Ω as mentioned above:

a(uh)(ϕ̂h) = cdrag,h.

For the obstacle with the circular cross-section it turns out that – using quadratic finite
elements on uniform meshes – the error in the drag is evaluated as

cdrag − cdrag,h = O(h4).

Details are given in Braack & Richter [BR05a].

For the obstacle with the circular cross-section (configuration 1), reference solutions are pub-
lished in John [Joh02]. In that work, several discretizations are compared with respect to
accuracy. Following the conclusion of the author, the most accurate finite element discretiza-
tion for this problem under their consideration consists of piecewise tri-quadratic elements
for the velocities (Q2) and discontinuous piecewise linear pressure (P disc

1 ). Their compu-
tation has been performed on structured meshes by the use of a parallel computer. The
obtained values on the finest meshes for Q2−P disc

1 and extrapolated values are recapitulated
in Table 4.6. Their finest mesh contains about 56 million of degrees of freedom (dof). The
underlined digits in Table 4.6 are those ones which can be considered as reliable based on
the convergence history. For the pressure drop, only the first two leading digits are ensured:
∆p = 0.17 . . .. The drag coefficient was the “easiest” quantity to be computed: the first
four digits are reliable: cdrag = 6.185 . . .. The conjecture due to extrapolation based on the
finest meshes is a value of cdrag = 6.1853 . . .. If this is true, on the finest mesh also the
fifth digit is correct. For the lift coefficient clift, the first three leading digits are known,
clift = 9.40 . . . · 10−3.
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#cells dof ∆p cdrag clift

245 760 7 035 840 0.170403 6.185234 9.40479e-3
1 966 080 55 666 560 0.170779 6.185327 9.40122e-3

extrapolated 6.185329 9.40098e-3

Table 4.6.: Reference values published in [Joh02] for the circular cross-section.

#cells dof ∆p cdrag clift

480 18 720 0.188771 6.250365 1.88463e-1
3 840 136 000 0.178702 6.172750 1.02332e-2

30 720 983 040 0.173744 6.184551 9.46862e-3
245 760 7 864 320 0.171999 6.185323 9.43526e-3

1 966 080 62 914 560 0.171342 6.185331 9.40136e-3

Table 4.7.: Values obtained in this work for the circular cross-section on structured meshes.

For the square cross-section (configuration 2), the accuracy of simulations on structured
meshes is only reliable up to the first two digits. For instance, the drag coefficient is believed
to be cdrag = 7.7 . . . for configuration 2.

In this work, we will apply the presented equal order tri-quadratic finite elements both for
velocity and pressure. The stabilization takes advantage of the stable subspace Q2 − Q1.
In order to validate that this discretization is at least as accurate as the established one
Q2−P disc

1 in [Joh02], we list our values for structured meshes in Table 4.7. The meshes used
are exactly the same as those which were used to get the values in Table 4.6. The number
of degrees freedom are moderately higher for the equal-order discretization compared to the
one with discontinuous pressure. However, the accuracy is pretty much the same. For the
pressure drop ∆p, the first two digits are reliable. With respect to the drag coefficient,
also the fifth digit can now be considered as reliable cdrag = 6.1853 . . ., which confirms the
extrapolation in [Joh02].

This is a good starting point to analyze the effect of local mesh refinement in order to obtain
similar values on meshes with less mesh points. Beyond this, we explore the far more difficult
test case of the square cross-section (configuration 2). The solution can be found in a Sobolev
space H1+α(Ω) with 0 < α << 1. Therefore, even for quadratic elements, the convergence
order (on globally refined meshes) can be expected only to about O(h). For completeness, in
Table 4.8 we also gather the values obtained with stabilized Q2 −Q2 elements on structured
meshes.

A confrontation of the best values obtained by Schreiber (Tables 4.4 and 4.5) with theQ2−Q2

element yields a rather crushing defeat of lower order elements. Their results obtained with
more than 6 000 000 unknowns are outdone on meshes with about 5 000 cells and 150 000
unknowns.

In the remainder of this section, we will enhance the accuracy by the use of a posteriori error
estimation and analyze the described discretization – as well as the parallelization techniques
– in more detail.
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4.4. Numerical Results

#cells dof ∆p cdrag clift

78 3 696 0.183495 13.31491 -5.88042e-2
624 24 544 0.208050 8.04450 1.04015e-1

4 992 177 600 0.177370 7.97593 7.82310e-2
39 936 1 348 480 0.176165 7.78785 6.78254e-2

319 488 10 787 840 0.175759 7.75793 6.86428e-2
2 555 904 86 302 720 0.175677 7.76119 6.88130-2

Table 4.8.: Values obtained in this work for the square cross-section on structured meshes.

4.4.1. Adaptive Mesh Refinement

Using adaptive mesh refinement we have two goals in mind: first we aim at obtaining the
values for the circular test case (see Table 4.7 with less degrees of freedom, second we want
to determine reliable values for the test case concerning the square obstacle. In all cases we
saddle at least one step of global refinement onto the adaptive refined meshes in order to
validate the values achieved by adaptive refinement. Faulty local refinement could pretend
a converging scheme but would result in a wrong limit. If the acquired values do not change
significantly under global refinement we can trust the results.

In Tables 4.11, 4.12 and 4.13 the obtained values for the circular test are listed. In each table
we separate the calculations done on a workstation from those on a parallel computer. A
second parting rule indicates the switch from adaptive refinement to global refinement. In all
cases the application of global refinements suggests the correctness of the adaptive scheme.
Together with the number of cells, the number of degrees of freedom and the functional value
we give the effectivity of the error estimator. This value ηeff is calculated as

ηeff = 10−4 |η(uh, zh)|
|j(u) − j(u)| .

In Table 4.9 we compare the necessary number of cells to reach a relative error of 1%,
resp. 0.01%. As expected adaptive refinement has a large impact on the pressure drop.
Both other test cases deliver a high convergence order on structured meshes. The profit
of adaptive refinement is therefore limited. Considering functional values as quantities of
interest it often occurs, that the error changes its leading sign. This can lead to very small
errors which could be misconstrued as a reliable result of the algorithm. In this cases we did
not consider these values for the comparison of adaptive and structured meshes.

1% 0.01%
adaptive global adaptive global

∆p 1 383 245 760 6 556 > 1 966 080
cdrag 480 480 22 880 30 720
clift 21 536 30 720 149 104 1 966 080

Table 4.9.: Number of cells needed to reach a relative error of 1% respectively 0.01% con-
sidering the circular cross-section.
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The square cross-section is somewhat more suited for adaptive refinement. Due to the
entering edges structured meshes reveal a convergence order in the area of O(h). Using
adaptive refinement the singularities in the solution can be balanced, the convergence is
expected to improve. In Tables 4.14, 4.15 and 4.16 we list the acquired values for all three
functionals. Again we indicate the used computer architecture and the refinement strategy.
Table 4.10 lists the needed number of cells to reach a relative error of 1% respectively 0.1%.
For both error tolerances we get a large benefit from using adaptive refinement.

1% 0.1%
adaptive global adaptive global

∆p 2 255 4 992 17 795 319 418
cdrag 5 510 39 936 10 116 2 555 904
clift 5 776 39 936 131 930 >2 555 904

Table 4.10.: Number of cells needed to reach a relative error of 1% respectively 0.1% con-
sidering the square cross-section.

Conclusion

For many “real-life” cases an accuracy of 5% has to be considered as sufficient. Although
the described benchmark problem has been published in 1996, a good reference solution was
still missing for the square obstacle. Even the relative large bound of 5% was not reached
for this simple geometry. With adaptive mesh refinement on quadratic finite elements, a
reference value for all three functionals on both geometries could be defined with an error
in the region of 0.01%.

This accuracy is far beyond the necessary one, but the benchmark configuration is very
simple in comparison to “real-life” geometries, as for instance the methane burner described
in Chapter 1.

The discretization presented in the previous chapter is well suited for Navier-Stokes flow, the
accuracy is comparable to the Q2 − P disc

1 element analyzed by John [Joh02] and definitely
superior to the Qrot

1 element analyzed by Schreiber [Sch96].

The DWR method has proven to be reliable for finite elements of degree two, even if the
approximation of the weights is rather crude. The effectivities of the error estimator range
between 0.25 and 5 for nearly all settings with a leading constant 10−4.
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4.4. Numerical Results

#cells dof ∆p ηeff machine

480 18 720 0.1892506787 2.41

865 34 080 0.1798815121 2.06

1 138 45 520 0.1746605518 1.64

1 383 55 896 0.1729589594 1.32

6 556 243 224 0.1712704796 0.56

8 607 321 544 0.1710884110 0.29

10 742 404 376 0.1710308434 0.13 serial

924 704 32 260 736 0.1710070986 parallel
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000  1e+06  1e+07

Q2 cells

global
adaptive

Table 4.11.: Values obtained for the circular cross-section on locally refined meshes with a
posteriori error estimate of ∆p.

#cells dof cdrag ηeff machine

480 18 720 6.2503650 1.32

3 840 136 000 6.17275342 2.72

22 880 784 384 6.18471848 0.28 serial

155 768 5 227 872 6.18533571 parallel

1 246 144 41 822 976 6.18533310

extrapolated 6.18533293

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06 1e+07

Q2 cells

global
adaptive

Table 4.12.: Values obtained for the circular cross-section on locally refined meshes with a
posteriori error estimate of cdrag.

#cells dof clift ηeff machine

480 18 720 1.884632312e-1 0.05

3 840 136 000 1.023315808e-2 0.23

21 536 740 416 9.483555569e-3 0.27 serial

149 104 5 006 304 9.405158225e-3 parallel

1 192 832 40 050 432 9.401228291e-3

extrapolated 9.40097e-3

1e-05

0.0001

0.001

0.01

0.1

1

1000 10000 100000 1e+06 1e+07

Q2 cells

global
adaptive

Table 4.13.: Values obtained for the circular cross-section on locally refined meshes with a
posteriori error estimate of clift.
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#cells dof ∆p ηeff machine

78 3 696 0.183495025 0.21

624 24 544 0.208049746 3.20

2 248 83 952 0.177348465 0.49

5 160 191 424 0.176449284 1.10

14 008 511 952 0.175792355 0.76

33 496 1 212 208 0.175713985 0.71 serial

83 000 2 969 936 0.175676527 parallel

664 000 23 759 488 0.175686487
 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06  1e+07

Q2 cells

global
adaptive

Table 4.14.: Values obtained in this work for the square cross-section on adaptively refined
meshes for the pressure drop.

#cells dof cdrag ηeff machine

624 24 544 8.044496403 3.89

2 472 91 120 7.974163476 13.87

7 120 258 512 7.788092939 6.28

16 808 615 408 7.759470239 7.53

113 128 4 052 272 7.765846534 parallel

905 024 32 418 176 7.767272368

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000  10000  100000  1e+06  1e+07

Q2 cells

global
adaptive

Table 4.15.: Values obtained in this work for the square cross-section on adaptively refined
meshes for the drag coefficient cdrag.

#cells dof clift ηeff machine

78 3 696 5.880420044e−2 2.59

435 17 608 1.040065281e−1 2.04

1 611 61 616 7.794480009e−2 3.64

5 643 210 336 6.750582790e−2 2.69

8 506 327 008 6.818400747e−2 3.29

56 764 2 037 464 6.873510495e−2 serial

454 112 16 299 712 6.892755977e−2 parallel
 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  100  1000  10000  100000  1e+06  1e+07

Q2 cells

global
adaptive

Table 4.16.: Values obtained in this work for the square cross-section on adaptively refined
meshes for the lift coefficient clift.
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5. Parallel Adaptive Finite Elements

Parallel methods for solving partial differential equations are well-established techniques.
Domain decomposition or Schur Complement methods are inherently well suited for par-
allelization. Efficient multigrid methods have been ported to parallel computers. As early
as 1978, Grosch [Gro78] analyzed multigrid methods with respect to parallelization. The
promising approach to implement a multigrid method on a parallel computer is by domain
decomposition and was advocated 1981 by Brandt [Bra81]. Each level of the triangulation
is partitioned into subdomains and spread to the different processors. This approach is ef-
fective as long as the number of unknowns is larger than the number of processors. Since
the demand will most certainly always exceed the capacity this “rule” should be satisfied.
However the coarse meshes of the multigrid hierarchy will be of size O(1), the number of
processors might even outdo the number of unknowns. On coarse meshes, less processors are
used (coarse mesh agglomeration), others are idle. As the biggest amount of work is done
on the fine meshes, these idle processors will not gravely touch the effectivity.

To overcome the problem of idle processors, modifications of multigrid solvers, as the “con-
current multigrid algorithms” where examined for parallelization. Frederickson and McBryan
[FM88] developed a parallel super-convergent multigrid method that creates useful work for
idle processors. However, the question of parallel efficiency is not settled.

Considering adaptive mesh refinement, the problem of idle processors gets critical. The
usual way to set up the multigrid hierarchy on locally refined meshes using triangulations of
subdomains with equal refinement order on the finer meshes to ensure the optimal complexity
with regard to the number of unknowns. Using this approach, the number of unknowns may
be small compared to the number of processors on all levels of the mesh hierarchy. BPX, a
variant of multigrid (see Bramble, Pasciak and Xu [BPX90]) is suitable for adaptive mesh
refinement and was parallelized by Bastian [Bas93].

The difficulties of parallel multigrid on adaptively refined meshes are associated with the
way of setting up the multigrid hierarchy. Becker & Braack [BB00] proposed a new way
of assembling these meshes. On every level, the triangulation covers the whole domain.
Coarser meshes are generated by “global coarsening”. In the reference mentioned above,
optimal complexity was demonstrated, unless strict refinement to one point is applied. For
practical problems this method is well suited, and parallelization of standard multiplicative
multigrid is possible.

Early implementations of parallel multigrid solvers only consider elliptic problems. Oswald
[Osw01] implemented a parallel multigrid solver for the non-stationary Navier-Stokes equa-
tions based on Van Kan’s projection scheme on structured meshes.
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Since parallel adaptive multigrid methods require very complex data and program struc-
tures an implementation has to be applicable to a large variety of problems. For example a
multigrid solver for the Navier-Stokes equation on anisotropic meshes requires very robust
smoothers, e.g. special modification of the ILU decomposition, which are mostly not well
suited for parallelization. A detailed examination of a parallel multigrid solver for adaptive
meshes in two dimensions is given by Bastian [Bas96]. Bastian analyzed a parallel multigrid
solver for scalar linear problems arising from finite volume discretizations in two dimen-
sions. In Bastian [B+99] a parallel multigrid solver for – amongst others – the Navier-Stokes
equations in three dimension was analyzed.

The parallelization discussed in this work is based on the finite element toolbox Gascoigne
[BB+]. Gascoigne features an adaptive multilevel solver for a large range of problems in
two and three dimensions, including the Laplace-(heat-)equation, Stokes, Navier-Stokes,
compressible flows and reactive flows. The main components of the toolbox are identical for
all problems, particularly there is only one multilevel solver, suitable for all these problems.
For example the number of solution components or the choice of the specific equation or
discretization does not influence the algorithmical treatment of the linear problems. In
contrast to other approaches, the multigrid hierarchy is established by “global coarsening”,
thus the problem of idle processors is bypassed.

We try to preserve the sequential algorithm as far as possible. Therefore no special parallel
techniques for the coarse mesh problem are applied. Actually, the only modification applied
to the sequential algorithm is the domain decomposition approach used for the smoothing
process – again the standard way of implementing parallel smoothers.

In the remainder of this chapter we give a short introduction to the basic analysis of parallel
algorithms, afterwards we describe the algorithmical and implementational aspects of the
solving techniques used in Gascoigne. During the description of the methods, we discuss
their parallelization. Primary requirement for the parallelization process is the retainment
of the original algorithms. Parallelization is always a trade-off between parallel efficiency and
numerical quality of the underlying algorithms. Our focus is on the latter issue. Particularly,
we will analyze the parallel smoother and prove its usability within a multigrid iteration.
Finally we give several numerical examples demonstrating the capability and the parallel
efficiency of the implemented methods.

5.1. Isoefficiency Analysis

In this section we gather some basic ideas about the examination of parallel algorithms. The
starting point for a parallel algorithm should be the best sequential one; the first key value for
the analysis of parallelization is the running time of this best sequential algorithm depending
on the problem size N . Shortly we note some definitions for further usage following Grama
et al. [GGKK03]

Definition 5.1 (Parallel Efficiency).
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sequential time Time used in running the “best sequential algorithm” for problems with size
N :

TS(N) = “time of sequential algorithm with problem size N.”

parallel time The time used in running the “parallel algorithm” on P CPU’s for problem
size N :

TP (N,P ) = “time of parallel algorithm on P CPU’s for problem size N.”

speedup The quotient of sequential and parallel running time is called the speedup of the
parallel algorithm:

S(N,P ) =
TS(N)

TP (N,P )
.

efficiency The parallel efficiency of the algorithm is defined by the quotient of the speedup
by the number of CPU’s P :

E(N,P ) =
TS(N)

P · TP (N,P )
.

With this definitions we can state a first basic fact about the parallelization of algorithms:

Remark 5.2. For every parallel algorithm the speedup is subject to the following essential
constraint

S(N,P ) ≤ P.

Otherwise we would have

S(N,P ) =
TS(N)

TP (N,P )
> P

⇒ TS(N) > P · TP (N,P ).

This would lead to a new “fastest” sequential algorithm by running the parallel one P
times sequentially in contradiction to the assumption of TS(N) being optimal. The parallel
efficiency is therefore bounded from above by 1.

Although we do not chase after optimal parallel efficiency, basic guidelines have to be consid-
ered to port an algorithm to a large scale parallel computer. Otherwise, communication and
administration effort would finally dominate, the capacity of the parallel computer would
not be usable. In the following section we briefly describe considerations on the scalability of
parallel algorithms. From this considerations we derive directives for good implementations.

A simple model of parallel algorithms, Amdahl’s Law [Amd67] states that if there is a pure
sequential share s of work, the speedup is bounded independent of the number of CPU’s. The
remainder share of work is assumed to be totally parallel. Therefore taking the sequential
time as

TS(N) = sTS(N) + (1 − s)TS(N),
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we get for the parallel running time

TP (N,P ) = sTS(N) + (1 − s)
TS(N)

P
.

Accordingly we have as speedup

S(N,P ) =
1

s+ (1 − s) 1
P

.

This rather depressing result states that there is a natural limit for speedup

S(N,P ) −−−−→
P→∞

1

s

and the parallel efficiency is tending to zero with increasing P :

E(N,P ) =
1

sP + (1 − s)
.

In most numerical problems the sequential share of the algorithm is reduced with increasing
problem size. But there are still limits to the efficiency and the number of CPU’s has
to be coupled to the problem size to get acceptable efficiencies. But nevertheless this well
known computation points out the problem of a purely sequential share of work; in the worst
case, even tasks like centralized file i/o dominate the whole running time, if they cannot be
parallelized. The good numerical efficiency of multigrid solvers complicates the problem,
since the actual computational work is given by the complexity O(N), therefore in terms of
order associated with the same effort as administrational tasks (file i/o).

The following definition introduces the idea of isoefficiency from Grama et al [GGKK03] and
points up the dependency between problem size and number of CPU’s.

Definition 5.3 (isoefficiency).
An algorithm is called isoefficient scalable if there is an isoefficiency function P 7→ N(P )
and a constant 0 < Eiso ≤ 1, such that

E(N(P ), P ) = Eiso.

