
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SystemC-AMS thermal modeling for the co-simulation of functional and extra-functional properties / Chen, Yukai; Vinco,
Sara; Macii, Enrico; Poncino, Massimo. - In: ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC
SYSTEMS. - ISSN 1084-4309. - ELETTRONICO. - 24:4(2019), pp. 1-26.

Original

SystemC-AMS thermal modeling for the co-simulation of functional and extra-functional properties

Publisher:

Published
DOI:10.1145/3267125

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2716138 since: 2020-02-22T11:57:45Z

ACM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234925271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

39

SystemC-AMS Thermal Modeling for the Co-simulation of
Functional and Extra-Functional Properties

YUKAI CHEN, Politecnico di Torino, Italy
SARA VINCO, Politecnico di Torino, Italy
ENRICO MACII, Politecnico di Torino, Italy
MASSIMO PONCINO, Politecnico di Torino, Italy

Temperature is a critical property of smart systems, due to its impact on reliability and to its inter-dependence
with power consumption. Unfortunately, the current design flows evaluate thermal evolution ex-post, on
offline power traces. This does not allow to consider temperature as a dimension in the design loop, and
it misses all the complex inter-dependencies with design choices and power evolution. In this paper, by
adopting the functional language SystemC-AMS, we propose a method to enable thermal/power/functional
co-simulation. The system thermal model is built by using state-of-the-art circuit equivalent models, by
exploiting the support for electrical linear networks intrinsic of SystemC-AMS. The experimental results
will show that the choice of SystemC-AMS is a winning strategy for building a simultaneous simulation of
multiple functional and extra-functional properties of a system. The generated code exposes an accuracy
comparable to that of reference thermal simulator HotSpot. Additionally, the initial overhead due to the general
purpose nature of SystemC-AMS is compensated by surprisingly high performance of transient simulation,
with speedups as high as two orders of magnitude. The application of the proposed methodology to a set
of benchmarks, used for the IEEE PATMOS design contest, will additionally prove the effectiveness of the
SystemC-AMS thermal simulator.

CCS Concepts: • Computing methodologies→Modeling and simulation; • Hardware→ Temperature
simulation and estimation;

Additional Key Words and Phrases: Thermal analysis; Thermal estimation; Simulation; SystemC-AMS

ACM Reference Format:
Yukai Chen, Sara Vinco, Enrico Macii, and Massimo Poncino. 0. SystemC-AMS Thermal Modeling for the
Co-simulation of Functional and Extra-Functional Properties. ACM Trans. Des. Autom. Electron. Syst. 0, 0,
Article 39 (0), 27 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Assessment of extra-functional properties of an electronic system such as power consumption,
reliability and thermal profile, is crucial to ensure correct operations; they should be considered
at all design stages and concurrently, due to their complex interactions. While the modeling and
simulation of such properties in isolation is a widely studied problem, the management of their
inter-dependence and interaction at run time is only partially solved. In this scenario, temperature

Authors’ addresses: Yukai Chen, Politecnico di Torino, Department of Control and Computer Engineering, Turin, Italy; Sara
Vinco, Politecnico di Torino, Department of Control and Computer Engineering, Turin, Italy; Enrico Macii, Politecnico di
Torino, Department of Control and Computer Engineering, Turin, Italy; Massimo Poncino, Politecnico di Torino, Department
of Control and Computer Engineering, Turin, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 0 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
1084-4309/0/0-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 Y. Chen et al.

is one of the most critical properties, due to its strong correlation with functional operations
(e.g., the workload) and power consumption. Temperature, in turn, impacts static (leakage) power
consumption, and affects system reliability.
In the literature, a variety of solutions have been proposed for estimating temperature (both

transient and steady-state), together with its mutual interaction with the other properties. The
most straightforward solution is to evaluate each property with specific tools, and to use the
output traces to integrate the various tools. The main problem of this solution is that the tools are
executed in a predefined order, i.e., the thermal simulators are executed on traces produced offline
by functional and power simulation tools [9, 30]. This prevents the possibility of evaluating the
mutual influence of temperature and power. This limitation is usually overcome by the construction
of co-simulation frameworks, that integrate dedicated simulators through complex synchronization
and data exchange mechanisms [1, 3, 10]. However, co-simulation introduces a significant overhead,
together with possible errors or timingmisalignments due to different time scales or different models
of computation (MoCs). Additionally, despite the simultaneous execution, co-simulation tends
anyway to enforce a sequential estimation of the properties: functional and power simulation are
used to generate the inputs for the thermal simulator, but there is no feedback on the corresponding
temperature evolution. This implies that it is not possible to model any dependence on temperature
(e.g., its impact on dynamic power consumption), and that thus more complex interactions between
functionality, power and temperature can not be reproduced [1, 3, 17, 37].

