3 research outputs found

    Hardware security, vulnerabilities, and attacks: a comprehensive taxonomy

    Get PDF
    Information Systems, increasingly present in a world that goes towards complete digitalization, can be seen as complex systems at the base of which is the hardware. When dealing with the security of these systems to stop possible intrusions and malicious uses, the analysis must necessarily include the possible vulnerabilities that can be found at the hardware level, since their exploitation can make all defenses implemented at web or software level ineffective. In this paper, we propose a meaningful and comprehensive taxonomy for the vulnerabilities affecting the hardware and the attacks that exploit them to compromise the system, also giving a definition of Hardware Security, in order to clarify a concept often confused with other domains, even in the literature

    SystemC-AMS thermal modeling for the co-simulation of functional and extra-functional properties

    Get PDF
    Temperature is a critical property of smart systems, due to its impact on reliability and to its inter-dependence with power consumption. Unfortunately, the current design flows evaluate thermal evolution ex-post, on offline power traces. This does not allow to consider temperature as a dimension in the design loop, and it misses all the complex inter-dependencies with design choices and power evolution. In this paper, by adopting the functional language SystemC-AMS, we propose a method to enable thermal/power/functional co-simulation. The system thermal model is built by using state-of-the-art circuit equivalent models, by exploiting the support for electrical linear networks intrinsic of SystemC-AMS. The experimental results will show that the choice of SystemC-AMS is a winning strategy for building a simultaneous simulation of multiple functional and extra-functional properties of a system. The generated code exposes an accuracy comparable to that of the reference thermal simulator HotSpot. Additionally, the initial overhead due to the general purpose nature of SystemC-AMS is compensated by surprisingly high performance of transient simulation, with speedups as high as two orders of magnitude

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above
    corecore