For isoefficient scalable algorithms we can increase the number of CPU’s according the
problem size and preserve the efficiency of the parallel algorithm.

Remark 5.4. Parallel algorithms with communication effort in the same order of magnitude
as the sequential running time are not isoefficient scalable.

Proof: the result follows directly from Amdahl’s Law. The communication of order TS(N)
establishes some pure sequential share of work s > 0. The efficiency decreases with the
number of CPU’s and does not depend on the problems size. Thus we cannot find a suitable
isoefficiency function N(P ).

54



5.2. Parallel Finite Elements Discretization

�

Since all the numerical algorithms have linear running time communication of size O(N) has
to be avoided. Therefore all data has to be distributed to the different CPU’s. Since we use
a server-client model we have to assure that no data of size O(N) is gathered at the server.
Gathering or dealing out this data to the different CPU’s would require the critical amount
of communication O(N).

5.2. Parallel Finite Elements Discretization

Heart of the parallelization progress is the partitioning of the meshes described in Chapter 2.
All the data is directly aligned to the nodes, edges or cells of the meshes, depending on the
specific discretization. Further the computational work is connected to the data, therefore
a good partitioning is the fundamental prerequisite for a parallel implementation. Our grid
consists of cells (that are quads in two and hexes in three dimensions) and related nodes.
We distribute the cells to P different subdomains and therefore while obtaining an unique
partitioning of the cells, some nodes of the triangulation are given to several processes. Other
approaches use a node-wise unique distribution; each node is assigned to one (and only one)
subdomain. Usually some additional overlap of nodes is stored on each subdomain. For
example all nodes which are at most 1 edge distant to the boundary of the subdomains are
stored in both subdomains. Such an overlap allows to reduce the number of communication
steps in every multigrid cycle during the calculation. Since we are interested in preserving
the original algorithms and for simplicity of the implementation we do not use any overlap.
With the focus on large systems of partial differential equations, as it is the case for reactive
flows, considerations of parallel efficiency are less crucial. The number of matrix entries
– and therefore the amount of local work – is of second order in the number of solution
components, while the amount of data to be transfered across the interface is linear in the
number of solution components. Thus, the local complexity of the regarded problems backs
up the parallel efficiency

The nodes lying on the boundary between (at least) two subdomains are called the interface
nodes. The subset of nodes in one mesh part p lying on the interface is denoted by Ip. The
number of interface nodes is called Np

int. Communication will be aligned to the interface.
Therefore it should be kept small to reduce the effort.

We denote the mapping of the Ncells cells to P CPU’s by

mc : {1, . . . ,Ncells} → {1, . . . , P}, (5.1)

the (not unique) mapping of the Nnodes by

mn : {1, . . . ,Nnodes} → P({1, . . . , P}), (5.2)

and the interface on CPU p is a mapping from the Np
int interface nodes to the set of adjacent

CPU’s which have the node in common:

mi : Ip → P({1, . . . , P}). (5.3)
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The cells of the triangulation Th are divided to p = 1, . . . , P sub-triangulations T p
h :

T p
h = {K ∈ Th : mc(K) = p}.

All nodes belonging to one cell K ∈ T p
h also belong to the sub-triangulation. Therefore the

intersection between two adjacent sub-triangulations is a set of nodes, the interface. The
number of nodes in one subdomain is denoted by Np.

On every subdomain T p
h we define a local discretization V p

h according to Chapter 2. On
the new inner boundaries belonging to the interface nodes no boundary values at all are
described instead, the problem is always considered on the union of the local discretizations:

Vh =

P⋃

p=1

V p
h .

This union yields the original boundary values. The parallelization of the algorithms is done
on the algebraic level engaging with the solver.

The partitioning of the mesh has to fulfill various conditions to ensure optimal behavior of
the distributed algorithms:

load balancing The data as well as the work have to be distributed uniformly. Since memory
usage and computational effort linearly depend on the number of nodes in our algorithm
we just have to ensure uniformly distributed data.

minimal communication Communication among different CPU’s will be necessary for all
nodes on the interface between two parts of the mesh. Consequently the size of the
interfaces has to be minimized.

In general we can’t achieve both goals at one time. The partitioning of the meshes is
performed with the freely available program library Metis [Kar], a graph partitioning tool.
The distribution process is discusses in detail within the next section.

5.2.1. Distributing the Data

In Finite-Element calculations the numerical data - this are mainly the system matrix, the
solution vector and auxiliary vectors - is directly coupled to the mesh. We have chosen a
cell-wise partitioning for matrices and a nodewise overlapping partitioning for the vectors. If
we take some arbitrary node-vector vh ∈ Vh corresponding to the discretization on mesh Th
the values are stored on p CPU’s. That is, on every subdomain there exists a vector vph ∈ V p

h

of size Np. The values of vph on the interface Ip of one CPU p are also stored on the other
side(s) of the interface. Using (5.3) we get:

xi ∈ Ip ⇒ vph(xi) = vqh(xi), ∀q ∈ mi(xi). (5.4)

Throughout the algorithms we have to assure this condition for vectors on the interface.
Matrix entries are composed of cell-integrals over finite element functions. The distributed
matrix Ap stores all entries belonging to degrees of freedom situated on cells K ∈ T p

h .

56
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Values belonging to couplings of degrees of freedom on the interface therefore are spread to
multiple subdomains, only if the coupling degrees of freedom have their support cells in both
subdomains. In Figure 5.1 we describe a case where a matrix entry associated with interface
nodes is kept in only one subdomain although both nodes are present in both subdomains.
We stress this particular point since it will be of importance further on, considering the
multigrid solver.

A
q

A
p

Figure 5.1.: A partitioning into two subdomains. The matrix entry belonging to the diagonal
coupling of nodes is not stored in in Ap, although both degrees of freedom are
situated in both subdomains.

For handling the distributed data we define some subdomain operators as restriction to
the subdomain Rp

h : Th → T p
h and a prolongation from the subdomain Pp

h : T p
h → Th.

The restriction operator applied to a vector is defined as the nodewise restriction of vh to
vhp . If we use some local numbering np : {1, . . . ,Np} → {1, . . . ,N} of the degrees of freedom
i = 1, . . . , Np in T p

h such that xi ∈ T p
h corresponds to xnp(i) ∈ Th we get a matrix formulation

of the restriction operator:

Rp
h ∈ R

Np×N , rpij =

{
1 np(i) = j,
0 np(i) 6= j

. (5.5)

The prolongation Pp
h is defined as the transposed of the restriction:

Pp
h ∈ R

N×Np , Pp
h =

(
Rp
h

)T
. (5.6)

Using this definitions we can fix the conventions used for data distribution:

Definition 5.5 (Parallel Data Distribution).
A vector vh ∈ Vh is correctly distributed to the p subdomains vph ∈ V p

h , if there holds

vph = Rp
hvh

for all p ∈ {1, . . . P}. A matrix Ah is called correctly distributed, if we have

Ah =
P∑

p=1

Pp
hA

p
hR

p
h.

With this definition we can state some properties of the data distribution:

Remark 5.6.

If a vector vh and a matrix Ah are distributed according to Definition 5.5 we get
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1. vph = Rp
hP

p
hv

p
h

2. vh 6=∑P
p=1 P

p
hR

p
hvh

3. Ah =
∑P

p=1 P
p
hA

p
hR

p
h

4. Aph 6= Rp
hAhP

p
h

Proof: Point 1. is evident, since Rp
hP

p
h is the identity on R

Np×Np
. As degrees of freedom

lying on the interface are restricted to all adjacent subdomains, these are considered multiple
times in the summed prolongated vector. Therefore 2. follows. Point 3. is the definition and
the matrix Aph is therefore not result of an node-wise restriction since the entries correspond
to integrals over cells as discussed before and entries on the interface are spreaded over the
different domains.

�

5.2.2. Implementation and Parallel Efficiency of the Matrix Vector Product

Due to the decomposition of matrices and vectors (definition 5.5) the matrix vector product
can be calculated locally on every CPU. After performing the calculations we have to assure
the parallel distribution condition of the resulting vector. Using the subdomain operators
Rp
h and Pp

h the matrix vector product bh = Ahvh reads:

bph = Rp
hbh = Rp

h(Ahvh)

= Rp
h

P∑

q=1

Pq
hA

q
hR

q
hvh

= Rp
h

P∑

q=1

Pq
h

(
Aqhv

q
h

)
.

The evaluation of the matrix vector product can be split into two parts:

1. Local calculation of the matrix vector product b̃ph = Aphv
p
h.

2. Balancing of the values on the interface bph = Rp
h

∑P
p=1 Pq b̃qh.

Step 1. of the matrix vector product can be performed in parallel on every CPU. Step
2. involves communication between adjacent CPU’s along the interface. Step 2. is necessary
to assure the conforming data distribution (Definition 5.5).

To analyze the parallel efficiency of the matrix vector product we assume the cost for one
numerical operation as cnum and the average number of subdiagonals in the matrix as cdiag .
The required time for the sequential matrix vector product bh = Ahvh is given by

TS(N) = cnumcdiagN. (5.7)
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If we assume the subdomains to be of almost equal size, the effort for Step 1. of the parallel
matrix vector product is matched by

T 1
P (N,P ) =

1

P
TS(N) = cnumcdiag

N

P
. (5.8)

Further we assume that the interface between two subdomains is of size (N/P )(d−1)/d , i.e.
the dimension of a line compared to a surface in two dimensions. The maximum number
of subdomains in contact with one interface node is limited by cneigh and the number of
communication steps needed for exchanging data along the interfaces is bounded by 2cneigh.
This is not an assumption but a result from Lemma 5.8 which will be given in Section 5.2.3.
The cost for transferring data of size 1 is expressed by ccomm. Step 2. of the parallel matrix
vector product involves communication of the interface nodes as well as local balancing of
this nodes:

T 2
P (N,P ) = (cnum + 2cneighccomm) ·

(
N

P

) (d−1)
d

. (5.9)

The additional computational effort is neglected and included in the actual local matrix
vector product. Combining (5.7), (5.8) and (5.9) we get the following results:

TP (N,P ) = cnumcdiag
N

P
+ 2cneighccomm

(
N

P

) (d−1)
d

,

S(N,P ) =
1

1
P + 2

cneighccomm

cnumcdiag
N

−1
d P

1−d
d

, (5.10)

E(N,P ) =
1

1 + 2
cneighccomm

cnumcdiag

(
P
N

) 1
d

.

We conclude that the matrix vector product is isoefficiently scalable with a linear isoefficiency
function N(P ) 7→ cN .

Since we use a master-client concept for parallelization operations to be performed on the
clients have to be activated by the master. Additional communication with effort O(P )
appears. If we include the startup of the matrix vector product, (5.10) yields:

TP (N,P ) = cnumcdiag
N

P
+ 2cneighccomm

(
N

P

) (d−1)
d

+ ccommP,

S(N,P ) =
1

1
P + 2

cneighccomm

cnumcdiag
N

−1
d P

1−d
d + ccomm

cnumcdiag

P
N

, (5.11)

E(N,P ) =
1

1 + 2
cneighccomm

cnumcdiag

(
P
N

) 1
d + ccomm

cnumcdiag

P 2

N

.

In the two dimensional case a closed formula for an isoefficiency function N(P ) can be given.
Instead we try to analyze the three-dimensional case in common situations. The isoefficiency
function will be suited somewhere between N(P ) = P and N(P ) = P 2. On a usual computer
with a performance of one gigaflop we set cnum = 10−9, a high performance network yields a
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transfer rate of about 1 gigabit a second, thinking of double precision representation of the
numbers we set ccomm = 1.5 · 10−7. The number of subdiagonals using a Q2 discretization
is approximately cdiag = 125 and the maximum number of adjacent subdomains equals
cneigh = 8. Gathering this values we get as the parallel efficiency:

E(N,P ) =
1

1 + 20
(
P
N

) 1
3 + P 2

N

. (5.12)

If we expect at least 10 000 degrees of freedom for all subdomains, i.e. we use for (5.12) the
coherency

N(P ) = 10 000P,

it follows that the efficiency will be above 0.5 if we use up to 1024 CPU’s. Although this
calculation is rather rough, the usability of the methods should be asserted.

Most algorithms used have a simular structure, including the initialization from the master
O(P ), some local calculation O(N/P ) and finally communication on the interface of order
O((N/P )(d−1)/d)). Altogether we will expect a parallel efficiency of at least 0.5 if we choose
a reasonable proportion of P and N , as e.g. N = 10000P .

5.2.3. Distributed Communication

In this section we describe the distributed communication which occurs when values on the
interface between different subdomains have to be exchanged. The layout of the subdomains
and the neighborhood relations is a-priori unknown. Depending on the mesh layout, adaptive
refinement and the number of subdomains, a large variety of partitions will occur. Every
client p hast to communicate with all clients q neighboring to cells situated in T p

h . Without
knowledge of the specific topology we have to assume that every client p has to communicate
with all other clients. Efficient algorithms for exchanging data between all P processes involve
a running time in order O(P ). Regarding e.g. the matrix vector product this would lead
to a different isoefficiency function, approximately in the region N = O(P 4) which is not
usable for practical purpose.

In this section we will present an algorithm to create a communication sequence which allows
the exchange of interface values in at most 2cneigh steps, where cneigh is the maximum number
of adjacent subdomains in one interface node.

The parallel topology of the problem is transformed to a graph. Figure 5.2 displays a
domain partitioned into 7 subdomains. The subdomains form the nodes of the graph, the
edges describe the communication connections, i.e. the neighborhood relation. If values on
the interface have to be exchanged, communication along all nodes of the graph is necessary.
The algorithm aims at labeling the edges in such a manner that edges with equal label can
be treated simultaneously, that is, all edges adjacent to one node must have different labels.

The number of nodes is denoted by P , the maximum number of edges meeting in one node
is denoted by cneigh. Each node p has a sorted list of #ep edges connecting the nodes p and
ep[i]:

ep[i] < ep[i+ 1], i = 1, . . . , (#ep − 1).
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Figure 5.2.: Domain distributed to 7 subdomains and associated communication graph.
Edges with the same letter can be treated simultaneously during communi-
cations.

The algorithm runs in parallel and stains the edges of the graph in the following way. See
Bastian [Bas03] for details. On every CPU p:

Algoritm 5.7 (Communication Graph).

for k = 1, . . . ,#ep:
set q = ep[k] neighboring node

set c′ = 0
do

set c = minimal unused label ≥ c′ on p
send c to node q
receive c′ = minimal unused label ≥ c from q

while (c 6= c′)
set label[q] = c

Lemma 5.8. The maximum number of labels cmaxlab, handed out by this algorithm is

cmaxlab ≤ 2 max
p∈{1,...,P}

#ep.

Proof: Otherwise two adjacent nodes would together hold more than 2cneigh edges, which
contradicts the assumption #ep ≤ cneigh.

�

Using this remark we can estimate the communication effort for exchanging values across
the interface:
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Remark 5.9. The exchange of data of size O (D) across the interface needs communication
of order O (cneighD).

The running time of the algorithm is of order O (cneighP ). Once the communication graph
is assembled it will be used frequently during the calculations. The edges in the example
(see Figure 5.2) are labeled with 5 different labels. I.e. communication across all edges is
performed in 5 steps.

As mentioned in Section 5.2.2 there are about (N/P )(d−1)d degrees of freedom on the inter-
face in one subdomain. The overall communication cost is expected to of order

O

(
cneigh

(
N

P

) d−1
d

)
.

This communication is not evenly distributed over all edges, e.g. the data amount to be
transfered between nodes 2 and 3 in Figure 5.2 is of order O

(
(N/P )(d−1)d

)
but between

nodes 1 and 6 only data of size O (1) has to be transfered. Both edges are labeled with the
same letter, the communication is performed in one step. Since the latter communication is
fulfilled in a shorter time, the involved nodes have to wait for the end of the communication
step. A small modification of the algorithm enhances the performance: we assemble two
(or even more) communication graphs. First we only take into account communications of
size O

(
(N/P )(d−1)d

)
. Since we neglect some couplings, we should get fewer communication

steps. Afterwards we consider the exchange of values of order O (1). In the three-dimensional
case we could even insert a third communication graph responsible for the intersections of
order O

(
(N/P )(d−2)d

)
(that is: faces, edges, vertices). For example we consider domain

Ω = [0, 1]3 ⊂ R
3 uniformly distributed into P 3 cuboids. Each subdomain (if we neglect the

boundary) has 26 adjacent subdomains. The algorithm creates a communication graph with

26 steps, the effort of exchanging all values is of order O
(
26(N/P )

2
3

)
. If we split the type

of edges into 6 edges of size O
(
(N/P )

2
3

)
, 12 edges of size O

(
(N/P )

1
3

)
and 8 edges of size

1, the overall communication effort reduces to O
(
6(N/P )

2
3

)
if we neglect the lower order

terms and therefore is decreased to approximately a fourth.

5.2.4. Hanging Nodes and Multigrid

The methods introduced up to now are suitable for simple calculations on structured meshes.
In this section we describe the necessary changes regarding adaptive mesh refinement and
multigrid solvers. Especially the usage of multigrid solvers calls for various adaptations.

First we describe the modifications necessary due to the multigrid structure. A short in-
troduction to multigrid solvers will be given in section 5.3, for a detailed analysis we refer
to Hackbusch 1985 [Hac85] and Hackbusch 1993 [Hac93]. Shortly, multigrid methods are
based on the recursive approximation of the problem with the usage of coarser subproblems.
Starting with the discretized domain Th, we combine adjacent cells K ∈ Th to new large
cells and form a mesh T ′

h consisting of these coarse cells. The actual problem to be solved
on Th is approximated on T ′

h. This coarse mesh approximation is recursively continued to
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T1T2 ? ?

Figure 5.3.: Two meshes from a multigrid hierarchy. While the fine mesh (left) is distributed
to three subdomains, the partitioning of the coarse mesh is ambiguous.

a final coarse mesh. We denote the coarsest mesh by T1 and the finest mesh Th by TL.
The practical creation of the mesh hierarchy is established in a reverse manner by adaptive
mesh refinement. Starting with the coarse mesh T1 we successively solve the problem and
choose cells for refinement. This mesh hierarchy is not necessary the multigrid hierarchy.
The exact construction of the multigrid meshes is described in Becker & Braack [BB00].
The coarse mesh approximation requires vectors from one mesh level Tl to be transfered to
the neighboring meshes in the hierarchy, i.e. Tl+1 and Tl−1. The mapping to the finer mesh
Tl+1 is called prolongation, the mapping to the coarse mesh Tl−1 restriction. Thinking of
distributed memory computers we would appreciate if the mesh transfer could be performed
without communication between different processes. Therefore we have to distribute the
whole mesh hierarchy in a nested way: a node xi ∈ T p

l in some subdomain p on mesh-level
l should be situated in the same subdomain p on the adjacent mesh-levels, that is xi ∈ T p

l+1

and xi ∈ T p
l−1. The easiest way of establishing this kind of distribution would require a

partitioning of the coarse mesh T1 which is kept during mesh refinement. If a cell K ∈ T p
1

is refined, the new (children cells) K ′ are arranged in the mesh T p
2 . There are two reasons

which oppose this simple strategy:

• If we use adaptive mesh refinement, thus we do not refine all cells K ∈ Tl and we
do not a-priori know which cells we will refine, the partitioning of higher mesh levels
degenerates. The number of cells in the different subdomains will show a large range.
The efficiency of the parallel algorithms will lack, since the work is inhomogeneously
distributed. (⇒ load balancing).