Recently, Vinco et al. proved that this issue can be overcome by modeling both functionality and
extra-functional properties with a single standard functional hardware description language [32],
namely SystemC-AMS [12]. The reconciliation to a single simulation infrastructure and language
allows indeed to simulate different aspects of a system in a single simulator instance, i.e., a single
run, and to reproduce at run time the mutual interactions while keeping the overhead low. However,
the authors described the syntactic and semantic rules needed to enable such homogeneous simulation,
with no detailed instance of the proposed principles. This work presents how thermal simulation can be
implemented in such a SystemC-AMS framework.
The goal of this work is to define a methodology and an automatic tool that produce in output

a SystemC-AMS implementation of the equivalent RC network, starting from input configuration
information, i.e., the desired granularity of thermal estimation, the floorplan and a file modeling
technology information. The RC network is constructed by using HotSpot as reference model [27].
The adoption of the SystemC-AMS language will allow both the straightforward implementation and
simulation of the RC network (by exploiting the electrical linear network constructs and the underlying
AMS solver) and to run models belonging to different domains (e.g., power and temperature) in a single
simulation run, thus overcoming the aforementioned limitations of the state-of-the-art tools.

The following are the specific contributions of this work:

• The integration of the SystemC-AMS thermal simulator in the framework proposed in [32],
thus allowing the simultaneous simulation of power, reliability and functionality, and of their
inter-dependencies with temperature evolution;
• Amethodology to build the electrical circuit equivalent thermal models in SystemC-AMS. This
paper builds upon [6], which implemented the RC network in SystemC-AMS limited to the
“block” mode (i.e., one temperature value per functional component). The novel contribution
lies in the extension to different granularity of the thermal map (i.e., grid level mode);
• A tool that automates the methodology by generating the SystemC-AMS RC network;
• An extensive experimental analysis, including:
– The analysis of performance and accuracy of the SystemC-AMS thermal model on synthetic
case studies, to prove the effectiveness of the generated code;

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:3

– A characterization of the factors determining the performance of our method with respect
to HotSpot, in particular those relative to the utilization factor of the floorplan and of the
distribution of the values of power consumption;

– The application to a benchmark suite used for the IEEE PATMOS design contest [13], to
validate the proposed approach in a typical application scenario;

• The application of the proposed thermal model to the framework proposed in [32], to show a
a simulation scenario including a dynamic mutual dependency between functionality, power
models and thermal simulation.

Note that the goal of this paper is not to build yet another thermal simulator, but rather to allow the
integration with power, functionality and reliability tools. Thus, we do not target better performance
or accuracy w.r.t. HotSpot. Nonetheless, experimental results will confirm the effectiveness of
SystemC-AMS at implementing a thermal simulator, in terms of both accuracy (the maximum error
over all experiments is of 1%) and simulation time (with a maximum speedup between 15x and 60x
for grid-level simulation, and of 280x for block level simulation). Additionally, the construction of
an example of mutual dependency proves that the choice of SystemC-AMS is a winning strategy to
gather a complete view of system evolution.
The paper is organized as follows. Section 2 provides the necessary background, and Section

3 provides the motivation for this work. Section 4 presents how equivalent circuit models can be
modeled in SystemC-AMS. Sections 5 and 6 provide the experimental setup and results, to analyze a
set of simulation results corresponding to different simulation modes and benchmark sets, and prove
the effectiveness of the proposed approach both in terms of accuracy and speedup. Finally, Section 7
provides some concluding remarks.