An error estimator can be used to predict the necessary number of cells in each area of
the domain. These predictions can be used to generate a good partitioning of coming
meshes.

• Using multigrid methods it is desired to use coarse meshes as small as possible. The
number of subdomains P to use may be bigger than the number of cells in the coarse
mesh. But even if the number of cells is large enough we do not get a balanced
partitioning unless we can guarantee an adequate quantity of cells per subdomain. This
value may depend on the algorithm used for the partitioning of the mesh, using Metis
[Kar] about 500 cells per subdomain is a rule of thumb regarding a three dimensional
domain to create a partitioning with a difference of 5% between the largest and the
smallest subdomain.

In particular the second point is crucial. We therefore have to choose finer meshes for
partitioning. This will lead to a new problem illustrated in Figure 5.3. If we distribute the
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fine mesh T2 we cannot transfer the partitioning to the coarse mesh T1 since cells K1,K2 ∈ T2

belonging to the same father cell K ∈ T1 are distributed to different subdomains. The
problem even gets worse if the number of subdomains on mesh level T2 exceeds the number
of cells in level T1. Since we cannot bypass this problem, we have to apply two adaptations
while transferring a partitioning of a mesh Tl to the coarser mesh Tl−1:

M1 If the children Ki ∈ Tl of a cell K ∈ Tl−1 are situated in different subdomains, the
cell K is attached to the subdomain where most children Ki are placed. If we reach a
stand-off, the cell K is attached to the subdomain with the fewest number of cells up
to now (of coarse we only consider subdomains in coherence with the children cells).

M2 If the number of cells in some subdomain the coarse mesh T p
l−1 is less a given limit, we

combine this subdomain with the “next smallest” subdomain. Using this procedure
we circumvent the problem of having more subdomains than cells. The pooling of
subdomains is called coarse mesh agglomeration.

Relying on these adaptations we cannot assure the meshes to be distributed in a nested way.
Therefore the mesh transfer is not totally local on every CPU. Since in multigrid context
the lot of the work is done on the fine meshes and the coarse meshes are negligible we focus
on the fine levels of the hierarchy. Since we retain a nested mesh structure if we carry
forward the partitioning to finer meshes we just have to choose a mesh in the middle of the
hierarchy to obtain the desired attributes on the fine meshes. The mesh which we actually
distribute has to accomplish a trade-off between richness (to deliver a balanced partitioning)
and coarseness (to assure local mesh transfer on fine mesh levels). For practical purposes we
choose the coarsest mesh that holds at least a given number (approximately 100 ∼ 500) of
cells per desired subdomain.

If we regard adaptive mesh refinement the partitioning of the multigrid hierarchy is more
involved. We cannot choose an arbitrary mesh Tl in the multigrid hierarchy for partitioning,
since we have to take the kind of adaptive refinement into account. If we split some mesh Tl
into two subdomains of equal size, it might happen that all cells in subdomain T 1

l are chosen
for refinement, but none in T 2

l . The partitioning of the finer mesh Tl+1 would be unbalanced.
Thus the finest mesh has to be kept in mind during partitioning of some intermediate mesh.
If we produce a balanced fine mesh, we abandon balanced coarse meshes, but since the main
work (and memory usage) is connected with the fine mesh, this is no severe problem.

The toolbox Metis [Kar] used for partitioning actually provides general tools for graph
partitioning and is not specially restricted to finite element meshes. A graph is partitioned
in such way, that the number of nodes clustered in each subgraph is uniformly distributed
and the number of edges cut for the partitioning is minimized. Metis allows the partitioning
of weighted graphs. Thus to partition an intermediate mesh Tl we construct a graph where
the nodes are cells K ∈ Tl with a weight equal to the number of descendants Ki ∈ TL of K
in the finest mesh. If we use this graph for partitioning, and the summed weights in each
subgraph are balanced we get an even partitioning – in terms of cells – of the finest mesh.

In addition we can provide edge-weights, which indicate the number of cells separated in the
finest mesh if we cut this specific edge. This minimizes the size of the interface on the finest
mesh level TL.
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Another problem arises concerning hanging nodes. During the calculation this nodes are
replaced by an interpolation with neighboring nodes. If the neighboring nodes would be
spreaded over different subdomains, communication would be required for resolving them.
Therefore we have to gather all cells with hanging nodes prior to distributing them. The
mesh actually chosen for partitioning will not be a mesh from the multigrid hierarchy and
can be roughly described as “the coarsest mesh from the hierarchy which is still rich enough
to allow Metis a good partitioning with some additional substitution of cells by coarser ones
in order to gather hanging nodes in on subdomain.”

In the following we describe all steps necessary for the distribution of the meshes. We require
at least Csd cells per subdomain and the meshes should be distributed to P domains:

Algoritm 5.10 (Mesh Partitioning).

Given multigrid hierarchy T1, . . . ,TL = Th
1. set T = Tl with Tl coarsest mesh with #Tl/P > Csd
2. while some K ∈ T contains a hanging node

a) set K ′ = father(K)
b) remove all children K ′i of K in T
c) insert K ′ to T

3. distribute mesh T to P subdomains T p

4. for all K ∈ T
a) insert all children Ki of K to the same subdomain as K
b) mark all ancestors Ki of K for the same subdomain as K

5. insert all cells K marked in step 4.b) to the subdomain with most marks.

6. while subdomain T p
l on level l exists with T p

l < Csd

a) combine subdomain T p
l with smallest neighboring subdomain T p′

l

To illustrate the partitioning process, Figure 5.4 describes the complete progress of distribut-
ing a full multigrid hierarchy for an example configuration: In the toggling row of Figure 5.4
a multigrid hierarchy consisting of 4 mesh levels is given. This hierarchy is established by
global coarsening of the finest mesh. All meshes should be partitioned into 2 subdomains.
We require at least Csd = 5 cells per subdomain for partitioning the resulting graph. The
final meshes must have 2 cells per subdomain. In the following we describe all steps of the
algorithm.

In the second row we start with Step 1. of Algorithm 5.10. We choose mesh T3 for starting
since this mesh possesses 16 > 2 ·Csd cells, mesh T2 with 7 cells does not fulfill this require-
ment. Next we combine all cells with hanging nodes (steps 2.a)-2.c)). The resulting mesh is
not a mesh from the multigrid hierarchy but some intermediate one. The cellweights indicate
the number of cells in the finest mesh. In Step 3. the mesh is partitioned under usage of the
weighted graph as described in this section.

In the third row the partitioning is transfered to finer meshes (Step 4. and in Step 5. we choose
the blue subdomain for the remaining cell. Finally in Step 6. we combine both subdomains
on the coarsest mesh to fulfill the requirement of at least 2 cells per subdomain.
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Finally we will give some clues on the parallel efficiency of the partitioning process. Since
the partitioning is done on the master process and the partitioned meshes are handed out to
the clients, we cannot expect isoefficient scalability. If the meshes are big in comparison to
the problem size on every CPU, the partitioning is a severe bottleneck of the program. That
implies that the implemented method is not an efficient parallel Poisson solver on adaptive
refined meshes (which was not the aim of parallelizing the code). The guideline for a better
mesh handling is obvious but requires a distributed mesh hierarchy. This is still subject
to further work. The implementation of a distributed mesh handling for adaptively refined
meshes is connected with large time exposure but will be necessary for the efficient treatment
of non-stationary problems, where the question of load balancing gets fundamental.

As a trade-off we have the possibility of saddling steps of global mesh refinement upon
a previously adaptive refined mesh hierarchy. These additional global mesh refinements
are performed locally on every CPU and require communication only along the interfaces
between different CPU’s.

Conclusion

With the described partitioning of the meshes we have established the basics for a distribu-
tion of finite element discretizations. In the next section we give details on the numerical
algorithms working on the data. Up to now, no change to the methodology was imposed
due to the parallelization.

The partitioning and (statical) load balancing in well suited for the problems under consid-
eration. These all have in common a very large system matrix compared to the number of
mesh nodes. This leads to an essential share of local work to be done. Communication is
not negligible, but after all of minor importance.
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Figure 5.4.: Partitioning of a complete multigrid hierarchy.
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5.3. Parallel Multigrid Solver

This section discusses the parallelization of the multigrid solver. A good introduction to
multigrid solvers is given by Hackbusch 1985 [Hac85] and Hackbusch 1993 [Hac93]. Details
on parallel implementations are found in Bastian [Bas96]. For multigrid on locally refined
meshes we refer to Becker & Braack [BB00]. In the following we give a short introduction
to multigrid methods. Concerning theoretical results we refer to the mentioned references.

The solution of linear systems Ax = b using multigrid methods relies on the division of
the defect b− Ax into high an low frequencies. The high frequent errors are approximated
(smoothed) with some steps of simple iterative methods as Jacobi, Gauss-Seidel, etc; the
low frequent error parts are approximated on coarser meshes, coarse mesh approximation,
thus with less numerical effort. The efficiency of multigrid methods is based on the ob-
servation, that usual linear iterations (as Jacobi, Gauss-Seidel, ...), though giving very bad
solvers, rapidly reduce the high frequent error parts. The remaining low error frequencies
are approximated on the coarse mesh. Since the dimension of the coarse mesh is smaller,
the overall effort is reduced. If we approximate the coarse mesh problem again by splitting
into high and low frequencies, the method is recursively iterated.

The mesh Th = TL is the finest mesh of a multigrid hierarchy T1, . . . ,TL. These multigrid
meshes are nested, i.e. the relationship Tl ⊂ Tl′ for l′ > l holds in a node-wise sense. On
every mesh level l there exists a system matrix Al and vectors vl ∈ Vl in the finite element
space constructed on the specific mesh level. The two-grid iteration for the approximation
of Alvl = bl on level l looks as follows:

Algoritm 5.11 (Two Grid Iteration).

1. vµ1

l = Sµ1

l v1 (pre-smooth)

2. dl = bl −Akv
µ1 (defect)

3. dl−1 = Rldl (restriction)

4. vcl−1 = A−1
l−1(dl−1) (coarse mesh approximation)

5. vcl = vµ1 + P lv
c
l−1 (prolongation)

6. vµ2

l = Sµ2

l vcl (post-smooth)

Basically we can split the two-grid iteration into three parts: Steps 1. and 6. treat the smooth-
ing of the high frequencies. The mesh transfer is performed in Steps 3. and 5., the approx-
imation of the low frequencies is supplied in Step 4. If we bit-by-bit replace the coarse
mesh approximation by the two-grid iteration we finally end up with the complete multigrid
solver. Following the traditional analysis of multigrid solvers, the problem on the lowest
level is solved exactly (coarse mesh problem). But in practice it is sufficient to utilize some
steps of an iterative method for the coarse problem.

First we will analyze the mesh transfer operations. Since the partitioning of the meshes is
mainly nested (see Section 5.2.4), the mesh transfer can be performed locally on every CPU.
Only on coarser mesh levels some degrees of freedom must be fetched from neighboring
CPU’s. If we regard coarse mesh agglomeration, the mesh transfer between to different
levels might require communication for nearly all degrees of freedom. Since coarse mesh
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agglomeration is utilized only on coarse meshes of size O (1) the aligned communication
effort is no problem for the parallel efficiency. On intermediate meshes we have to expect
communication of size of the interface O

(
(N/P )(d−1)/d

)
.

The evaluation of the defect in Step 2. of the multigrid algorithm employs a matrix vector
product and therefore needs communication. This special issue is already discussed in Section
5.2.2.

The smoothing operation is the most delicate part of a multigrid solver. Usually few steps
of iterative methods are used for smoothing. The parallelization of the smoother therefore
strongly depends on the specific layout of the smoother. While methods like the Jacobi
Iteration are inherently well suited for parallelization, others like the Gauss-Seidel Iteration
have a sequential character. We mostly use a incomplete LU decomposition (ILU) of the
system matrix as smoother. This method is well suited for a large range of problems as will
be demonstrated below.

5.3.1. Parallel Multigrid Smoother

Since the ILU decomposition is a strictly global method, parallelization is not self-evident.
In fact, the implemented parallel version numerically differs from the original sequential
version. We neglect the subscript for the mesh level, as the smoothing process does not
involve different levels:

Algoritm 5.12 (Sequential Multigrid Smoother).

1. d = b−A v
2. w = ILU(A)−1d
3. v = v + w

This consists of the evaluation of the defect bl −Alvl in step 1., the application of the ILU
and finally the update in Step 3. In the parallel version we just replace the application of
the ILU , i.e. Step 2. by a localized version:

2.a) w̃p = ILU(Ãp)−1 dp

2.b) wp = Rp ∑ Pp w̃p.

That is, we locally assemble an ILU decomposition of the matrices Ap (with slight modifi-
cations that are described later on) and afterwards balance the values on the interface to
fulfill the data conventions (Definition 5.5). If we would solve the subproblems in Step 2.a)
exactly, the proposed iteration would correspond to the standard Schwarz Iteration with
minimal overlap. Schwarz [Sch69] suggested already 1869 an iterative method for solving
differential equations using local problems on overlapping subdomains. Considering parallel
computing, research on these domain decomposition methods was driven due to the natu-
ral parallel structure. An overview to domain decomposition is given by Quarteroni & Valli
[QV99]. The major lack of the simple Schwarz iteration is the dependence of the convergence
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order on the size of the overlap. In our approach the overlap is of size h, the local mesh size,
and tends to zero. Therefore the error reduction 1−O (h) tends to 1 under mesh refinement.
Since the domain decomposition is applied as smoother and not as a self-contained solver,
the approximation property is satisfactory in the multigrid context. Details are discussed
later during this section.

If we regard a local part of the system matrix Ah on a subdomain T p
h without contact to

the border of the domain Th, this local matrix Ap corresponds to a homogeneous Neumann
problem, thus the matrix is not regular and the existence of the ILU is not assured. We
therefore apply a modification to the local system matrices before building the ILU:

Ãph = Rp




P∑

q=1

PqAqhRq


Pp.

This modified matrix Ãph is mainly the node-wise restriction of the global system matrix
Ah to the subdomain T p

h . The additional note “mainly” is essential since we only consider
matrix couplings across cells K ∈ T p

h . Figure 5.5 displays a situation, where matrix couplings
are neglected in some subdomains.

Γ
2

Γ
1

Interface

Γ

Domain

Domain

Overlap

Ω

Ω

Ω

Γ

1

2

1/2

Matrix coupling only in one subdomain

Figure 5.5.: Structure of the modified local matrices Ãph. Some matrix couplings are only
considered in one subdomain, although both degrees of freedom lie on the in-
terface.

Using this modified system matrix, the local problems can be interpreted as local Dirichlet
problems, with homogeneous Dirichlet boundary values at the degrees of freedom one cell
beyond the interface. If we would solve the local problems exactly, the smoother would equal
the standard additive Schwarz Iteration with overlap of size h. Two further modifications
are needed to derive the finally used smoother:

1. The subdomains are not solved exactly. Instead we apply an ILU decomposition of the
modified local matrices Ãph. I.e. we use the original sequential smoother for approxi-
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mating the local subproblems. The Schwarz iteration is a wrapper around the actual
smoother.

2. The Schwarz iteration utilizes local Dirichlet problems with boundary values tapped
from the neighboring domains. Since we deploy the Schwarz iteration in a multigrid
context, where the solution of the defect correction problems tend to zero, we simplify
the iteration by using homogeneous Dirichlet values.

The convergence of the smoother, i.e. the convergence of the high frequent error parts, is
analyzed in the next section. Now we give the complete parallel smoothing algorithm and
state some hints on the parallel efficiency of the smoother. Once on every mesh level Tl we
have to construct the ILU decomposition. After gathering the matrix entries on the interface
we employ the sequential algorithm on every CPU:

Algoritm 5.13 (Assembling the parallel ILU).

1. Ãph = Rp
(∑ PqAqh Rq

)
Pp

2. ILUp = ILU(Ãph)

Step 2. is performed locally on every CPU. Step 1. requires communication effort comparable
to the matrix vector product. We expect a simular parallel efficiency. But since the ILU is
assembled only once and frequently used, the parallel efficiency is of no significant impor-
tance. The application of the parallel smoother is a combination of the Schwarz iteration
with the sequential version of the smoother (see Algorithm 5.12)

Algoritm 5.14 (Parallel Multigrid Smoother).

1. dp = Rp∑ Pq
(
bq −Aqhv

q
)

2. wp = Rp∑ Pq (ILUp dp)
3. vp = vp + wp

Step 1. in this algorithm is the already introduced parallel matrix vector product. In Step 2.,
we locally apply the ILU decomposition and further have to balance the values on the inter-
face. The update is performed in Step 3. This step is local. Analyzing the parallel efficiency
we get the same structure as the matrix vector product. Communication is required twice
for balancing the interface. The computational work for applying the ILU decomposition is
of the same magnitude as one matrix vector product. Therefore we can expect a simular
parallel efficiency.

5.3.2. Convergence Analysis for the Schwarz Iteration

As a first approach we are looking at the “smoothing properties” of the Schwarz iteration
on the following model problem:

−∆u = f in Ω ∈ R
2,

u = 0 on ∂Ω.
(5.13)
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The domain Th is chosen as shown in Figure 5.6 and split into two overlapping subdomains
T+ and T− with new internal boundaries Γ+ for T+ and Γ− for T−. Some discretization
with mesh size h is applied and the overlap is of size 2h. We observe the error on the line
Γ throughout the Schwarz iteration. Even though the analysis is split into all frequencies
which are presentable on the mesh, we always regard the analytical problem, i.e., the exact
solutions of the Schwarz iteration.

From the standard analysis it is known, that the error reduction rate acts like 1 − O (h).
Now we study the error with regard to its different frequencies. We will show a better
reduction rate – independent of h – for high frequencies. The discussion given now is based
on Hackbusch 1985 [Hac85]. The actual analysis of Schwarz iteration embedded into the
multigrid solver is given in the subsequent sections.

Γ− Γ+

Ω+ Ω−

h

H

Γ

Figure 5.6.: Domain Th split into two subdomains. Artificial boundaries are introduced with
overlap of size h.

The largest error of the classical Schwarz iteration is expected near the interface of two
adjacent subdomains. We therefore fix our interest on the line Γ in Figure 5.6.

Lemma 5.15 (Approximation properties of the Schwarz iteration). Consider the Laplace
problem

−∆u = f,

on the domain Ω given in Figure 5.6 partitioned into two subdomains with overlap of size
2h. After one step of Schwarz iteration – with analytical solution of the subdomain problems
– the error on the interface line Γ is reduced by some factor bounded away from 1 for all
high frequencies which are not presentable on the coarser mesh of mesh size 2h.

Proof: For some initial approximations u0
−, u

0
+ satisfying −∆ui = f on both subdomains

(but with u0
− 6= u0

+ on the interface), we estimate the update vi with Dirichlet values each
grabbed from the other side, i.e. the problems:

−∆vi = 0 in Ti,
vi = 0 on ∂Th,
v− = g− = (u0

+ − u0
−) on Γ−,

v+ = g+ = (u0
− − u0

+) on Γ+.