2 BACKGROUND AND RELATEDWORK
2.1 Thermal Modeling
When referring to silicon chips, temperature estimation amounts to solving the heat diffusion
equation in 3D [22, 39]:

∇2T +
q̇

k
=

1
α

∂T

∂t
(1)

where T is the temperature, q is the heat flux (inW /m2), k is thermal conductivity of the material
(inW /(mK)), and α = k

ρc is the thermal diffusivity, corresponding to the ratio between the thermal
conductivity and volumetric heat capacity (density ρ times specific heat capacity c). ∇2T is the
Laplacian of T and corresponds in 3D to ∂T 2

∂x +
∂T 2

∂y +
∂T 2

∂z .

Equation 1 can be solved using numerical methods such as Finite Difference Method (FDM),
Finite Element Method (FEM), Model Order Reduction (MOR) or methods based on the Green function
[15, 24, 35, 39]. Both FDM and FEMmethods discretize the entire chip according to some granularity
and construct a system of linear equations, thus handling complicated material structures with
different thermal properties in different layers. Methods based on Green function, conversely,
provide a semi-analytical approach that analyzes only the layers of interest. This reduces the
problem size compared to FDM or FEM, but results in less accurate estimates due to the simplified
modeling of the thermal problem.
Thermal analysis methods are further divided into two major classes, depending on the time

dimension [39]. Steady state analysis determines the temperature distribution based on a power
density distribution that does not change over time, by assuming either typical power values (i.e.,
average power) or worst case scenarios (i.e., maximum power consumption). This kind of analysis
is thus useful to make preliminary design exploration, e.g., to guide floorplanning or to make quick
leakage estimations. On the contrary, transient analysis focuses on the temporal response to time

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:4 Y. Chen et al.

varying conditions, that is especially crucial to evaluate reliability effects. Accumulated heat can
indeed determine peak temperatures much higher than the average values. Additionally, thermal
stress strictly depends on thermal cycling and on the length of the peak temperature periods. As a
result, transient simulation allows to gather a more complete estimation of the evolving circuit
conditions, and allows to consider temperature as an additional design dimension.

2.2 Related Work on Thermal Simulation
A number of methods for solving Equation 1 rely on the well-known duality between thermal and
electrical networks, i.e., they represent heat flow as a current passing through a thermal resistance
and leading to a voltage drop, corresponding to a temperature difference. Such methods rely on
existing circuit-level simulators like SPICE to solve the steady-state or transient voltage of the
nodes of the equivalent circuit [20, 36].
In the literature, a variety of tools have been proposed for estimating temperature (both tran-

sient and steady-state), with the goal of enhancing the design flow with increased reliability and
knowledge of the underlying physical mechanisms, or of effectively managing modern many-core
multiprocessors [16, 20, 21, 26, 27, 34, 36]. In the EDA and computer architecture community,
the de-facto standard for thermal simulation is HotSpot, a tool based on a circuit-equivalent of
a thermal network, which achieves a good trade-off between granularity and accuracy [27]. The
equivalent circuit of the chip is built from a given floorplan and from the essential features of the
die and of the package. HotSpot solves Equation 1 at each time step by using an adaptive solver
of Runge-Kutta equations, based on a given trace of power dissipation values. It can model both
steady-state and transient cases, and it supports two levels of granularity (i.e., block-level and
grid-level) with obvious tradeoff between accuracy and speed. Over time, different strategies have
been proposed to reduce the overhead of the HotSpot equation solver. Some works implement
context-specific optimizations, e.g., by exploiting periodicity in the power trace [19], by using
spatially- and temporally- adaptive techniques to reduce computation time [38], or neural networks
running on top of massively parallel architectures [31]. Furthermore, the latest version of Hotspot
introduces the adoption of advanced matrix manipulation libraries that exploit the architecture
characteristics to parallelize operations like LU decomposition [14, 18, 40].

Although Hotspot can be considered as a state-of-the-art reference for thermal estimation, some
other works have proposed variants of that scheme.