(5.14)
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In the following we study the impact of the application of the left subdomain problem on
T− on the values on Γ . The boundary values on Γ− are g− = u0

+ − u0
−. If we assume N grid

points along the line Γ− the discrete boundary function g− can be uniformly expressed by
its frequencies

g− =
N∑

µ=1

aµ sin
(
θ(µ)y

)
, θ(µ) = µ

π

H
, N =

H

h

in the grid points. The functions sin(θ(µ)y) tapped in the grid points form a basis of the
discrete space. They can be interpreted as the different frequencies of g−. Parts belonging
to µ with µ > N/2 are high frequencies since the are not visible on the according mesh
with grid size 2h. In our analysis we are interested in these high frequent error rates, we
therefore solve equation (5.14) separately for each frequency. Considering gµ− = sin(θ(µ)y)
the analytical solution of the left subproblem reads:

vµ−(x, y) =
sin
(
θ(µ)y

)
sinh

(
θ(µ)x

)

sinh
(
θ(µ)(H + h)

) .

Hence the update on the interface line Γ equals

vΓ (y)µ = λµ sin
(
θ(µ)y

)
, λµ =

sinh
(
θ(µ)H

)

sinh
(
θ(µ)(H + h)

) . (5.15)

Using the definition of the hyperbolic sine, we get

λµ =
eµπ − e−µπ

eµπ(1+ h
H

) − e−µπ(1+ h
H

)

If we are interested in the limit h→ 0, λµ has the following Taylor expansion

λµ = 1 − e2µπ + 1

e2µπ − 1
µπ

h

H
+O

(
h2
)
.

As expected we get a relationship of λµ from the size of the overlap h. Since we are only
interested in the high frequencies, worded by µ ≥ N/2 = H/2h, i.e. θ(µ) ≥ π/2h and
considering that λµ is monotonically decreasing with regard to µ (for m > 2) we get from
(5.15):

λµ ≤
sinh

(
π
2hH

)

sinh
(
π
2h(H + h)

)

=
e

πH
2h − e−

πH
2h

e
π(H+h)

2h − e−
π(H+h)

2h

=
eπN − 1

eπ(N+1) − 1
e

π
2

=
1 − e−πN

eπ − e−πN
e

π
2 → e−

π
2 ≈ 0.21,

if we neglect the higher order terms. Thus we get the desired result.
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h H
l
T h

r
T

h

(0,0)

hI

Figure 5.7.: Section of a globally refined mesh Th with mesh-size h. Two subdomains T l
h

and T r
h of size H are displayed.

�

Although the preceding analysis is not embedded into the multigrid context, we get an idea
of the impact of Schwarz iteration on different error frequencies. In the following, we study
the multigrid smoother as used in the implementation. Again we apply elements of Fourier
analysis and are limited to the Laplace equation on a reference domain.

5.3.3. Convergence Analysis of the Multigrid Smoother

We analyze the smoothing problem for the Laplace equation on a structured mesh. Figure
5.7 displays two subdomains of a model partitioning. The domain is Ω = [0, 1]d, with N grid
points in every direction. The local mesh-size is h = 1

N . The domain is partitioned into P d

subdomains of size H = 1
P , a subdomain consists of Np = N

P grid points in every direction.
The size of the subdomains is a natural multiple of the cell-size, i.e. Np ∈ N. For simplicity
we only regard the two dimensional case. Again we neglect any discretization errors, instead
we will map the discrete functions to a continuous Fourier basis:

Definition 5.16 (Fourier Components and Fourier Frequencies). For the Fourier frequencies
θ = (θx, θy) with θi = hi, i = 1, . . . ,Np we define the Fourier components Φ(θ,x) as

Φ(θ,x) = sin
( πθx
H + 2h

x
)

sin
( πθy
H + 2h

y
)
.

Fourier frequencies θ ∈ [0, 1
2hNp]

d are called low frequencies. Other frequencies are called
high frequencies.

Discrete vectors vh restricted to the subdomain T p
h now have a unique representation using

the grid functions:
vph =

∑

θ

vp
θ
Φ(θ, ·),
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coinciding in all grid points xi ∈ T p
h . On the boundary of the extended domain T̃ p

h all
functions are continued with zero.

First we analyze the smoothing algorithm 5.14 under the assumption of exact subdomain
solution:

Algoritm 5.17 (Multigrid smoother with exact subdomain solution).

1. dp = Rp∑ Pq
(
bq −Aqhv

q
)

2. wp = Rp∑ Pq
(
Ãp
)−1

dp

3. vp = vp + wp

I.e. on every subdomain T p we solve the local problem

Ãpwp = dp,

with homogeneous Dirichlet condition on the nodes closest to the boundary of the subdomain,
i.e. on domains of size

T̃ p
h = [H + 2h]d.

Lemma 5.18. Algorithm 5.17 applied to the Laplace problem with homogeneous Dirichlet
boundary condition

−∆u = f in Th
u = 0 on ∂Th,

where Th distributed as described in this section is suitable as a multigrid smoother. High
frequencies in the defect not visible on the coarse mesh are reduced at least by fixed rate
bounded away from 1.

Within the subdomains the new defect will be zero since the local problems are solved
exactly, the attention will be on an interface point between two subdomains. Without loss
of generality this point is chosen as the origin (0, 0). (See Figure 5.7). Prior to giving the
proof we will introduce some more notations following Wienands [Wie01].

Remark 5.19. For the Fourier components defined in Definition 5.16 there holds:

Φ(θ, (x− h, y)) + Φ(θ, (x+ h, y)) = 2Φ(θ, (x, y))ω(θx),

Φ(θ, (x, y − h)) + Φ(θ, (x, y + h)) = 2Φ(θ, (x, y))ω(θy).

with

ω(θ) = cos
( πθ
Np

)
.
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With the basic properties of the trigonometrical functions this remark is easily proven. Next
we introduce a stencil terminology for the discrete operator Ãph. For a fixed grid point
xi ∈ T p

h , we can describe the operator Aph on the space of the grid functions by

Aphvh(xi) =
∑

κ∈J

lκvh(xi + κh),

with stencil coefficients lκ ∈ R and a certain finite subset J ⊂ Z
d. This definition is unique

for every discrete operator A acting on discrete functions. Using piece-wise bilinear elements
for the Laplace equation the stencil in the two dimensional case looks like

[lκ] = h2 1

3




−1 −1 −1
−1 8 −1
−1 −1 −1


 . (5.16)

Combining the stencil notation for the model problem with the definition of the Fourier
components the eigenvalues and eigenfunctions of the operator are given by the following
remark:

Remark 5.20. Under the assumption to the partitioning of the domain mentioned in this
section and using piece-wise bilinear finite element functions for setting up the modified sys-

tem matrix Ãph on the subdomain T p
h for the Laplace problem, we get the following correlation:

ÃphΦ(θ,x) = λ(θ)Φ(θ,x)

λ(θ) =
h2

3
{8 − 2 [ω(θx) + ω(θy) + 2ω(θy)ω(θx)]} .

Proof: Using (5.16) we get

ÃphΦ(θ,x) = h2 1

3
{8Φ(θ,x) − Φ(θ, (x± h, y)) − Φ(θ, (x, y ± h)) − Φ(θ, (x± h, y ± h))} .

With Remark 5.19 we get the desired result.

�

Now we can prove Lemma 5.18. We have to analyze the difference between the defect

dp = Rp
∑

q

Pp
(
bq −Aqhv

q
)

(5.17)

before the application of the smoother with the consequent defect

dp1 = Rp
∑

q

Pp
(
bq −Aqh(v

q + wq)
)

= dp −Rp
∑

q

PpAqhw
q = dp −RpAhw (5.18)

after smoothing, where wq is the local update.

76



5.3. Parallel Multigrid Solver

Proof of Lemma 5.18: We write the defect (5.17) using the grid functions (definition
5.16):

dp(x) =
∑

θ

dp
θ
Φ(θ,x). (5.19)

Using Remark 5.20 the solution wp of the local update problem Ãphw
p = dp is given by

wp(x) =
∑

θ

dp
θ

λ(θ)
Φ(θ,x). (5.20)

The defect is analyzed in the grid-point (0, 0). The subdomains T p
h and T q

h meet in this
point. The new part of the defect in (5.18) is given by:

Ahw = h2

3

(
8w(0, 0) − ∑

i∈{−1,1}

[w(i · h, 0) + w(0, i · h) + w(−h, i · h) + w(h, i · h)]
)

= h2

3


4wp(0, 0) − 1

2
wp(0,±h) − wp(−h,±h) − wp(−h, 0)

︸ ︷︷ ︸
fdp

+ 4wq(0, 0) − 1

2
wq(0,±h) − wq(h,±h) − wq(h, 0)

︸ ︷︷ ︸
fdq


 .

(5.21)
For using the Fourier components and frequencies we have to utilize different sets of Fourier
components for both subdomains. Due to the simple layout of the domain (Figure 5.5) both
Fourier components can be expressed with regard to a reference domain:

Φp(θ, x, y) = Φ(θ, h− x, y),
Φq(θ, x, y) = Φ(θ, h+ x, y).

(5.22)

We can continue (5.21) separately for both subdomains:

d̃p =
∑

θ

wp
θ

(
4Φ(θ, h, 0) − 1

2
(Φ(θ, h,±h) − Φ(θ, 2h,±h) − Φ(θ, 2h, 0)

)

Using Remarks 5.19 and 5.20 we get

d̃p =
∑

θ

wp
θ
Φ(θ, h, 0)


4 − ω(θy) − 2ω(θx) − 2ω(θx)ω(θy)︸ ︷︷ ︸

=Ψ(θ)




=
∑

θ

dp
θ

λ(θ)
Φ(θ, h, 0)Ψ(θ).

With (5.22) we get the same result for the right subdomain. With Remark 5.20 the new
part of the defect (5.21) yields

Ahw =
∑

θ

(dp
θ

+ dq
θ
)Φ(θ, h, 0)

(
Ψ(θ)

2Ψ(θ) + 2ω(θx)

)
,
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and the new defect d1 is given by

d1(0, 0) = d(0, 0) − (Ahw)(0, 0)

=
∑

θ

(dp
θ

+ dq
θ
)Φ(θ, h, 0)

(
1

2
− Ψ(θ)

2Ψ(θ) + 2ω(θx)

)
,

=
∑

θ

1

2
(dp

θ
+ dq

θ
)Φ(θ, h, 0)

(
ω(θx)

Ψ(θ) + ω(θx)

)
.

The factor ω(θx)/(Ψ(θ) + ω(θx)) is the reduction rate for the residual to a given Fourier
component: Setting x = πθx

Np and y =
πθy

Np we have to analyze the function

ω(x)

Ψ(x, y) + ω(x)
=

cos(x)

4 − cos(x) − cos(y) − 2 cos(x) cos(y)
(5.23)

for high frequencies H not visible on the coarse mesh T2h:

H =
{

(x, y) ∈ [0, π]2 : x ≥ π

2
∨ y ≥ π

2

}

Basic analysis yields:

−1

4
≤ ω(x)

Ψ(x, y) + ω(x)
≤ 1

3
, (x, y) ∈ H.

⇒
∣∣∣∣

ω(x)

Ψ(x, y) + ω(x)

∣∣∣∣ ≤
1

3
, (x, y) ∈ H.

From this calculation we can conclude, that after one step of smoothing all components of
the defect belonging to high frequencies are reduced by a factor of at least 1

3 independent of
the mesh-size and independent of the size of the subdomains. This completes the proof of
Lemma 5.18.

�

Inexact Subdomain Smoothing

Up to now, we have analyzed the parallel smoothing Algorithm 5.14 under the assumption
of exact subdomain solution. This assumption is necessary for the calculation of the update
(5.20) in the proof of Lemma 5.18. There the solution was given by

wp(x) =
∑

θ

dp
θ

λ(θ)
Φ(θ,x).

Now let S be a smoothing operator for the approximation of Ãpw̃p = dp. The ν-fold appli-
cation of S is denoted by

wp,ν = Sν(dp),
with the component-wise representation:

wp,ν(x) =
∑

θ

wp,ν
θ
Φ(θ,x)
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Lemma 5.21. Let S be a smoothing operator with the following convergence properties for
high frequencies θ ∈ [0, π]d/[0, π/2]d:

|wp,ν
θ

− wp
θ
| ≤ cqνθ, ν ≥ ν0,

with qθ ≤ q < 1. Then, the Schwarz iteration with ν-fold application of S on all subdomains
is suitable as smoother for the Laplace problem for some

ν ≥ ν1 ≥ ν0,

with ν1 independent of the mesh size h

Proof: After ν-fold application of the smoother S we have

wp
θ
(1 − cqν) ≤ wp,ν

θ
≤ wp

θ
(1 + cqν)

The update (5.20) is replaced by the worst possible

wp,ν(x) =
∑

θ

dp
θ

λ(θ)
(1 + cqν)Φ(θ,x).

If we carry this modification through the proof of Lemma 5.18 we end up with a modified
reduction factor (5.23):

ω(θx)

Ψ(θ) + ω(θx)
− 1

2
cqν

Ψ(θ)

Ψ(θ) + ω(θx)

Since the additional term is bounded for high frequencies, we can choose some ν1 ≥ ν0 such
that this term is small enough, more precisely such that

∣∣∣∣
1

2
cqν

Ψ(θ)

Ψ(θ) + ω(θx)

∣∣∣∣ ≤ q <
2

3
.

With this choice of ν1 the proof is finished.

�

5.4. Implementational Aspects

Gascoigne [BB+] is a toolbox for solving partial differential equations with a focus on Navier
Stokes, optimization and reactive flows. Although there is no stringent “physical” division,
Gascoigne – the sequential version as well as the parallel version – mainly consists of three
parts:

Mesh Agent The Mesh Agent takes care of the mesh geometry, hierarchically refined meshes
and the multigrid hierarchy.

Master Process The Master Process controls all numerical algorithms, such as newton,
multigrid, error estimator’s on an algorithmical high level. The Master Process does
not possess vectors or matrices.
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Solver Process The Solver Process manages all the data (mainly matrices and vectors)
and performs all direct work on the data; for instance, matrix vector multiplication,
assembling of matrices.

The Mesh Agent is widely separated from the remaining program and is not used during
solving equations. The border between the Master Process and the Solver Process is rather
artificial and is mainly used for separating the data from the numerical algorithms. This
segmentation of Gascoigne allows for keeping the numerical algorithms in the parallel version
unchanged as far as possible.

These three ingredients also form the basic structure of the parallel version of Gascoigne.
One master CPU holds the Mesh Agent and the Master Process, the Solver processes are
distributed to the P slave CPU’s. A new Interface Class replaces the Solver Process on the
master CPU and forwards the tasks to the slaves. Figure 5.8 illustrates the structure of the
implementation. In the following we gather the layout of the parallel program and state
some differences to the sequential version:

• The Master Process is assigned to one dedicated CPU. Beside controlling the algorithms
(this implies distributing the work - but never the data!) there is nearly no numerical
work done on this CPU.

• Setting up on the mesh all data is distributed to various Solver Processes settled
on different CPU’s. Communication between the Solver Processes is done by these
processes in parallel, the Master Process is not involved in transferring data. In the
sequential program there is only one Solver Process running on the same CPU as the
Master Process.

• In the parallel version, all calls from the Master Process to the Solver Process are cap-
tured by an Interface Class. This class controls all needed parallel structure: knowledge
of the mesh distribution, layout of CPU’s, . . . .
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* construction of multigrid hierarchy

* distribution of meshes

* local refinement of meshes

* management of mesh hierarchy

Mesh Agent

* Numerical Algorithms

   working directly on the data

Solver Process

* Numerical Algorithms

   working directly on the data

Solver Process

* Numerical Algorithms
   working directly on the data

Solver Process

* Numerical Algorithms

   working directly on the data

Solver Process

* Numerical Algorithms

   working directly on the data

Solver Process

Interface Process
* virtual Solver Process calling the
   Solver Processes on slave cpu’s

* Numerical Algorithms
   working directly on the data

Solver Process

* Newton
* Multigrid
* Error Estimator
* ...

Numerical Algorithms with virtual data

Master Process

parallel setting sequential setting

Figure 5.8.: Layout of the parallel structure. The numerical algorithm is controlled by the
master CPU, the work is done by several slaves.

5.5. Numerical Study

In this section we perform some numerical studies on the efficiency of the implemented
methods. All computations are done on the Linux cluster Helics [Hel] situated in Heidelberg.

• 256 nodes, 2× 1.6 GHz Athlon MP Processor, 2 GB memory

• High-speed Myrinet 2000 network 2 Gbits/sec.

In the following we document the results in three different studies. First, we will look at the
multigrid smoother with regard to the smoothing property and the parallel efficiency. As a
model problem we consider a two dimensional Laplace equation.

Second we consider a three dimensional Navier-Stokes benchmark flow (see Chapter 3) using
global mesh refinement. Finally we connect this Navier-Stokes benchmark flow with error
estimation and adaptive mesh refinement.

Quality of the Multigrid Smoother

This example illustrates the quality of the parallel multigrid smoother. Considering the
Laplace equation in two dimensions

−∆u = f,

we estimate the convergence rate of the multigrid and the running time for the multigrid
solver. First we consider two fixed meshes, one is globally refined and consists of 1 048 576
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cells, the other one is locally refined with a random choice of the refined cells and consists of
approximately 500 000 cells. Using this meshes we estimate the multigrid convergence rates.
For pre- and post-smoothing we apply two smoothing steps. The coarse mesh problem is
approximated by a fourfold application of the smoother. The results written in Table 5.1
indicate no negative dependency of the multigrid smoother on the number of subdomains.
On the contrary the convergence rates even improve with more subdomains. This can be
explained with the overlap between the subdomains. Although this overlap is minimal,
degrees of freedom on the interface are smoothed twice in each step.

#CPU: 1 4 16 64 128 256
global refined mesh 0.025 0.024 0.022 0.022 0.018 0.015
local refined mesh 0.020 0.020 0.020 0.011 0.014 0.011

Table 5.1.: Multigrid convergence rates for different numbers of subdomains. The upper
line belongs to a Laplace test with structured mesh. The lower line is computed
on locally refined meshes.

cells CPU’s time (sec)
48 1 21.16
49 4 20.45

410 16 23.69
411 64 25.65
412 256 38.10∗

Table 5.2.: Running time for the Laplace Test. The problem size grows linear with the
number of CPU’s. (*) The poor value for the largest problem is caused by
the network topology of Helics. Whilst 64 nodes are linked with a high-speed
network, between this groups of computers the network speed is lower.

In Table 5.2 we list the time necessary for the solution of the Laplace problem, without
considering the time for mesh adaption, file i/o or error estimation. The problem size is
increased linearly with the number of CPU’s. Ideal parallel efficiency O(N/P ) would result
in a constant time for all problems.

3D Navier-Stokes Flow

We consider the flow through a channel presented in Chapter 1 and already analyzed in
Chapter 4 with an obstacle as shown in Figure 1.1. The computation is performed on
different numbers of subdomains. Each computation is performed on four succeeding meshes
originated from global mesh refinement or until the memory is exhausted.

If we use the overall running time on one level as characteristic for the comparison, slight
differences in the partitioning lead to large discrepancies in the resulting times. For example
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if the partitioning of a mesh is not balanced enough to continue with the parallel global
refinement strategy described at the end of Section 5.2.4 the refined mesh has to be newly
partitioned. The question of when to apply which refinement strategy, i.e. the decision, if a
mesh is assumed to be balanced depends on the choice of some tolerance parameter. A small
exceeding of this parameter can lead to large increase in running time due to the costly
mesh refinement using the administrational master process without delivering a superior
partitioning. Nevertheless a pure comparison of the solving time would conceal the difficult
(and up to now not parallelized) part in finite element computations. In Table 5.3 we
therefore note the overall running time for this example on different numbers CPU’s and
different problem sizes. The results considering the sequential test case were obtained by
using the original sequential version of Gascoigne. We require at least 500 cells per CPU.
The problems belonging to coarse mesh levels do not use all available CPU’s, therefore we
get a stagnation of the times on small meshes. A direct comparison and estimation of parallel
efficiencies is difficult since e.g. in the compute level belonging to 983 040 dof’s the mesh
was refined in parallel for small number of CPU’s (up to 16) while we have to involve the
master process for 32 and more CPU’s.