SESCTherm is a thermal modeling infrastructure based on finite-difference analysis [21]. Its under-
lying model is a mix of the execution modes of HotSpot (i.e., block and grid mode): the division
into regions is ruled by the involved materials and components, and irregular regions are further
subdivided into quadrilateral regions. Note that the goal of SESCTherm is not proposing a novel and
sound thermal model, but to rather discuss the accuracy of thermal models, e.g., by considering the
impact of interconnect and mainboard PCB on the estimated thermal traces.
DTTEM uses a similar interface as HotSpot (i.e., conductance and capacitance matrices) [28]. The

main difference lies in the construction of the input power consumption traces, that are built
by segmenting cycle accurate traces according to a given time granularity and by calculating
the average dynamic power consumption of each segment. This allows to determine different
tradeoffs between accuracy and execution speed, and it simplifies the construction of the transient
temperature traces.
HotSpot and the other approaches basically implement different strategies to speed up the

solution of the differential heat diffusion equation by optimizing either time sampling or analysis
granularity. However, they are relatively inefficient when performing thermal analysis for long
simulation times, due to the occurrence of a large number of redundant computations intrinsic in
the underlying solvers (as will be proven in the experimental section).

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:5

In this work we show that adopting SystemC-AMS allows to achieve the benefit of a concurrent
simulation of functionality, power and temperature within a single simulation run, still guaranteeing
good speed/accuracy tradeoffs with respect to HotSpot-inspired methods.

2.3 Introduction to SystemC-AMS
SystemC-AMS is the extension of SystemC for modelling analog and mixed-signal systems [12].
To cover a wide variety of domains, SystemC-AMS provides three different abstraction levels,
supporting different communication styles and representations with respect to the physical domain.

Timed Data-Flow (TDF) models are scheduled statically by considering their producer-consumer
dependencies in the discrete time domain. Each TDF module is characterized by a simulation time
step, that is used by the TDF solver to insert timed activation events in the standard SystemC event
queue. This ensures efficient computation, as it avoids any runtime dynamic event management.
Continuous time models can be modelled with two abstraction levels. Linear Signal Flow (LSF)

supports the modelling of continuous time through a library of pre-defined non-conservative
primitive modules (e.g., integration, delay). The Electrical Linear Network (ELN) level models
electrical networks through the instantiation of predefined primitives, e.g., resistors or capacitors.
Both ELN and LSF primitives are associated with linear equations, that are extended with energy
conservation laws for ELN primitives.

TDF: Calculation of module activation timestep

Testbench and RC network have the same activation timestep

ELN: Equation system setup from:

Equations provided by ELN primitive modules plus their connections

Application of conservation laws

TDF: Initialize variables, signals and module parameters

ELN: Set initial conditions of equation system

TDF: At each timestep, execute module processing

Testbench feeds new inputs to RC network

ELN: At each timestep, solve numerically the ELN equation system

Recompute the RC network and update temperature values

ELABORATION

INITIALIZATION

SIMULATION

Fig. 1. Execution flow of the SystemC-AMS simulation kernel.

SystemC-AMS simulation is managed by an internal simulation kernel, whose execution flow is
highlighet in Figure 1. At elaboration time, SystemC-AMS builds module hierarchy and the data
structures necessary to handle simulation. The simulation kernel determines also the activation condition
of each module, i.e., the activation time step of TDF modules, and the input signals for SystemC processes
and for ELN and LSF modules. This allows to setup the scheduler internal data structures.

As a next step, the simulation kernel builds the equation system generated by ELN and LSF equations,
as derived from the instantiated primitive modules. ELN equations are additionally extended with
the application of energy conservation laws. The subsequent phase is the initialization phase, that is
used to setup module parameters and initialize system components (for TDF) and to setup the equation
initial conditions (for ELN and LSF).

The core of the simulation is then the simulation phase. At any simulation cycle, the SystemC-AMS
simulation kernel determines the next event to be processed and the corresponding execution queue.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:6 Y. Chen et al.

Events can be timing events (e.g., activating TDF modules) or value changes for ports and signals.
Execution of ELN and LSF modules activates a linear DAE (Differential Algebraic Equation) solver, that
numerically solves the corresponding equation system over time. The DAE solver uses lightweight nu-
merical methods, i.e., backward Euler and trapezoidal methods, combined with optimization techniques,
e.g., LU decomposition and Woodbury formulas [8, 25].

3 EXTRA-FUNCTIONAL PROPERTY SIMULATION IN SYSTEMC-AMS
The solution proposed by Vinco et al. in [32] formalized the reconciliation of functional and extra-
functional properties to a single language by proposing a structured co-simulation. Its main
characteristic is that it handles each property as a separate view of the system (called layer),
thus managing information related to each property independently (as reported in Figure 2). The
adoption of a single language for all properties allows on the other hand to simulate all layers
concurrently, in a single run, and to intuitively reproduce mutual interactions between layers,
without incurring in additional overheads. To achieve this result, the framework relies on SystemC-
AMS, that proved to effectively support extra-functional domains, thanks to its modularity, flexibility,
and the support of multiple MoCs [4, 6, 33]. Each layer of the framework is additionally constrained
to a single underlying architecture, whose central element is the layer-specific bus (to reflect the
typical functional architecture). Each bus in in charge of carrying the information flow related to its
layer, with no necessary mapping onto actual system components. The way in which information
carried by the bus is aggregated determines the simulation semantics of each layer.

Layer-specific

information

Mutual impact

of layers

Reliability layer

Temperature layer

Power layer

Functional layer

Functional BUS

CnC1 C2
…

Temperature BUS

C1 C2 Cn

Power BUS

C1 C2 Cn…

…

Reliability BUS

C1 C2 Cn

PROPOSED SYSTEMC-AMS

THERMAL MODEL

Fig. 2. Application of the framework proposed in [32] to the modeling of the mutual impact of temperature
on functionality, power consumption and reliability.

Temperature is one of the native layers of such framework, due to its strong correlation with
both functionality, power consumption and reliability. The bold arrows in Figure 2 represent the
mutual dependency between layers, restricted to the interactions involving the temperature layer
(the original figure with all framework details can be found in Figure 1 of [32]). Despite of giving a
formalized structure of the framework, Vinco et al. did not provide a detailed instance of the proposed
principles. This work aims at filling the temperature layer of their framework with a state-of-the-art
circuit equivalent model of the thermal evolution, that can thus be easily simulated together with all
other system properties.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:7

4 A SYSTEMC-AMS THERMAL SIMULATOR FOR SOC
The construction of the SystemC-AMS thermal model relies on electrical circuit equivalent models
as in HotSpot, exploiting SystemC-AMS ELN MoC, which explicitly supports the modeling and
simulation of electrical elements. It is worth emphasizing that the novelty of this work does not lie in
the thermal model itself, which closely follows the one used by HotSpot [27], but rather in the code
generation process, which builds a simulatable model in which the electrical circuit components
are explicitly instantiated. HotSpot provides in fact a stand-alone tool that explicitly solves circuit
equations modeled as matrices. Conversely, the proposed approach exploits the native support
of SystemC-AMS for electric network primitives to map the RC network elements one-to-one to
SystemC-AMS constructs (e.g., resistors and capacitors); the corresponding equations are then
automatically derived and solved by the SystemC-AMS internal solver. The current paper extends
the preliminary analysis carried out in [6] and provides support of all simulation modes featured
by HotSpot, i.e., both transient and steady state simulation, and different spatial granularities, i.e.,
both grid level and block level modes.

RC NETWORK

CONSTRUCTION

SYSTEMC-AMS

CODE

FLOORPLAN

TECHNOLOGY

RC NETWORK

SYSTEMC-BASED

SIMULATION

POWER TRACES

FUNCTIONAL AND

POWER MODELS

SYSTEMC

TESTBENCH

CODE GENERATION

SIMULATION

a.

b.

GRID/BLOCK
MODE

SYSTEMC-AMS

GENERATION

Fig. 3. Proposed methodology for the construction of the SystemC-AMS thermal simulator.

The flow of the proposed methodology consists of the following phases (Figure 3):
• Construction of the RC network, by reproducing the method used by HotSpot (Section 4.1) using
chip floorplan and technology data;
• SystemC-AMS code generation, achieved by mapping the RC network elements to SystemC-AMS
ELN primitives (Section 4.2);
• Stimuli generation through the construction of a dedicated testbench, implemented either as (a)
a trace of power consumption values (á la HotSpot), or (b) by simulating the thermal model
concurrently with functional and power execution (Section 4.3);
• Simulation of the RC network by using the SystemC-AMS simulation kernel (Section 4.4).