#dof #CPU 1 4 8 16 32 64 128
18 720 57s 23s 13s 15s 16s 15s 16s
136 000 295s 103s 45s 35s 56s 60s 62s
983 040 – 863s 364s 207s 139s 127s 167s
7 864 320 – – – – 812s 509s 312s

Table 5.3.: Overall running times for every level of refinement. Times include solution of the
problem and mesh handling. If no values are given, the memory was exhausted.

#dof #CPU 1 4 8 16 32 64 128
18 720 51s 20s 10s 11s 10s 11s 10s
136 000 244s 90s 39s 29s 19s 19s 20s
983 040 – 754s 319s 187s 99s 69s 67s
7 864 320 – – – – 720s 467s 291s

Table 5.4.: Running times for the actual solution of the problem without mesh handling.
If no values are given, the memory was exhausted.

In Table 5.4 the running times only for the solving process is given. To get an idea of the
parallel efficiency we list some index values describing the “time per calculated degree of
freedom”:

pei = 100
time(sec) · #CPU

#dof ′s
. (5.24)

The constant factor 100 is just for scaling reasons. If we would have optimal parallel com-
plexity O(N/P ) (which we do not and cannot have!) the index pei should be constant. In
Table 5.5 we list these indices.
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#cells #CPU 1 4 8 16 32 64 128
18 720 0.27 0.43 0.43 0.94 1.71 3.76 6.84
136 000 0.18 0.26 0.23 0.34 0.45 0.89 1.88
983 040 - 0.31 0.26 0.30 0.32 0.45 0.87
7 864 320 - - - - 0.29 0.38 0.51

Table 5.5.: Index for parallel efficiency (time(sec) · #cpu/#dof ′s). Small values indicate
good efficiency.

Considering this example we can conclude that the implemented methods have a parallel
efficiency within reasonable limits. Although the meshing process does not support parallel
computers, the method is well suited for the observed problems (considering the according
problem size). Problems are expected if the work aligned with the meshing process is large
in comparison to the effort of the actual solving process. This happens if we consider small
scalar problems in two dimensions. But, parallelization was taken into account for large
systems of equations, the Navier-Stokes equation is viewed just as a small test case.

Adaptive Refinement

This third example treats the 3D Navier Stokes benchmark with adaptive mesh refinement.
Table 5.6 gives the overall running time per iteration including solving the problem, esti-
mating the error and adaption of the meshes. Tables 5.7 and 5.8 list the running times and
the efficiency index for the solution of the primal problem.

A short view on this last table indicates the quality of the parallelization. For the observed
configuration the parallel efficiency does not degenerate. In Figure 5.9 we draw the parallel
efficiencies

E(N,P ) =
TS(N)

P · TP (N,P )
,

for this problem. Since large problems cannot be solved on a single processor, the running
times for the sequential problem on large meshes are extrapolated with the assumption
pei = 0.53 taken from Table 5.8.

Considering the rather small problem size and the adaptive mesh refinement the obtained
parallel efficiencies are satisfactory. One has to take into account the additional master CPU
which reduces the theoretically possible efficiency to

E(N,P ) ≤ P − 1

P
.

This explains the “low” efficiency of about 3
4 for the case of 4 CPUs.

For the computations done for Chapter 4 the parallel version of Gascoigne was already used.
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#dof #CPU 1 4 8 12 16
3 696 31 13 13 13 13
17 608 139 51 38 35 37
92 832 866 262 151 119 110
526 360 - - 781 587 446
1 832 376 - - - - 937

Table 5.6.: Parallel running time for the total iteration. Adaptively refined meshes.

#dof - #CPU 1 4 8 12 16
3 696 23 8 8 8 9

17 608 94 33 24 24 25
92 832 491 170 93 70 64

526 360 - 1009 477 323 259
1 832 376 - - - - 872

Table 5.7.: Parallel running time for the solution of the primal problem. Adaptively refined
meshes.

#dof - #CPU 1 4 8 12 16
3 696 0.62 0.87 1.73 2.60 3.90

17 608 0.53 0.75 1.09 1.64 2.27
92 832 0.53 0.73 0.80 0.90 1.10

526 360 - 0.77 0.72 0.74 0.79
1 832 376 - - - - 0.76

Table 5.8.: Index for parallel efficiency. Adaptively refined meshes.
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Figure 5.9.: Parallel efficiency for adaptively refined meshes E(N,P ) = TS(N)
TP (N,P ) for different

number of CPUs.

Conclusion

The numerical experiments in the last section have shown good parallel efficiencies for three
dimensional Navier-Stokes flows on adaptively refined meshes. Without repeating the details,
an efficiency of about 3/4 for reasonable proportions of problem size and number of CPU’s
can be observed.

The numerical methods are – with the exception of the ILU smoother – unchanged and
still globally coupled. Therefore nearly no lack of the convergency rate is present when
distributing the problems to different processors.

While the solution of the problems (primal and dual) as well as the error estimation is
parallelized, the mesh handling is completely sequential. For very large problems, this will
become the bottle-neck. However considering reactive flows, the situation is not that delicate,
as we will see in the next chapter.
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6. Reactive Flows

Gathering the numerical methods discussed in the previous chapters we now face complex
problems involving chemical reactions. Details on the finite element solution of reactive
flows are given in Braack [Bra98] or Becker, Braack & Rannacher [BBR99]. The system to
be analyzed is the methane burner already introduced in the introduction, Chapter 1. The
configuration describes a typical household burner used e.g. for water heating.

Considering this setting we have to deal with several problems: due to the complex geometry
including some cooling devices we cannot apply a two dimensional reduction which still
exhibits the main feature. The lamellae, which lead the fuel to the flame, impose edges
entering into the computational domain and bring about singularities in the solution. Thus
local mesh adaption will be crucial for a rigorous examination of the configuration.

We will use two different reaction systems for the simulation: the so-called C1 mecha-
nism with 15 chemical species and 42 reversible reactions of Smooke, see [SMK89], and the
more detailed C2 mechanism with 39 chemical species and 151 reversible reactions of War-
natz [WMD96]. This mechanism includes formation of several chemical species containing
two carbon atoms. Both reactions systems are given in Appendix B.

The used reaction systems with 15 or 39 chemical species lead to a large, very stiff system
matrix. This negatively influences the solution of the linear systems in two ways: advanced,
stabilized methods are needed to gain convergence at all, while the size of the problem leads
to such a large computational effort that parallel computers are necessary just to cope with
the problem size; on the other hand we need globally coupled methods for treating the stiff
systems. In Chapter 5 we described the parallelization process which virtually completely
preserves the global algorithms. The presented multigrid solver is suitable for the equations
under consideration.

In the progress of this chapter we will figure out the equations engaged, discuss the finite
element discretization and the resulting linear systems. The focal point is set on the latter
– the solution of the systems. Finally, we will present numerical results for the prescribed
configuration, which will be introduced with more detail.

6.1. Equations

Reactive flow problems are described by a fully coupled system of equations which was
already given in the introduction (1.2)-(1.5), namely the conservation of total mass

∂tρ+ div (ρv) = 0 , (6.1)
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and of momentum
ρ∂tv + ρ(v · ∇)v − divπ + ∇p = ρg. (6.2)

Further the equation describing the temperature

ρcp∂tT+(ρcpv+α) ·∇T +div (−λ∇T+QDuf )+π : ∇v−v ·∇p−∂tp = −
ns∑

k=1

hkmkωk , (6.3)

and for each of the ns species one diffusion-convection-reaction equation

ρ∂twk + ρv · ∇wk + divFk = mkω̇k, (6.4)

describes the mass fraction of the species k. These conservation equations are completed by
the ideal gas law

p =
ρRT

m
, (6.5)

with the universal gas constant R = 8.31451, and mean molar weight m given by

m =

(
ns∑

k=1

wk
mk

)−1

.

If one sums up the species equations (6.4), it follows with (6.1)
ns∑

k=1

wk = 1.

Therefore, we omit one equation in (1.5), say that of the last species, and use instead

wns = 1 −
s∑

k=1

wk .

The viscous tensor in (6.2) is given by

π = µ

{
∇v + (∇v)T − 2

3
(div v)I

}
,

where µ is the shear viscosity. The convective direction α

α =

ns∑

k=1

cp,kFk (6.6)

is associated with an enthalpy flux due to diffusion fluxes of species having different specific
heat capacities cp,k. In the governing equations, the Dufour effect given by the term

divQDuf

describes the heat flux due to concentration gradients. It is generally accepted to be of
minor importance for the present flame configurations. Furthermore, heat release by pressure
convection, volume viscosity effects, and viscous dissipation are neglected because of their
small impact on laminar flames.

Details on the modeling of chemical reactions are given in Williams [Wil85] and Appendix
A.
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6.2. Simplified Model for Chemically Reacting Flows

For the aimed three dimensional simulations we simplify equations (6.1)-(6.5) by neglecting
terms with low influence. In the temperature equation (6.3) we neglect the terms arising from
the friction of the fluid in itself and all pressure effects on the temperature. As mentioned,
the Dufour effect is not taken into account, further we neglect the term involving α which is
small.

The chemical source terms are denoted by fk and fT for species and temperature, respec-
tively:

fT (T,w) = −
∑

k∈S

hkmkωk,

fk(T,w) = mkω̇k.

The diffusion fluxes are strongly simplified by Fick’s law (see Appendix A for details):

Fk ≈ −Dk∇yk, Dk := ρD∗
k.

Gathering this simplifications, equations (6.1)-(6.5) are reduced to:

∂tρ+ div (ρv) = 0, (6.7)

ρ∂tv + ρ(v · ∇)v − div (µ∇v) + ∇p = ρg, (6.8)

ρcp∂tT + ρcp(v · ∇)T − divλ∇T = fT (T,w), (6.9)

ρ∂twk + ρ(v · ∇)wk − div ρD∗
k∇wk = fk(T,w), k = 1 . . . , ns − 1, (6.10)

p =
ρRT

m
. (6.11)

Pressure Splitting for Flows at low Mach Number

The difference between compressible and incompressible flow is the density, which may vary
in the first case and is constant in the incompressible case. The Mach number is defined as
the ratio of the speed of sound c and the velocity of the flow v:

Ma =
v

c
.

Considering laminar flames, the maximal velocity of the flow is approximately 2m/s which
leads to a low Mach number of about Ma = 0.01. The treatment of low Mach number flows
with the classical Navier-Stokes equations including chemical reactions leads to numerical
instabilities due to huge amplification of round-off errors. Therefore, we split the pressure
into two parts, the thermodynamic pressure Pth which is constant in space and does not
appear in the momentum equation (6.8) and the hydrodynamic phyd which is small and
neglected in the gas law (6.11). See Braack [Bra98] for details:

p(x, t) = Pth(t) + phyd(x, t).
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The thermodynamic pressure Pth is determined as the average pressure in Ω. The gas law is
now an algebraic equation for the density instead of an equation for the total pressure. The
derivatives of the density in the continuity equation (6.7) are expressed by the derivatives of
the temperature T and the mean molecular mass m:

div (ρv) = ρ

(
div v +

1

ρ
v · ∇ρ

)

= ρ

(
div v +

1

m
(v · ∇)m− 1

T
(v · ∇)T +

1

p
(v · ∇)p

)
,

where the part regarding the pressure is neglected. The final system reads:

div v +
1

m
(v · ∇)m− 1

T
(v · ∇)T = 0, (6.12)

ρ∂tv + ρ(v · ∇)v − div (µ∇v) + ∇phyd = ρg, (6.13)

ρcp∂tT + ρcp(v · ∇)T − divλ∇T = fT (T,w), (6.14)

ρ∂twk + ρ(v · ∇)wk + divFk = fk(T,w), k = 1 . . . , ns − 1, (6.15)

ρ =
pm

RT
. (6.16)

6.3. Finite Elements for Reactive Flows

The finite element discretization is based on the usual Galerkin formulation of (6.12)-(6.15)
and the algebraic equation (6.16) for determining the density. First we will arrange the
function spaces of the searched solutions. The boundary ∂Ω of the domain is split into
some part where Dirichlet boundary conditions are applied Γd and the remaining part with
boundary conditions of Neumann or Robin type. This splitting must not coincide for all
components of the solution. We therefore denote the corresponding solution component
with an additional index. As discussed in the introductory Chapter 2 the test space for the
velocities v is defined by

V := {v ∈ [H1(Ω)]d : v|Γ v
d

= 0 almost everywhere}.

The test spaces for the temperature and the chemical species are corresponding spaces R
and Rk, with the necessary modifications for Dirichlet values:

R := = {T ∈ H1(Ω) : T |ΓT
d

= 0 almost everywhere}.
Rk := = {wk ∈ H1(Ω) : T |Γwk

d
= 0 almost everywhere}.

The test space for the pressure is given by p ∈ Q := L2(Ω) if its absolute value is fixed by
some Robin boundary condition and Q := L2(Ω)/R otherwise. For abbreviation we denote
the product of the test spaces by

X := Q× V ×R× {Rk}.

Now we can give the weak formulation of equations (6.12)-(6.16) with help of a set of test
functions Φ = (ξ, ϕ, ψ, {ψk}) ∈ X. Since we are looking for stationary solutions, we give the
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stationary form of the equations. The equation for the conservation of mass is transformed
to

a1(u)(ξ) := (div v, ξ) + (
1

m
(v · ∇)m, ξ) − (

1

T
(v · ∇)T, ξ), (6.17)

the momentum conservation to

a2(u)(ϕ) := (ρ(v · ∇)v, ϕ) + (µ∇v,∇ϕ) − (phyd,∇ · ϕ) − (ρg, ϕ), (6.18)

with the implicitly given boundary term:
∫

∂Ω/Γ v
d

(
µ
∂v

∂n
− pn

)
ϕds = 0.

From the temperature equation (6.14) we derive

a3(u)(ψ) := (cpρ(v · ∇)T,ψ) + (λ∇T,∇ψ) − (fT (T,w), ψ), (6.19)

with the additional boundary integral
∫

∂Ω/ΓT
d

λ
∂T

∂n
ψ ds = 0.

The ns − 1 equations for the species are transformed to

a4(u)(ψk) :=
ns−1∑

k=1

(ρ(v · ∇)wk, ψk) + (ρDk∇wk,∇ψk) − (fk(T,w), ψk), (6.20)

where again a boundary integral remains from integration by parts

ns−1∑

k=1

∫

∂Ω/Γ
wk
d

∂wk
∂n

ψk ds = 0.

These equations are enclosed by the algebraic equation for the pressure (6.16). With

a(u)(Φ) :=

4∑

j=1

aj(u)(Φ),

the complete system of equations in weak formulation is given by: find u ∈ u0 + X, such
that

a(u)(Φ) = 0, ∀Φ ∈ X, (6.21)

where u0 is a continuation of the Dirichlet boundary values on Γd into the domain.

Simular to the discussion in Chapter 3, the actual finite element discretization is achieved by
replacing the function space X by a finite dimensional one Xh consisting of piecewise poly-
nomials. Again we have to face two kinds of instabilities connected with the discretization
of (6.21). The first type of instabilities occurs, if the discrete function spaces do not fulfill
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the “inf-sup” condition for the Stokes equations. As for the Navier-Stokes equations we will
apply local projections stabilization (LPS) (see Becker, Braack, [BB01]) for this “pressure
instabilities”. The second kind of instabilities is aroused by convective terms. As described
for the Navier-Stokes equations we will apply convection stabilization based on sub-grid mod-
eling for the velocity, the temperature and the chemical species. For this purpose additional
stabilization terms are added to the Galerkin formulation (6.21).

Actually, the choice of the finite element triangulation does not differ from the discretization
of pure Navier-Stokes flows as described in the precious chapter. Neglecting the nonlinearity
in the transformation TK – which should be in reasonable limits – the shape of the elements
is again only restricted by the minimum angle condition, see Section 3.4 for details.

6.3.1. Stabilization by Local Projections

The stabilization scheme discussed in Chapter 3 for the Navier-Stokes equations is transfered
to reactive flow equations. For stabilizing the pressure, i.e. for achieving inf-sup stability we
add the known bilinear form (3.8):

sLPS(u,Φ) =
∑

K∈Th

αK (∇πphyd,∇πξ)K ,

with the cell-wise defined parameter αK ≈ h2
K and the fluctuation operator π := (id− iQ̃h

),

with iQ̃h
: Qh → Q̃h some projection into a inf-sup stable subspace. An analysis of this

stabilization scheme is given in Chapter 3, further details are found in Becker & Braack
[BB01, BB04]. On anisotropic meshes we use the modifications given in Section 3.4. In
regions with dominant convection we utilize further stabilizations terms – again following
the previously described scheme:

sCONV (u)(Φ) =
∑

K∈Th

{
δK((v · ∇)πv, (v · ∇)πϕ)K

+ γK((v · ∇)πT, (v · ∇)πψ)K

+
∑

k

γk,K((v · ∇)πwk, (v · ∇)πψk)K

}
,

where the cell-wise stabilizations parameters depend on the viscosity, the heat conduction
and the chemical diffusion coefficients and are defined by

αK = α0f(‖µ‖∞,K)

δK = δ0f(‖µ‖∞,K)

γK = γ0f(‖λ‖∞,K)

γi,K = γ0f(‖Dk‖∞,K)

with f(x) =

(
6x

h2
K

+
‖ρv‖∞,K

hK

)−1

,

with the modifications for anisotropic meshes as described in Section 3.4.
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6.3.2. Solution Process

As discussed in the introduction, solving the presented equations is very difficult due to the
size of the resulting problems. Another problem arises due to the quality of the equations.
Beyond the pure complexity, the solution of the discrete problems is still difficult, among
other things due to the stiffness of the source terms. In the following, the solution process and
the utilized numerical methods are shortly described. Details are found in Braack [Bra98].

The outermost method for solving the nonlinear equations is a standard quasi-Newton solver.
Due to the already mentioned properties of the equations, the solution of the linear systems
within the Newton algorithm is more delicate. Shortly spoken we use a GMRES solver (see
Saad [Saa03]) with a multigrid iteration as preconditioner. While the GMRES solver is
standard, details on the multigrid solver with respect to adaptively refined meshes are given
in Becker & Braack [BB00]; Chapter 5 of this work treats the parallelization aspects of the
multigrid solver. Considering Navier-Stokes flows, we use a stabilized ILU decomposition
of the matrix as smoother. In the parallel version of the multigrid solver, this smoothing
is no longer a global operation (see Section 5.3). In reactive flow context, this may lead to
problems. We therefore further stabilize the smoothing operation by enclosing the ILU into a
BiCGStab solver, another Krylow space method (see Saad [Saa03] for details on BiCGStab).
The entire smoothing process is replaced by this linear solver. The ILU now acts as a
preconditioner for the BiCGStab iteration. A benefit is achieved due to some global – i.e.
on the whole domain – orthogonalization and the line-search used within the linear solver.
The BiCGStab iteration is not used as a self-contained solver for the smoothing problem,
instead a fixed number of iterations is applied.