4.1 Construction of the RC Network
The algorithm to construct the RC network reproduces the method followed by HotSpot, by
supporting both steady-state and transient simulation, and both grid- and block-level modes.
The construction of the RC network uses the input information, which include (i) the chip

floorplan, necessary to determine the adjacency among components, (ii) technology information
(e.g., number of layers, materials, thermal characteristics), and (iii) the granularity of the thermal

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:8 Y. Chen et al.

RFTR

UART

MEMORY

MEMORY

UART

CORE RFTR

RFTRCORE

UART

MEMORY

CORE

RFTR

UART

MEMORY

CORE

a. BLOCK MODE b. GRID MODE

Fig. 4. Example of electrical circuit equivalent model. The number of nodes of the RC network depends on the
desired level of accuracy (top), i.e., block level mode (a) or grid level mode (b). The RC network is decomposed
in a lateral model (middle, representing heat transfers that occur within a layer) and a vertical model (bottom,
that captures the heat spread across the package layers).

map (block- vs. grid-). Figure 4 exemplifies the application to a case study consisting of four blocks
(representing a system with a core, a memory block, a RF transceiver and a UART device) [7].

4.1.1 Identification of Network Nodes. As already mentioned, there are two different granularity
levels for the thermal simulation (block and grid), which imply different two generation processes.
concept from the perspective of the generation of the electrical network.
The block model and the grid model provide two different granularities to thermal analysis. The

block mode is suitable for scenarios where preserving the mapping of thermal nodes to functional
components is fundamental, e.g., to determine the reliability of a component, or the mutual impact
of its power consumption and temperature. Vice versa, the grid version is suitable for analysis that
work at lower levels of abstraction, e.g., to influence the synthesis process with information on possible
hotspots, thus requiring a finer granularity and to keep the focus is at chip level, rather than on the
functional components. Thus, even if the underlying RC network model is the same, the two simulation
modes differ in terms of simulation characteristics.

The block mode associates one temperature value to each functional component. To this extent,
the center temperature of the component is considered as the temperature of the component as a
whole, and each functional component is represented by a single network node (top of Figure 4-(a)).

The grid mode allows a finer granularity by dividing the floorplan into a regular grid of cells
having all the same size, with no dependency from the actual functionality of the components (top
of Figure 4-(b)). The division in cells is indeed based solely on the area of the floorplan and on the
desired granularity and degree of accuracy, as determined by the user [11]. In this mode, the current
flowing across each node and its voltage represent the portion of power dissipation generated by
the corresponding area of the floorplan and the temperature of the same area, respectively.

Additional nodes are used in both modes to represent the underlying package layers.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:9

4.1.2 Instantiation of Network Elements. The RC network consists of two integrated models [27].
The lateral model (middle of Figure 4) captures heat diffusion between adjacent nodes within a
layer, while the vertical model (bottom) captures the heat flow from the die through the package
and eventually into the air. Heat transfer flow between adjacent nodes is represented by a resistor,
whose thermal resistance is proportional to the thickness of the material and inversely proportional
to the cross-sectional area and to the thermal conductivity. If transient simulation is required,
capacitors are connected to each node, to capture the delay before a change in power determines
a change in temperature. Thermal capacitance is proportional to both thickness and area, and it
depends on the thermal capacitance per unit volume.

Figure 4 clearly shows that the chosen generation mode (block vs. grid) significantly affects the
accuracy/complexity tradeoff of the thermal simulation; as the grid element size decreases we have
more grid elements and the number of RC network elements grow accordingly.

Given the system-level perspective of our work, phenomena more related to the circuit physical
characteristics (e.g., wiring thermal contribution, or 3D modeling) are not supported in the current
version of the methodology. Accuracy of the model could additionally be improved by considering
the thermal dependence of conductivity and conductance from temperature. Even if including this
dependence in the model would be straightforward, HotSpot itself considers this as a marginal
contribution and thus it does not support it in the current version [11].

4.2 SystemC-AMS Code Generation
The second step is the implementation of the extracted RC network in SystemC-AMS. Figure 5
exemplifies the implementation of the lateral model depicted in Figure 4.a in SystemC-AMS1.