6.3.3. Homotopy Methods

The regarded equations are highly nonlinear. Although we use stable algorithms throughout
the entire solution process, the acquirement of solutions is very tough without a good initial
guess. In the following we describe some strategies helpful for getting started:

• If the geometry allows for some – even crude – two dimensional restrictions, we use a
prolongation of the corresponding 2d solution as starting value for the Newton solver.
Thus, other techniques for reaching initial solutions are also applied to the 2d case.

• Simulations with the complex C2 mechanism are always initiated with the C1 mecha-
nism. The corresponding solution of the C1 mechanism is expanded to the C2 mecha-
nism by a local 0d time-stepping in every node of the mesh.

• Although being interested in stationary solutions, we use the implicit Euler as time
stepping scheme for the solution process. The additional mass matrix stabilizes the
system matrix. For really small time-steps, the system matrix can be regarded as a
distortion of the identity. The employment of time stepping methods to get the desired
solution may be very slow, but combined with time step control it marks out the most
reliable strategy for gaining solutions. Time-step control is not aligned to some error
analysis, but to the convergence rate of the nonlinear problem. The time step is chosen
as large as possible, such that a solution of the problems is still possible.
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• On coarse meshes the solution may not be adequately representable. The flame front,
or layers of radicals may be too sharp to be described on large cells. By introducing
additional diffusion to the system, a solution is found more easily. This is controlled
by some homotopy parameters, i.e., by replacing all diffusion parameters in equations
(6.12)-(6.16) with

µ′ = Hµµ

λ′ = Hλλ

D′
k = HDk

Dk,

or even with Hµ = Hλ = HDk
= H. These parameters have to be chosen in reasonable

limits, to simplify the solution process, but without leading to “false” branches. One
could think of estimating the homotopy parameters with a-posteriori error estimators
for model errors as given in Braack & Ern [BE03], but the introduction of the homotopy
parameters is a must for getting a solution at all and not subject to error control.

All this strategies are applied interwoven and there is no stringent overall control of the
parameters. While the time-step can be adjusted with the convergence rate of the New-
ton solver, the homotopy parameters may be reduced after each step of refinement. The
automatic acquirement of initial solutions is still subject to research and up to now, user-
interaction is necessary.

6.3.4. Advanced Linear Algebra

Braack [Bra98] developed an efficient method for storing the matrix entries. He considered
two dimensional flow problems with linear finite elements. The method is based on the
lumping of zero-th order terms in the matrices.

To describe the storage structure we have to give some details on the matrices. They are
assembled as the Frechet derivatives of the semi-linear forms (6.17)-(6.20). For instance each
of the species equations (6.20) is linearized in the direction u∆ := (p∆, v∆, T∆, {w∆k }) by:

a′(u)(u∆, Φ) =(ρ(v · ∇)w∆k , ψk) + (ρDk∇w∆k ,∇ψk) −
( ρ
T
Dk∇wkT∆,∇ψk

)

+
(
ρ(v∆ · ∇)wk, ψk

)
−
( ρ
T

(v · ∇)wkT
∆, ψk

)
−
∑

j

(
∂fk
∂wj

(T,w)w∆j , ψk

)
,

(6.22)

where we have only taken out the derivatives of m whose influence is usually small. The
derivatives of the other forms in (6.21) are derived in the same way. If we gather all solution
components aligned in one node of the mesh, the matrix features a block structure with all
couplings in this point gathered:

Aij =




Bpp Bpv BpT Bpw
Bvp Bvv BvT Bvw
BTp BTv BTT BTw
Bwp Bwv BwT Bww


 . (6.23)
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Each entry of Aij is itself a matrix. For large reaction systems the block Bww is dominant,
a matrix of size:

Bww ∈ R
ns−1×ns−1,

with all derivatives of the species equations. Amongst others in (6.22) Bww includes for
every species equations the sum

· · ·
∑

j

(
∂fk
∂wj

(T,w)w∆j , ψk

)
. . . .

Since the derivatives of the source terms fk(T,w) do not vanish, the matrix Bww is a full
matrix. However, only this source terms bring about couplings between different species.
These couplings are of zero-th order. If we perform the numerical integration with the
trapezoidal rule or the Simpson rule for quadratic finite elements respectively, the block
Bww is diagonal for all off diagonals Aij with i 6= j. This very fact leads to the possibility of
significantly reducing the storage effort. Again the system matrix A is composed in a block-
wise manner. Now, we use different block structures for diagonal and off diagonal entries
of A. While we store the full block (6.23) in the diagonal entries Aii, we use a reduced
structure (6.24) elsewhere. For the species couplings we utilize the matrix Dww – now a
diagonal one, the couplings between the species and the flow field are entirely left apart.
Whilst the lumping of zero-th order terms does not change the properties of the solvers,
neglecting some of the couplings reduces the Newton convergency.

The off diagonal blocks of the system matrix are given by

Aij =




Bpp Bpv BpT
Bvp Bvv BvT
BTp BTv BTT

Dww


 , ∀i 6= j. (6.24)

If we compare the storage requirements for both types of matrix blocks, we end up with
(ns + 4)2 entries in the full block against (24 + ns) entries in the reduced one. Considering
linear finite elements with 27 matrix couplings in every row, the full matrix on a mesh with
N grid points has

27(ns + 4)2N

entries. Using different matrix blocks for the off-diagonals, the storage usage reduces to

(
(ns + 4)2 + 26(24 + ns)

)
N.

If we use the C2 reaction mechanism with ns = 39 species, the memory needed to store a
matrix is a factor 14.5 smaller than using the standard matrix. For the C1 mechanism, we
save a factor of 7.5.

The derivatives given in (6.22) only account for the Galerkin formulation. One also has
to consider the stabilization terms. At this point we recall the discussion on stabilization
techniques from Section 3.1. The application of SUPG techniques as presented by Hughes
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et al. [HFM86, BH82] to reactive flows would yield additional terms in the species equations.
Among others, due to the source terms, the stabilization includes

sSUPG(u)(Φ) = · · ·
ns−1∑

k=1

(fk(T,w), (v · ∇)ψk) . . .

This expression introduces additional couplings between all species among one another, since
the source terms depend on all species. And unlike the couplings in the Galerkin term (6.22),
these are first order couplings, where we cannot apply lumping. Thus there is no possibility
of reducing the matrix Bww to a diagonal matrix for off diagonals Aij .

The usage of the local projection method adds the stabilization terms

sLPS(u)(Φ) = · · ·
ns−1∑

k=1

γi,K ((v · ∇)πwk, (v · ∇)πψk)K . . .

with only diagonal couplings of the species. No additional couplings between different species
at all appear. Thus, solely the usage of local projection stabilization techniques allows for a
reduction of the storage requirements by a factor of about 10 for the discussed setting.

Parallelization Aspects

Reactive flows do not introduce new difficulties to parallelization; in contrast, the chosen
approach of parallelization is optimally suited for multicomponent problems, where the size
of the matrix (and therefore the main computational effort) is utterly dominant. The bot-
tleneck of the parallelization procedure presented in Chapter 5 is the maintenance and the
distribution of the meshes. Considering a 3D problem with 39 chemical species, the solution
exhibits 44 components. The number of solution components squared enters the matrix size.
Thus, the system matrix for flow with 44 components is more than 120 times larger than
the matrix for Navier-Stokes on the same mesh; therefore the share of effort used in every
iteration for the handling of the meshes is 120 times smaller. The overall complexity estimate
is crudely given by

TP (N,P ) = cmeshN + 120cnum
N

P
.

Recalling the discussion regarding the parallel matrix vector product in Section 5.2.2, we
expect a parallel efficiency of about 0.5 if we cluster about 10 000 nodes in every subdomain.
Due to the large system matrices aligned with reactive flow problems, we get away with just
500 nodes per subdomain while maintaining the same parallel efficiency.

6.4. Numerical Study of a Methane Burner

In this section we use the proposed methods for a detailed analysis of a methane burner.
Figure 1.2 illustrates the assembly of this burner. From beneath, fuel and air are fed into
mixing ducts where a stoichiometric mixture of methane and air is established. This mixture
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6.4. Numerical Study of a Methane Burner

flows through a set of slots (with a uniform width of 2 mm each) between lamellae of different
height (and a width of 1.5 mm each). Above this lamellae the actual flame is settled. The
lamellae cool down the flow in order to prevent the flame from moving into the burner.
Some cooling pipes are installed into the lamellae to prevent these from getting to hot.
Since the overall size of the burner is quit large with respect to the local size of the slots,
we single out some reference geometry and assume an uniform continuation to all directions.
The right diagram in Figure 1.2 in the introduction shows this “unit”-configuration. On
the lower part of the computational domain, we describe a Dirichlet inflow condition for
mixed fuel and the oxidizer at room temperature. On the lamellae and the cooling pipe a
no-slip condition for the velocity is prescribed. The temperature is enforced by a Dirichlet
condition to values obtained by measurements, i.e., a profile from 372 to 490 Kelvin on the
lamellae and 323 Kelvin on the cooling pipe. On the top, we have the usual “do-nothing”
outflow condition together with homogeneous Neumann conditions for the temperature and
the chemical species. All calculations are performed with both chemical reaction mechanisms
involving 15 species and 84 elementary reactions and 39 species and 304 elementary reactions,
respectively. These reaction systems are given in Appendix B.

A comparable burner, but with only two different lamellae sizes, was studied by Parmentier
et al. [PBRW03]. The authors had the possibility to compare 1d and 2d simulations of the
burner with experiments. Since no three dimensional simulations where possible, the cooling
had to be neglected for the known reasons.

In this work, we won’t carry out any parameter studies. Furthermore, no discussion from a
chemical view point will follow the results. Instead, we regard the simulation as a feasibility
test for complex reactive flow problems in three dimensions and we will give guidelines for the
treatment and numerical solution of laminar combustion problems with detailed chemistry.

In a first approach, we further reduce the geometry and use a two dimensional simplification
which will later be used as a starting guess for the simulations with the full geometry. (see
Figure 6.1). Besides the cooling pipes, all the main ingredients of the burner are represented
by this setting. Up to now, this was the usual approach since 3d simulations with detailed
chemistry where not possible. The investigations in this chapter should give more hints
on the reliability of 2d simplifications. In both settings, we are interested in some output
functionals of the solution. For example we measure the mass fraction of formaldehyde CH2O
along a line stretched across the whole z-axis which could be experimentally measured with
laser spectroscopic methods. Considering the two dimensional case, this functional simplifies
to the evaluation of the mass fraction in a single point:

j2D(u) = wCH2O(x0, y0),

j3D(u) =
1

|J3D|

∫

J3D

wCH2O(x0, y0, s) ds.

This functional is especially chosen to exhibit the three dimensional features of the problem.
Along the evaluation line we expect a changing mass fraction profile in z-direction.

For both settings, in two and three dimensions, we will start the simulation with the smaller
C1 mechanism. The corresponding solution will then be used as a starting guess for the
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Figure 6.1.: 2D simplification of the methane burner.

more complex C2 mechanism.

6.4.1. 2D Simplification

A cut-out of the 2d-geometry is given in Figure 6.1. The lamellae are considered to be of
infinite length in the direction of the z-axis. The actual computational domain is indicated
by the box. We label the lower part of the boundary with Γin, the boundary of the lamellae
with Γwall, outflow boundary with Γout and the remaining parts on the left and the right
side with Γsym. The boundary conditions are given by

v = (0, 0.28), T = 288, wCH4 = 0.0552, wO2 = 0.22 on Γin

v = 0, T = f(x),
∂wk
∂n

= 0 on Γwall

∂v

∂n
+ pn = 0,

∂wk
∂n

= 0,
∂T

∂n
= 0 on Γout

vx = 0,
∂wk
∂n

= 0,
∂T

∂n
= 0 on Γsym,

where f(x) describes a linear temperature profile on the lamellae increasing from the bottom
to the top, obtained by measurements and reaching from 372 to 402 Kelvin on the longest
lamella, from 407 to 477 Kelvin on the middle and from 424 to 490 Kelvin on the short
lamella.

As quantity of interest we look at the mass fraction of formaldehyde in one specific point
(see Figure 6.1). The adaptivity of the meshes is controlled by this functional. We won‘t be
able to give the usual plots on the convergency using the dual weighted error estimator since
throughout the adaption process the homotopy parameters are adjusted and in addition
there is no reference solution at all.
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6.4. Numerical Study of a Methane Burner

Figure 6.2.: Components of the 2D methane simulation obtained with the C1 mechanism B.
From left to right: velocity in main flow direction, temperature, mass fraction
of formaldehyde CH2O and fuel CH4.

Figure 6.2 gives plots of some components of the numerical solution (C1 mechanism). The
specific evaluation point for the point functional is chosen to lie directly within this flame
front – more precisely in the region of high formaldehyde mass fraction, somewhere between
the two longest lamellae.

For completeness we give two components of the adjoint solution (C1 mechanism) in Figure
6.3. In both figures the evaluation point can spotted. The lower picture is the component
belonging to the equation of formaldehyde. The upper picture shows the temperature com-
ponent of the adjoint solution. This figure illustrates the bigger influence of the middle slot
to the functional value.

Figure 6.4 shows two adaptively refined meshes. The cells are finest near the evaluation
point and the edges of the lamellae.

With the solution computed up to now we start the simulation using the C2 mechanism. On
a mesh of moderate size we get initial concentrations for the additional species (we have 24
new chemical species) by a zero dimensional time stepping in every node of the mesh. With
very small time steps (∆t = 10−7) we perform about 500 steps separately in every node.
This approximation is usable as a starting guess for a time stepping of the coupled problem.
Again we have to use some homotopy parameters H > 1 for the beginning.

A comparison between the two different reaction mechanisms is given in the next section
together with the three dimensional results. Details on the solution of the problems and the
computational effort will also be supplemented later on.
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Figure 6.3.: The adjoint solution of the two dimensional methane burner. The upper fig-
ure shows the dual solution of the temperature equation, the lower one of the
formaldehyde equation. The C1 mechanism (Appendix B) was used.
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6.4. Numerical Study of a Methane Burner

Figure 6.4.: Meshes from the 2D simulation. The left mesh is a section of the computational
domain extended across the whole x-axis. The mesh on the right is a closeup
from the area of the functional evaluation.
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6.4.2. Numerical 3D Results

This section covers the full geometry of the burner. Particularly, we are interested in the
influence of the cooling devices on the development of the flame-front. Again we have to face

Figure 6.5.: Iso surfaces of the mass fraction of hydrogen H .

the whole variety of difficulties:
the huge size of the problem, very
stiff linear systems, nonlinearities
and tiny but important details of
the solution which are not repre-
sentable on coarse meshes. As de-
scribed in Section 6.3.2 the differ-
ent solution approaches are all uti-
lized hand in hand.

Prior to performing quantitative
studies, we can discuss the main
features of the solution with help
of Figure 6.5. Here, iso surfaces
of the hydrogen mass fraction are
displayed. Settled atop the lamel-
lae a very sharp flame front is es-
tablished. Within this flame front
the three dimensional influence is
clearly visible. Atop the cooling
pipes in the middle of the compu-
tational domain, the mass fraction
of hydrogen is far less.

For a more detailed analysis of the
burner we measure the mass frac-
tion of some species and of the ve-
locity field along a line through
the computational domain. This
could be experimentally measured
with laser spectroscopic methods.
As quantity of interest we identify
the mass fraction of formaldehyde

and of HO−
2 radicals as well as the temperature and the velocity field. The measurement line

is situated within the flame front. In addition to exploring the values along the functional
evaluation line through the domain, we can also compare the three dimensional simulation
with the two dimensional simplification discussed in the previous section. Finally we compare
the results for the two different reaction mechanisms.

The three dimensional computations using the C1 are initiated with the corresponding steady
solution of the two dimensional simplification. The values are continued along the z-axis. No
special modifications are applied in the area of the cooling pipes, only the correct boundary
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cells dof’s time (sec) mem (MB)
15 872 364 572 1463 530
40 042 920 930 3423 1 383
51 415 1 160 386 4144 1 742

Table 6.1.: Initial time stepping for three dimensional solution using the C1 mechanism.
Size of time steps 5 · 10−5.

values are filled. With a mixture of time stepping, mesh refinement and adjustment of
the homotopy parameters, the three dimensional continuation of the simplified solution is
carried over to the solution of the full geometry. Since the meshes are relatively small, these
first steps are feasible on a workstation. In Table 6.1 we gather some notes on these first
simulations. The values are obtained on a single processor Opteron workstation with 1.6
GHz. This calculation would not have been possible on a single processor machine without
having the special matrix structure described in Section 6.3.4. For instance the calculation on
the mesh with 51 415 cells would have required more than 15 GB of memory. The problems
on refined meshes are solved on the Linux cluster Helics [Hel].

A good visualization of the used finite element meshes is very difficult. Therefore, we refer to
the two dimensional simplifications to get a guess of the adaptive scheme. The dual weights
lead to mesh refinement in the region of the functional evaluation as well as all parts which
are highly sensitive for this functional. This to say, we have a finer mesh between the middle
lamellae where the functional’s domain is settled. Next, the edges of the lamellae entering
into the domain are resolved, again basically near the functional evaluation. The region
around the cooling device does not need a fine mesh, since the boundary is approximated
with a biquadratic transformation (see Section 2.3 on boundary approximations for details).
Thus we do not have any singularities in this region and due to the small temperature
gradients and no chemical reactions at all in this areas, the residual is rather small.

As for the two dimensional simplification we initiate the simulation with the C2 mechanism
by zero dimensional time stepping on a mesh of moderate size. For the computation of
the actual solution, we repeat the same procedure as for the C1 mechanism and the two
dimensional case (see Section 6.3.2).

In Table 6.2 we list key values belonging to the solution process for different settings. The
problem is too large and difficult to give detailed studies on the performance and efficiency
of the solver. Instead we list values for time steps on different mesh levels throughout the
calculation. All calculations belonging to the C1 mechanism where performed on a the
Athlon XP cluster Helics [Hel]. A different cluster with Opteron nodes was used for the C2
mechanism. This second cluster consists of 20 nodes, each with 2 processors and 8 GB of
memory. This cluster is slightly faster than Helics if the same number of processors is used.
However, the nodes are connected by standard Gigabit instead of the high speed Myrinet
network with much shorter latencies on Helics.

For judging the parallel efficiency, we use the parallel efficiency index defined in Section 5.5.
Compared to the Navier-Stokes benchmark from Section 5.5 the values listed in Table 6.2 are
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cells dof’s time (sec) #CPU memory pei homo mechanism
26 008 574 408 975 32 2100 MB 5.43 3.0 C1
65 880 1 415 842 293 80 4 500 MB 1.66 2.8

185 020 3 785 509 1930 33 12 100 MB 1.68 2.5
558 694 11 353 332 1350 105 41 600 MB 1.24 1.0
15 872 825 084 1 772 3 1 132 MB 0.64 3.0 C2
29 648 1 505 946 1583 5 2 286 MB 0.53 8.0
60 784 3 136 248 2248 10 5 379 MB 0.71 5.0

197 816 9 863 082 6096 10 17 328 MB 0.61 1.5
291 102 14 299 478 4681 18 25 858 MB 0.59 1.0
291 102 14 299 478 2572 37 29 152 MB 0.66 1.0

Table 6.2.: Calculations for the C1 and the C2 mechanism done on two Linux clusters. All
simulations using the C1 mechanism are done on an AMD Athlon cluster, the
C2 mechanism is computed on an Opteron cluster, slightly faster. On different
meshes the number of cells, the number of degrees of freedom, the time necessary
to solve one time step, the number of CPU’s, the memory usage and the parallel
efficiency index (see (5.24) in Section 5.5) is given. Further the used homotopy
parameter is indicated.

in the same range, even though the numerical effort is linked to the number of matrix entries
and not to the number of unknowns. Thus, the values indicate a higher parallel efficiency,
which validates the discussion in Chapter 5: considering reactive flows the deal of local work
is much larger compared to communication effort than for the Navier-Stokes equations.

As discussed in Section 6.3.2, mesh adaption, time stepping and reduction of the homotopy
parameter are interwoven. With lower homotopy parameter, the Newton convergency is
reduced, therefore the parallel efficiency index is slightly growing. The size of the time steps
varies between 10−4 and 10−6. Some smaller steps are necessary every time the mesh was
changed.

Without the special matrix structure, the 3D computation with the detailed C2 mechanism
on the finest mesh in Table 6.2 would have been beyond the means of even large parallel
computers. Instead of 29 152 MB of memory, more than 500 000 MB would have been
necessary. And also the time for computing the solution would be larger by a factor of more
than 20.

The time values given in Table 6.2 are seconds necessary for one time step. With the available
hardware, the overall running times started from scratch (neglecting the user interaction)
are approximately given by: some hours the initial two dimensional solution with the C1
mechanism. The expansion of this solution to the C2 mechanism as well as the expansion
to a three dimensional solution with the C1 mechanism requires a few days each. Starting
with a three dimensional solution, the enlargement of the C1 mechanism to the detailed C2
calculation takes about seven days.
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6.4. Numerical Study of a Methane Burner

C1 mechanism C2 mechanism
2d 3d 2d 3d

velocity 3.39 m/s 2.61 m/s 3.51 m/s 3.31 m/s
temperature 2156 K 2039 K 2099 K 2036 K
CH2O 7.1e−3 5.2e−3 4.3e−3 3.49e−3

HO2 2.3e−4 6.2e−4 4.9e−4 3.85e−4

Table 6.3.: Maximal values for the velocity, the temperature as well as the mass fraction of
formaldehyde and HO2 obtained in the 2d and 3d simulation for both reaction
mechanisms.

In Figure 6.6 we show the iso-surfaces for the velocity in the main flow direction, the tem-
perature field and the mass fraction of formaldehyde and of CH3CO for the C2 mechanism.
The corresponding plots for the detailed C1 mechanism are not distinguishable by looking
at the figures. The last species is not present in the C1 mechanism.

In Table 6.3 we gather the maximal values of the temperature, the velocity in main flow
direction, the concentration of formaldehyde and of HO2 for all four configurations. The
lower value of the formaldehyde concentration in the case of the C2 mechanism was already
observed in [BR05b] for a two dimensional study of a comparable flame with both mecha-
nisms. However, as already mentioned, these results will not be discussed from a chemical
point of view. The necessity of three dimensional simulations is evident and our results
demonstrate the feasibility of such computations.

Finally, in Figure 6.7 plots of the behavior of the functional along the z-axis are given
with comparisons to the two dimensional approximation of this functional. All of the four
solution components exhibit a large influence in the z-direction of the domain. As expected,
the velocity is lower above the cooling device, perhaps against intuition, the temperature is
higher. But this can be explained by a shorter distance of the flame front to the lamellae
due to the lower velocity and therefore a different cutting of the evaluation line through the
flame. These plots belong to the C2 mechanism.

Some final remarks

The results of the simulations presented in this chapter call for some final discussion. First of
all, the methane burner was taken as a feasibility test using a “real-life” configuration. Using
the methods described in this work, a fully coupled simulation using detailed chemistry in a
complex three dimensional domain is possible within “some few days”. Without the usage of
the robust finite element discretization on adaptively refined meshes described in Chapter 3,
the parallel multigrid solver of Chapter 5 and the special matrix structures described in this
chapter, a coupled solution of the regarded burner would not have been possible. But for all
that, the solution of the problems is still challenging with huge memory effort and nonlinear
equations, very difficult so solve.

105



6. Reactive Flows

The aim of this work was the development of numerical methods for the solution of large
coupled systems of Pde’s. This specific methane burner is only contemplated as a test-case
of an application at the limit of possibility. From the chemical point of view there is always
an interest in the simulation of combustion processes valid for a large range of species. Thus
every extension of the reaction mechanism is of use for the prognosis of flame properties e.g.
for the prediction of pollutants. However, the analysis of the detailed combustion process
in a three dimensional burner is regarded as a feasibility test, thus, no discussion on the
chemical aspect is given.
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Figure 6.6.: Components of the 3D methane simulation with the C2 mechanism. From top
left to the bottom right: velocity in main flow direction, temperature field, mass
fraction of formaldehyde CH2O and of CH3CO radicals.
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evaluation point. The dashed line is the corresponding value obtained in the
2D simulation.
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A. Modeling of Chemical Reactions

Elementary chemical reactions usually involve less than three reactants and three products,
e.g. the oxidation of hydrogen atoms:

H +O2 → OH +O, (A.1)

a reaction with two reactants and two product. Very often a third species is not affected by
the reaction and only gives kinetic energy to initiate the reaction, e.g.. We write reactions
of this type (A.1) as

∑

k∈S

νr,kχk
kr−→
∑

k∈S

ν̃r,kχk, r ∈ R = {1, . . . ,m},

where χk is the chemical species and νr,k, ν̃r,k the stoichiometric coefficients of the reaction
r and kr the reaction rate. For large reaction mechanisms, the matrices ν and ν̃ describing
all reactions are sparse. Typical sizes are from 9 species with 19 reactions for methane
combustion up to ≥ 140 species with more than 2400 reactions for acethylen combustion.

Due to mass conservation there holds
∑

k∈S

mk(ν̃r,k − νr,k) = 0, ∀r ∈ R. (A.2)

The production rate ω̇k for species k in mole fractions is obtained by adding all reactions
considered:

ω̇k(T,w) =

nr∑

r=1



(νrk − ν̃rk)kr(T )

ns∏

j=1

c
νrj

j (w)



 ,

where cj is the concentration of species j, given by cj = M−1
j ρwj. The chemical source terms

for the species equations in mass fractions have the form

fk(T,w) = Mk · ω̇k(T,w).

For (A.2) we conclude, that the sum over all ns source terms vanishes,

ns∑

k=1

fk = 0. (A.3)

The dependence of the reaction rate on the temperature is given by an Arrhenius law

kr(T ) = ArT
βr exp

{−Ear
RT

}
.
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The law itself is empirically validated, while the constants Ar, βr and Ear are determined by
experiments. For the methane combustion analyzed in Chapter 6, these constants are given
in Appendix B.

The source term fT in the temperature equation has the form

fT (T,w) = −
ns∑

k=1

hk(T )fk(T,w),

where the enthalpy hk of a species is given by

hk(T ) = hk,T 0 +

T∫

T 0

cp,k(T
′)dT ′,

with an enthalpy hi,T 0 for a reference temperature T 0. The partial heat capacity of species
k is represented by cp,i.

Building the sum over the reaction equations (6.15) and using (A.3) gives a trivial equation.
The system degenerates and thus one species is dropped and replaced by

wns = 1 −
ns−1∑

k=1

wk.

Backward Reaction

For elementary reactions r ∈ R each reaction has its counterpart, the backward reaction
rb ∈ R, with reaction rate kbr. In order to avoid too many indices, from now on we focus on
one specific reaction r, omit this index and introduce

δj = ν̃r,j − νr,j, ∀j ∈ S.

The so-called equilibrium constant

ke =
k

kb
(A.4)

depends on {δj}, {mj}, T and p. Since δj depends on the reaction r, each reaction has its
own equilibrium constant. These constants are taken from tables and the backward reaction
in modeled via this constant and the forward reaction.

Transport Fluxes

The diffusion in the simplified species equation (6.15) consists only of the mass diffusion.
While other parts are neglected for this work, the mass diffusion fluxes are modeled by Fick’s
law of diffusion [Fic55]:

Fmass
k = −ρD∗

k

mk

m
∇xk,
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with the species mole fractions xk. The diffusion coefficients D∗
k are defined by

D∗
k =

1 − yk∑
l 6=k

xl

Dbin
kl

.
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B. Reaction Scheme for Methane

Combustion

In Table B.1 the C1-reaction mechanism for the methane combustion is given, see Smooke
et al. [SMK89]. For each reaction we list the Arrhenius parameters of the forward reaction.
Tables B.2 and B.3 give the details for the more complex C2 mechanism.

Table B.1.: C1 Reaction mechanism used for the methane/air reaction including 15 species
and 42 reversible reactions. Collision efficiencies: M = 1, M ′(H2O,H2) =
(21, 3.3), M ′′(H2O,H2) = (6, 3), M ′′′(H2O) = 20.

Reaction Ar βr Ear

CH4+M = CH3+H+M 6.30 × 1014 0 435.14

CH4+O2 = CH3+HO2 7.90 × 1013 0 234.30

CH4+H = CH3+H2 2.20 × 1004 3 36.61

CH2O+O = HCO+OH 1.81 × 1013 0 12.90

HCO+OH = CO+H2O 5.00 × 1012 0 0

HCO+M = CO+H+M 7.14 × 1014 0 70.29

HCO+H = CO+H2 4.00 × 1013 0 0

HCO+O = OH+CO 1.00 × 1013 0 0

HCO+O2 = CO+HO2 3.00 × 1012 0 0

CO+O+M = CO2+M 7.10 × 1013 0 −19.00

CO+O2 = CO2+O 1.60 × 1013 0 171.54

CH3+O2 = CH3O+O 7.00 × 1012 0 107.33

CH3O+H = CH2O+H2 2.00 × 1013 0 0

CH3O+O = CH2O+OH 1.00 × 1013 0 0

N+O2=NO+O 6.4 × 1009 1 26.1

H+O2 = OH+O 2.00 × 1014 0 70.29

O+H2 = OH+H 1.80 × 1010 1 36.93

H+HO2 = H2+O2 2.50 × 1013 0 2.93

OH+HO2 = H2O+O2 5.00 × 1013 0 4.18

H+HO2 = OH+OH 2.50 × 1014 0 7.95

O+HO2 = O2+OH 4.80 × 1013 0 4.18

CH3+O = CH2O+H 6.80 × 1013 0 0

Reaktion Ar βr Ear

CH3O+O2 = CH2O+HO2 6.30 × 1010 0 10.88

CH3+O2 = CH2O+OH 5.20 × 1013 0 144.66

CH3+OH = CH2O+H2 7.50 × 1012 0 0

HO2+CO = CO2+OH 5.80 × 1013 0 95.96

H2+O2 = OH+OH 1.70 × 1013 0 199.91

OH+H2 = H2O+H 1.17 × 1009 1.3 15.17

H+O2+M′ = HO2+M′ 2.30 × 1018
−0.8 0

H+O2+O2 = HO2+O2 6.70 × 1019
−1.42 0

H+O2+N2 = HO2+N2 6.70 × 1019
−1.42 0

OH+OH = H2O+O 6.00 × 1008 1.3 0

H2+M′′ = H+H+M′′ 6.99 × 1018
−1 436.08

O2+M = O+O+M 6.91 × 1018
−1 496.41

H+OH+M′′′ = H2O+M′′′ 2.10 × 1022
−2 0

CH3O+M = CH2O+H+M 2.40 × 1013 0 120.55

CH3O+OH = CH2O+H2O 1.00 × 1013 0 0

CH4+O = CH3+OH 1.60 × 1006 2.36 30.96

CH4+OH = CH3+4H2O 1.60 × 1006 2.1 10.29

CH2O+OH = HCO+H2O 7.53 × 1012 0 0.70

CH2O+H = HCO+H2 3.31 × 1014 0 43.93

CH2O+M = HCO+H+M 3.31 × 1016 0 338.90

CO+OH = CO2+H 1.51 × 1007 1.3 −3.17

N+NO=N2+O 3.27 × 1012 0.3 0
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Table B.2.: First part of the C2 mechanism of Warnatz, see [WMD96], for methane/air combustion includes 39 chemi-
cal species and 151 reversible reactions. Collision efficiencies: M = 1, M ′(O2,H2,H2O,CO,CO2, CH4,N2) =
(0.4, 1, 6.5, 0.75, 1.5, 3, 0.4).

Reaction Ar βr Ear

O2 + H = OH + O 2.00e14 0 70.3
H2 + O = OH + H 5.06e4 2.67 26.3
H2 + OH = H2O + H 1.00e8 1.60 13.8
OH + OH = H2O + O 1.50e9 1.14 0.42
H + H + M′ = H2 + M′ 1.80e18 −1.0 0
O + O + M′ = O2 + M′ 2.90e17 −1.0 0
H + OH + M′ = H2O + M′ 2.20e22 −2.0 0
H + O2 + M′ = HO2 + M′ 2.30e18 −0.8 0
HO2 + H = OH + OH 1.50e14 0 4.2
HO2 + H = H2 + O2 2.50e13 0 2.9
HO2 + H = H2O + O 3.00e13 0 7.2
HO2 + O = OH + O2 1.80e13 0 −1.7
HO2 + OH = H2O + O2 6.00e13 0 0
HO2 + HO2 = H2O2 + O2 2.50e11 0 −5.2
OH + OH + M′ = H2O2 + M′ 3.25e22 −2.0 0
H2O2 + H = H2 + HO2 1.70e12 0 15.7
H2O2 + H = H2O + OH 1.00e13 0 15.0
H2O2 + O = OH + HO2 2.803e13 0 26.8
H2O2 + OH = H2O + HO2 5.40e12 0 4.2
CO + OH = CO2 + H 6.00e06 1.5 −3.1
CO + HO2 = CO2 + OH 1.50e14 0 98.7
CO + O + M′ = CO2 + M′ 7.10e13 0 −19.0
CO + O2 = CO2 + O 2.50e12 0 200.0
CH + O = CO + H 4.00e13 0 0
CH + O2 = CHO + O 3.30e13 0 0
CH + CO2 = CHO + CO 3.40e12 0 2.9
CH + H2O = 3CH2 + OH 5.70e12 0 −3.2
CHO + M′ = CO + H + M′ 7.10e14 0 70.3
CHO + H = CO + H2 9.00e13 0 0
CHO + O = CO + OH 3.00e13 0 0
CHO + O = CO2 + H 3.00e13 0 0
CHO + OH = CO + H2O 1.00e14 0 0
CHO + O2 = CO + HO2 3.00e12 0 0
CHO + CHO = CH2O + CO 3.00e13 0 0
3CH2 + H = CH +H2 6.00e12 0 −7.5
3CH2 + O → CO + H + H 8.40e12 0 0
3CH2 + 3CH2 = C2H2 + H2 1.20e13 0 3.4
3CH2 + 3CH2 = C2H2 + H + H 1.10e14 0 3.4
3CH2 + CH3 = C2H4 + H 4.20e13 0 0
3CH2 + O2 = CO + OH + H 1.30e13 0 0
3CH2 + O2 = CO + OH + H 1.30e13 0 6.2
3CH2 + O2 = CO2 + H2 1.20e13 0 6.2
1CH2 + M′ = 3CH2 + M′ 1.20e13 0 0
1CH2 + O2 = CO + OH + H 3.10e13 0 0
1CH2 + H2 = CH3 + H 7.20e13 0 0
CH2O + M′ = CHO + H + M′ 5.00e16 0 320.0
CH2O + H = CHO + H2 2.30e10 1.05 13.7

Reaktion Ar βr Ear

CH2O + O = CHO + OH 4.15e11 0.57 11.6
CH2O + OH = CHO + H2O 3.40e09 1.20 −1.9
CH2O + HO2 = CHO + H2O2 3.00e12 0 54.7
CH2O + CH3 = CHO + CH4 1.00e11 0 25.5
CH2O + O2 = CHO + HO2 6.00e13 0 170.7
CH3 + M′ = 3CH2 + H + M′ 1.00e16 0 379.0
CH3 + O = CH2O + H 8.43e13 0 0
CH3 + H = CH4 1.93e36 −7.0 38.0
CH3 + OH → CH3O + H 2.26e14 0 64.8
CH3O + H → CH3 + OH 4.75e16 −0.13 88.0
CH3 + O2 → CH2O + OH 3.30e11 0 37.4
CH3 + HO2 = CH3O + OH 1.80e13 0 0
CH3 + HO2 = CH4 + O2 3.60e12 0 0
CH3 + CH3 → C2H4 + H2 1.00e16 0 134.0
CH3 + CH3 = C2H6 1.69e53 −12 81.24
CH3O + M′ = CH2O + H + M′ 5.00e13 0 105.0
CH3O + H = CH2O + H2 1.80e13 0 0
CH3O + O2 = CH2O + HO2 4.00e10 0 8.9
CH2O + CH3O → CH3OH + CHO 6.00e11 0 13.8
CH3OH + CHO → CH2O + CH3O 6.50e9 0 57.2
CH3O + O = O2 + CH3 1.10e13 0 0
CH3O + O = OH + CH2O 1.40e12 0 0
CH2OH + M′ = CH2O + H + M′ 5.00e13 0 105.0
CH2OH + H = CH2O + H2 3.00e13 0 0
CH2OH + O2 = CH2O + HO2 1.00e13 0 30.0
CH3O2 + M′

→ CH3 + O2 + M′ 7.24e16 0 111.1
CH3 + O2 + M′

→ CH3O2 + M′ 1.41e16 0 −4.6
CH3O2 + CH2O → CH3O2H + CHO 1.30e11 0 37.7

CH3O2H + CHO → CH3O2 + CH2O 2.50e10 0 42.3
CH3O2 + CH3 → CH3O + CH3O 3.80e12 0 −5.0
CH3O + CH3O → CH3O2 + CH3 2.00e10 0 0

CH3O2 + HO2 → CH3O2H + O2 4.60e10 0 −10.9
CH3O2H + O2 → CH3O2 + HO2 3.00e12 0 163.3
CH3O2 + CH3O2 → CH2O + CH3OH + O2 1.80e12 0 0
CH2O + CH3OH + O2 → CH3O2 + CH3O2 0 0 0
CH3O2 + CH3O2 → CH3O + CH3O + O2 3.70e12 0 9.2
CH3O + CH3O + O2 → CH3O2 + CH3O2 0 0 0
CH4 + H = H2 + CH3 1.30e4 3.0 33.6
CH4 + O = OH + CH3 6.923e8 1.56 35.5
CH4 + OH = H2O + CH3 1.60e7 1.83 11.6
CH4 + HO2 = H2O2 + CH3 1.10e13 0 103.1
CH4 + CH = C2H4 + H 3.00e13 0 −1.7
CH4 + 3CH2 = CH3 + CH3 1.30e13 0 39.9
CH3OH = CH3 + OH 9.51e29 −4.3 404.1
CH3OH + H = CH2OH + H2 4.00e13 0 25.5
CH3OH + O = CH2OH + OH 1.00e13 0 19.6
CH3OH + OH = CH2OH + H2O 1.00e13 0 7.1
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Table B.3.: Second part of the C2 mechanism of Warnatz, see [WMD96], for methane/air combustion.
Reaktion Ar βr Ear

CH3OH + HO2 → CH2OH + H2O2 6.20e12 0 81.1
CH2OH + H2O2 → HO2 + CH3OH 1.00e7 1.7 47.9
CH3OH + CH3 = CH4 + CH2OH 9.00e12 0 41.1
CH3O + CH3OH → CH2OH + CH3OH 2.00e11 0 29.3
CH2OH + CH3OH → CH3O + CH3OH 2.20e4 1.7 45.4
CH3OH + CH2O → CH3O + CH3O 1.53e12 0 333.2
CH3O + CH3O → CH3OH + CH2O 3.00e13 0 0