4.2.1 Interface Modeling. The electrical circuit equivalent model is instantiated as a single
SystemC module (SC_MODULE, line 1) that encapsulates the entire RC network. The interface of the
module consists of two ports for each component (for the block mode) or grid cell (for the grid
mode): one input port is used to collect the evolution of power consumption over time, whereas
the output port conveys the corresponding temperature value.
The flexibility of SystemC-AMS allows to decouple the semantics of the interface from the

semantics of the actual behavior implementation. For this reason, the abstraction level adopted for
ports is TDF, that determines a fixed timestep at which input ports are read, RC network is evaluated
and output ports are updated. This reflects the behavior of HotSpot, that assumes that the power
traces contain samples collected at fixed time steps. Ports are thus declared as sca_tdf::sca_in
and sca_tdf::sca_out ports of type double (lines 2–3).

4.2.2 Module Implementation. The body of the SC_MODULE includes the implementation of the
RC network. This is achieved by adopting the ELN level of abstraction to reproduce the model
computed as in Section 4.1. The construction of the SystemC-AMS thermal model is thus a one-to-
one mapping of circuit elements into SystemC-AMS primitives.
Each circuit node is implemented as a SystemC-AMS ELN node (sca_node, lines 6–7), but

for the ground element, which is represented with an ad-hoc primitive (sca_node_ref, line 5).
Resistors are mapped to instances of the sca_r primitive, which represents SystemC-AMS resistors
(line 12). The resistance value is extracted from the resistance matrix computed in the previous
step; for instance, Figure 5 shows that the resistance modeling the heat flow between the core
and the memory is 215.48Ω (lines 27–30). Capacitors are mapped to an instance of the sca_c

1Note that this constitutes only a subset of the complete RC network. Symbols adopted for the primitives are
as standardized in the SystemC-AMS standard [12].

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:10 Y. Chen et al.

Resistor (sca_r)

Capacitor (sca_c)

Current source

(sca_isource)

Voltage sink

(sca_vsink)

Ground

(sca_node_ref)

LEGEND:

Input TDF port

(power values)

Output TDF port

(temperature values)

Nodes corresponding to

circuit components

(sca_node)

C
O

R
E

MEMORY

RFTR

Characteristics of the

circuit components

1. SC_MODULE (thermal_network){

2. sca_tdf::sca_in<double> p_CORE ;

3. sca_tdf::sca_out<double> t_CORE ;

4. …

5. sca_eln::sca_node_ref gnd;

6. sca_eln::sca_node node_CORE;

7. sca_eln::sca_node node_MEMORY;

8. ...

9. sca_eln::sca_tdf::sca_isource* iCORE;

10. sca_eln::sca_tdf::sca_vsink* vCORE;

11. sca_eln::sca_c* c_CORE;

12. sca_eln::sca_r* r_MEM_CORE;

13. …

14. SC_CTOR(thermal_network){

15. i_CORE = new sca_eln::sca_tdf::sca_isource("i_CORE");

16. i_CORE->p(gnd);

17. i_CORE->n(node_CORE);

18. i_CORE->inp(p_CORE);

19. v_CORE = new sca_eln::sca_tdf::sca_vsink("v_CORE");

20. v_CORE->p(node_CORE);

21. v_CORE->n(gnd);

22. v_CORE->outp(t_CORE);

23. c_CORE = new sca_eln::sca_c("c_CORE");

24. c_CORE->p(node_CORE);

25. c_CORE->n(gnd);

26. c_CORE->value=0.00008741;

27. r_MEM_CORE= new sca_eln::sca_r("r_MEM_CORE");

28. r_MEM_CORE->p(node_MEMORY);

29. r_MEM_CORE->n(node_CORE);

30. r_MEM_CORE->value = 215.48122572;

31. …

32. } };

U
A

R
T

Fig. 5. Example of implementation of the block level mode lateral model of Figure 4 in SystemC-AMS:
implementation of the RC network modeling heat transfers within layers with ELN primitives (left) and
corresponding excerpt of SystemC-AMS code (right).

primitive, representing SystemC-AMS capacitors (line 11). The capacitance value is extracted from
the computed capacitance array; in the figure, the core capacitance is 8.741 · 10−5F (lines 23–26).
The input power ports are connected to the ELN circuit via current source primitives, that

transform a numerical value into a current (sca_isource primitive, lines 9 and 15–18). In the
pictorial representation in Figure 5, TDF ports are represented by the white square terminals of the
primitive blocks. Conversely, the temperature is extracted through a voltage sink, that extrapolates
a voltage value and makes it available on the output ports. Voltage sinks are represented with
instances of the sca_vsink primitive, whose output terminal is connected to the corresponding
output temperature port (the black square terminals, lines 10 and 19–22).