CH3O2H = CH3O + OH 4.00e15 0 180.5
OH + CH3O2H = H2O + CH3O2 2.60e12 0 0
C2H + O = CO + CH 1.00e13 0 0
C2H + O2 = HCCO + O 3.00e12 0 0
HCCO + H = 3CH2 + CO 1.50e14 0 0
HCCO + O → CO + CO + H 9.60e13 0 0
HCCO + 3CH2 = C2H3 + CO 3.00e13 0 0
C2H2 + M′ = C2H + H + M′ 3.60e16 0 446.0
C2H2 + O2 = HCCO + OH 2.00e8 1.5 126.0
C2H2 + H = C2H + H2 1.50e14 0 79.6
C2H2 + O = 3CH2 + CO 1.72e4 2.8 2.1
C2H2 + O = HCCO + H 1.72e4 2.8 2.1
C2H2 + OH = H2O + C2H 6.00e13 0 54.2
C2H2 + C2H = C4H2 + H 3.00e13 0 0
CH2CO + M′ = 3CH2 + CO + M′ 1.00e16 0 248.0
CH2CO + H = CH3 + CO 3.60e13 0 14.1
CH2CO + O = CHO + CHO 2.30e12 0 5.7
CH2CO + OH = CH2O + CHO 1.00e13 0 0
C2H3 = C2H2 + H 4.73e40 −8.8 194.50
C2H3 + OH = C2H2 + H2O 5.00e13 0 0
C2H3 + H = C2H2 + H2 1.20e13 0 0
C2H3 + O = C2H2 + OH 1.00e13 0 0
C2H3 + O = CH3 + CO 1.00e13 0 0
C2H3 + O = CHO + 3CH2 1.00e13 0 0
C2H3 + O2 = C2H2 + HO2 5.40e12 0 0
CH3CO = CH3 + CO 2.32e26 −5.0 75.12
CH3CO + H = CH2CO + H2 2.00e13 0 0
CH2CHO + H = CH2CO + H2 2.00e13 0 0
C2H4 + M′ = C2H2 + H2 + M′ 2.50e17 0 319.8
C2H4 + M′ = C2H3 + H + M′ 1.70e18 0 404.0
C2H4 + H = C2H3 + H2 1.70e15 0 62.9
C2H4 + O = CH2CHO + H 5.20e5 2.08 0
C2H4 + O = CHO + CH3 1.21e6 2.08 0
C2H4 + OH = C2H3 + H2O 6.50e13 0 24.9
CH3CHO + M′ = CH3 + CHO + M′ 7.00e15 0 342.8
CH3CHO + H = CH3CO + H2 2.10e9 1.16 10.1
CH3CHO + H = CH2CHO + H2 2.00e9 1.16 10.1
CH3CHO + O = CH3CO + OH 5.00e12 0 7.6
CH3CHO + O = CH2CHO + OH 8.00e11 0 7.6
CH3CHO + O2 = CH3CO + HO2 4.00e13 0 164.3

Reaktion Ar βr Ear

CH3CHO + OH = CH3CO + H2O 2.30e10 0.73 −4.7
CH3CHO + HO2 = CH3CO + H2O2 3.00e12 0 50.0
CH3CHO + 3CH2 = CH3CO + CH3 2.50e12 0 15.9
CH3CHO + CH3 = CH3CO + CH4 2.e − 6 5.64 10.3
C2H5 = C2H4 + H 1.02e43 −9.1 224.15
C2H5 + H = CH3 + CH3 3.00e13 0 0
C2H5 + O = CH3CHO + H 5.00e13 0 0
C2H5 + O = CH2O + CH3 1.00e13 0 0
C2H5 + O2 = C2H4 + HO2 1.10e10 0 −6.3
C2H5 + CH3 = C2H4 + CH4 1.14e12 0 0
C2H5 + C2H5 = C2H4 + C2H6 1.40e12 0 0
C2H5O = CH3CHO + H 2.51e14 0 97.0
C2H5O = CH2O + CH3 1.00e15 0 90.4
C2H5O + O2 = CH3CHO + HO2 5.01e12 0 16.7
C2H5O + OH = CH3CHO + H2O 1.32e12 0 0
C2H5O + H = CH3CHO + H2 1.80e13 0 0
CH3CHOH = CH3CHO + H 1.00e14 0 105.0
CH3CHOH + H = CH3CHO + H2 3.00e13 0 0
CH3CHOH + OH = CH3CHO + H2O 1.51e13 0 0
CH3CHOH + O = CH3CHO + OH 1.20e14 0 0
CH3CHOH + O2 = CH3CHO + HO2 1.20e13 0 0
CH2CH2OH = C2H4 + OH 1.00e14 0 140.0
CH2CH2OH + H = CH3CHO + H2 5.00e13 0 0
C2H6 + H = C2H5 + H2 1.40e9 1.5 31.1
C2H6 + O = C2H5 + OH 1.00e9 1.5 24.4
C2H6 + OH = C2H5 + H2O 7.20e6 2.0 3.6
C2H6 + HO2 = C2H5 + H2O2 1.70e13 0 85.9
C2H6 + O2 = C2H5 + HO2 6.00e13 0 217.0
C2H6 + 3CH2 = C2H5 + CH3 2.20e13 0 36.3
C2H6 + CH3 = C2H5 + CH4 1.5e − 7 6.0 25.4
C2H5OH = CH3 + CH2OH 2.51e16 0 353.0
C2H5OH + OH = CH3CHOH + H2O 5.25e6 2.0 1.9
C2H5OH + OH = C2H5O + H2O 1.15e6 2.0 3.8
C2H5OH + OH = CH2CH2OH + H2O 8.13e6 2.0 2.5
C2H5OH + O = CH3CHOH + OH 7.94e12 0 13.6
C2H5OH + O = C2H5O + OH 4.79e13 0 28.7
C2H5OH + O = CH2CH2OH + OH 1.00e14 0 31.3
C2H5OH + H = CH3CHOH + H2 4.40e12 0 19.1
C2H5OH + H = C2H5 + H2O 5.90e11 0 14.4
C2H5OH + HO2 = CH3CHOH + H2O2 6.30e12 0 81.1
C2H5OH + CH3 = CH3CHOH + CH4 2.04e11 0 36.4
C2H5OH + CH3 = CH2CH2OH + CH4 2.04e11 0 36.4
C2H5OH + CH3 = C2H5O + CH4 7.49e10 0 39.3
C2H5OH + CH3O = CH3CHOH + CH3OH 2.00e11 0 29.3
C2H5OH + CH2O = C2H5O + CH3O 1.53e12 0 333.2
C2H5OH + C2H5O = C2H5OH + CH3CHOH 2.00e11 0 29.3

117



B. Reaction Scheme for Methane Combustion

118



Bibliography

[Alt99] H.W. Alt. Lineare Funktionalanalysis. Springer, Berlin, 1999.

[Amd67] G. Amdahl. Validity of the single processor approach to achieving large-scale
computer capabilities. In AFIPS Conference Proceedings, volume 30, pages 383–
385, 1967.

[Ape99] T. Apel. Anisotropic finite elements: Local estimates and applications. Advances
in Numerical Mathematics. Teubner, Stuttgart, 1999.

[B+99] P. Bastian et al. A parallel software-platform for solving problems of partial
differential equations using unstructured grids and adaptive multigrid methods.
High performance computing in science and engineering. Springer, 1999.

[Bas93] P. Bastian. Parallel adaptive multigrid methods. Technical Report 93–60, Inter-
disziplinäres Zentrum für Wissenschaftliches Rechnen, 1993.

[Bas96] P. Bastian. Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Nu-
merik. B.G. Teubner, Stuttgart, 1996.

[Bas03] P. Bastian. Paralleles Rechnen I. Vorlesungsskriptum, 2003.

[BB+] R. Becker, M. Braack, et al. Gascoigne 3d - a finite element toolbox.
http://gascoigne.uni-hd.de.

[BB00] R. Becker and M. Braack. Multigrid techniques for finite elements on locally re-
fined meshes. Numerical Linear Algebra with Applications (Special Issue), 7:363–
379, 2000.

[BB01] R. Becker and M. Braack. A finite element pressure gradient stabilization for
the stokes equations based on local projections. Calcolo, 38:173–199, 2001.

[BB04] R. Becker and M. Braack. A two-level stabilization scheme for the navier-stokes
equations. In Feistauer et al., editors, Enumath 2003, pages 123–130, Prague,
2004. Springer.

[BBR99] R. Becker, M. Braack, and R. Rannacher. Numerical simulation of laminar
flames at low mach number with adaptive finite elements. Combustion Theory
and Modelling, 3(3):503–534, 1999.

[BE03] M. Braack and A. Ern. A posteriori control of modeling errors and discretization
errors. SIAM J. Multiscale Modeling and Simulation, 1(2):221–238, 2003.

119



Bibliography

[Bec95] R. Becker. An Adaptive Finite Element Method for the Incompressible Navier-
Stokes Equations on Time-dependent Domains. PhD thesis, Universität Heidel-
berg, 1995.

[Bec01] R. Becker. Adaptive Finite Elements for Optimal Control Problems.
Habilitationsschrift, Institut für Angewandte Mathematik, Universität Heidel-
berg, 2001.

[BF91] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer
Series in Computational Mathematics. Springer, New York, 1991.

[BH82] A. Brook and T. Hughes. Streamline upwind/petrov-galerkin formulation for
convection dominated flow with particular emphasis on the incompressible
navier-stokes equations. Comp. Meth. Appl. Mech. and Engng., 32:199–259, 1982.

[BPX90] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Math. Comp., 55:1–22, 1990.

[BR96] R. Becker and R. Rannacher. A feed-back approach to error control in finite
element methods: Basic analysis and examples. East-West J. Numer. Math.,
4(4):237–264, 1996.

[BR01] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. In A. Iserles, editor, Acta Numerica 2001.
Cambridge University Press, 2001.

[BR05a] M. Braack and T. Richter. Solutions of 3d navier-stokes benchmark problems
with adaptive finite elements. Computers & Fluids (submitted), 2005.

[BR05b] M. Braack and T. Richter. Solving multidimensional reactive flow problems
with adaptive finite elements. In R. Rannacher et. al., editor, Reactive Flows,
Diffusion and Transport. Springer, 2005. to appear.

[BR05c] M. Braack and T. Richter. Stabilized finite elements for 3d reactive flows. In-
ternational journal for numerical methods in fluids, 2005. submitted.

[Bra81] A. Brandt. Multigrid solvers on parallel computers. In M. H. Schultz, editor,
Elliptic Problem Solvers, pages 39–83. Academic Press, New York, 1981.

[Bra98] M. Braack. An Adaptive Finite Element Method for Reactive Flow Problems.
Dissertation, Universität Heidelberg, 1998.

[Bra03] D. Braess. Finite Elemente. Theorie, schnelle Löser und Anwendungen in der
Elastizit"atstheorie. Springer, Berlin, 2003.

[BS94] S. Brenner and R.L. Scott. The mathematical theory of finite element methods.
Springer, Berlin Heidelberg New York, 1994.

[BV04] R. Becker and B. Vexler. A posteriori error estimation for finite element
discretization of parameter identification problems. Numerische Mathematik,
96(3):435–459, 2004.

120



Bibliography

[Cia78] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland
Publishing Company, Amsterdam, 1978.

[Cle75] Ph. Clement. Approximation by finite element functions using local regulariza-
tion. Revue Franc. Automat. Inform. Rech. Operat., 9(R-2):77–84, 1975.

[CO84] C.F. Carey and J.T. Oden. Finite Elements, Computational Aspects, Vol III.
Prentice-Hall, New Jersey, 1984.

[CSvS86] C. Cuvelier, A. Segal, and A.A. van Steenhoven. Finite Element Methods and
Navier-Stokes Equations. Mathematics and Its Applications. D. Reidel Publish-
ing Company, Dordrecht, 1986.

[Fic55] A. Fick. Über Diffusion. Annu. Phys., 94:59–86, 1855.

[FM88] P. O. Frederickson and O. A. McBryan. Parallel superconvergent multigrid. In
S. F. McCormick, editor, Multigrid Methods: Theory, Applications, and Super-
computing, volume 110 of Lecture Notes in Pure and Applied Mathematics, pages
195–210. Marcel Dekker, New York, 1988.

[Gal94a] G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes
Equations. Volume I, Linearised Steady Problems, volume 38 of Springer Tracts
in Natural Philosophy. Springer, New York, 1994.

[Gal94b] G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes
Equations. Volume II, Nonlinear Steady Problems, volume 38 of Springer Tracts
in Natural Philosophy. Springer, New York, 1994.

[GGKK03] A. Grama, A. Grupta, G. Karypis, and V. Kumar. Introduction to parallel
Computing, second edition. Pearson Education. Addison-Wesley, 2003.

[GR86] V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes Equa-
tions. Springer, Berlin, 1986.

[Gro78] C.E. Grosch. Poisson solvers on large array computers. In B.L. Buzbee and J.F.
Morrison, editors, LANL Workshop on vector and parallel processors, volume
198, 1978.

[Gue99] J.-L. Guermond. Stabilization of galerkin approximations of transport equations
by subgrid modeling. Modél, Math. Anal. Numér., 33(6):1293–1316, 1999.

[Hac85] W. Hackbusch. Multi-Grid methods and applications. Springer, 1985.

[Hac93] W. Hackbusch. Iterative solution of large sparse systems of equations, volume 95
of Applied Math. Sciences. Springer, 1993.

[Hel] Helics. Heidelberg linux cluster system. http://www.helics.de.

[HFM86] T.J.R. Hughes, L.P. Franca, and M. Malestra. A new finite element formulaion for
computational fluid dynamics. v. circumventing the babuska-brezzi condition: a
stable petrov-galerkin formulation of the stokes problemn accommodating equal-
order interpolation. Comp. Methods Appl. Mech. Engrg., 59:85–99, 1986.

121



Bibliography

[HRT96] J. Heywood, R. Rannacher, and S. Turek. Artificial boundaryies and flux and
pressure conditions for the incompressible navier-stokes equations. Int. J. Numer.
Meth. Fluids, 22:325–352, 1996.

[Joh87] C. Johnson. Numerical Solution of partial differential equations by finite element
method. Cambridge University Press, Cambridge, 1987.

[Joh02] V. John. Higher order finite element methods and multigrid solvers in a bench-
mark problem for the 3d navier-stokes equations. Int. J. Numer. Math. Fluids,
pages 775–798, 2002.

[Kar] G. Karypis. Metis - a family of multilevel partitioning algorithms. http://www-
users.cs.umn.edu/ karypis/metis/index.html.

[Osw01] H. Oswald. Parallele Lösung der instationären Navier-Stokes Gleichungen. PhD
thesis, Universtität Heidelberg, 2001.

[PBRW03] S. Parmentier, M. Braack, U. Riedel, and J. Warnatz. Modeling of combustion
in a lamella burner. Combust. Sci. and Tech., 175:185–206, 2003.

[QV99] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differ-
ential Equations. Clarendon Press, Oxford, 1999.

[Ric01] T. Richter. Funktionalorientierte Gitteroptimierung bei der Finite-Elemente-
Approximation elliptischer Differentialgleichungen. Diploma thesis, Universität
Heidelberg, 2001.

[RR94] Ch. G. Rossmann and H.-G. Roos. Numerik partieller Differentialgleichungen.
B.G. Teubner, Stuttgart, 1994.

[RSN82] F. Riesz and B. Sz.-Nagy. Vorlesungen über Functionalanalysis. VEB Deutscher
Verlag der Wissenschaften, 1982.

[RT92] R. Rannacher and S. Turek. A simple nonconforming quadrilateral stokes ele-
ment. Numer. Meth. Part. Diff. Equ., 8:97–111, 1992.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.

[Sch69] H.A. Schwarz. Über einige Abbildungsaufgaben. J. Reine Angew. Math., 70:105–
120, 1869.

[Sch96] P. Schreiber. Eine nichtkonforme Finite-Elemente-Methods zur Lösung der
inkompressiblen 3-D Navier-Stokes Gleichungen. PhD thesis, Universität Hei-
delberg, 1996.

[SMK89] M. D. Smooke, R. E. Mitchell, and D. E. Keyes. Numerical solution of two-
dimensional axisymmetric laminar diffusion flames. Comb. Sci. and Tech., 67:85–
122, 1989.

[ST96] M. Schäfer and S. Turek. Benchmark computations of laminar flow around a
cylinder. Notes Numer. Fluid Mech., 42:547–566, 1996. Flow Simulations with
High-Performance Computers II. DFG priority research programm results 1993-
1995.

122



Bibliography

[SZ91] R. Scott and D. Zhang. Interpolation of non-smooth functions. Math. Comp.,
13:1311–1328, 1991.

[Ver96] R. Verfürth. A Review of a Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Wiley and Teubner, 1996.

[Wie01] R. Wienands. Extended local fourier analysis for multigrid: Optimal smoothing,
coarse grid correction, and preconditioning. Technical Report 20, GMD Research
Series, St. Augustin, 2001.

[Wil85] F. A. Williams. Combustion Theory. Addison-Wesley Publishing Company,
Redwood City, 1985.

[WMD96] J. Warnatz, U. Maas, and R.W. Dibble. Combustion. Springer, New York, 1996.

[Zei90] E. Zeidler. Nonlinear functional analysis and its applications I-IV. Springer,
Berlin, 1985-1990.

[ZZ87] O.C. Zienkiewicz and J.Z. Zhu. A simple error estimator and adaptive procedure
for practical engineering analysis. Int. J. Numer. Meth. Engrg., 24:337–357, 1987.

123


	Introduction
	Motivation
	3D Navier Stokes Benchmark Configuration
	3D Methane Burner

	Basic notations and finite element spaces
	Variational Formulation
	Finite Element Triangulation
	Finite Element Spaces

	FE discretization for 3D Navier-Stokes
	Galerkin Formulation
	Residual Based Stabilization Techniques
	Local Projection Stabilization
	Stokes Stabilization on Anisotropic Meshes
	Quadratic Adaptive Finite Elements
	Pressure Stabilization
	Convection Stabilization
	Implementational Aspects
	Computational Study
	LPS based on the Q2/ iso  Q2 element


	Error Estimation & Mesh Adaptation
	Dual Weighted Residual Method
	Error Estimation with Q2 Elements
	Mesh Adaption
	Numerical Results
	Adaptive Mesh Refinement


	Parallel Adaptive Finite Elements
	Isoefficiency Analysis
	Parallel Finite Elements Discretization
	Distributing the Data
	Implementation and Parallel Efficiency of the Matrix Vector Product
	Distributed Communication
	Hanging Nodes and Multigrid

	Parallel Multigrid Solver
	Parallel Multigrid Smoother
	Convergence Analysis for the Schwarz Iteration
	Convergence Analysis of the Multigrid Smoother

	Implementational Aspects
	Numerical Study

	Reactive Flows
	Equations
	Simplified Model for Chemically Reacting Flows
	Finite Elements for Reactive Flows
	Stabilization by Local Projections
	Solution Process
	Homotopy Methods
	Advanced Linear Algebra

	Numerical Study of a Methane Burner
	2D Simplification
	Numerical 3D Results


	Modeling of Chemical Reactions
	Reaction Scheme for Methane Combustion