4.3 Stimuli Generation
The final step is the generation of input stimuli. The SystemC-AMS thermal simulator is connected
to a testbench module having an interface complementary to the that of the thermal network:
power ports are in output, and temperature ports are in input. The testbench generates stimuli over
time for the thermal simulator, by adopting the two possible strategies shown in Figure 3.

4.3.1 Static Stimuli Generation. The first option is to load power consumption traces from files
previously generated by a power simulator (option a in Figure 3), and to dump the estimated
temperature values to a thermal trace file for future elaborations. This corresponds to the typical
operations of existing thermal simulators, including HotSpot. In block-level mode, a power trace
per component is needed, and the relative power values can be either measured or estimated by a

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:11

power simulator. In the grid-level mode, which requires a power trace per each cell, the process
is slightly more elaborated. Since power is associated to components and not to grid points, the
power consumption of grid cells can be estimated by dividing the power consumption of functional
blocks over the cells covered by that component, and proportionally to their respective occupied
area.

4.3.2 Dynamic Stimuli Generation. The second option for the generation of input stimuli consists
of simulating the RC network using power values dynamically generated with functional simulation
(option b in Figure 3). In this scenario, the testbench wraps SystemC processes implementing the
power models, or functional models enriched with power information [2, 23]. This approach is
made possible by using of a functional language for thermal simulation. A major advantage is that
power information is generated dynamically, depending on the evolution of functionality, and that
the mutual effects of power and temperature can be reproduced at runtime [32].
An example of this strategy is sketched in Figure 6 for the core component of Figure 4. The

testbench includes the functional model of the component, that uses a pause signal to put part of
the functional processes to idle on demand. The pause signal is used also to drive a power model of
the device, implemented as a state machine that dynamically updates the power values depending
on the core power mode. The produced power value is written to the p_CORE output port, that
is connected to the RC network in Figure 4. This allows one to adjust the power demand to the
core functional evolution at run time, and to derive the corresponding temperature evolution from
dynamically generated stimuli (t_CORE port).

SystemC-AMS

THERMAL

MODEL

SYSTEMC TESTBENCH

pause == true

power = LOW

ACTIVE SLEEP

void P1(){

if(...)

pause.write(true);

}

...

t_CORE

p_CORE

power = HIGH

void Pn(){

if(pause.read() == true)

wait();

else

// functionality

}

FUNCTIONAL POWER

Fig. 6. SystemC testbench enabling concurrent power and thermal simulation.

A special case of this category is the insertion of the thermal simulator in the framework proposed
in [32] (presented in Section 3). To reach this result, the generated SystemC-AMS thermal network
is accommodated by the thermal bus, that acts as a centralized thermal simulator (as depicted in
Figure 10). At simulation time, each component forwards its power consumption over time to the
temperature bus, that in turn provides the corresponding evolution of the component temperature.
It is worth emphasizing that the dynamic stimuli generation scenario represents an important

novelty with respect to the current state-of-the-art. Concurrent simulation is in fact achieved by
simulating all aspects in a single simulation run and by adopting a single simulation kernel, i.e.,
SystemC. Comparing this solution with approaches such as [1, 3, 10], we avoid the overhead of
co-simulation, thus achieving faster simulation and an enhanced guarantee of correctness [32].

4.4 SystemC AMS simulation
This section presents how the generated code is managed and simulated by the SystemC-AMS simulation
kernel, with respect to the standard execution flow presented in Section 2.3 and Figure 1.
At elaboration time, the timestep associated to the TDF testbench and to the TDF ports of the RC

network are used to determine how often the thermal simulator should be re-evaluated. This corresponds
to the semantics of HotSpot, which estimates the evolution of temperature at fixed time points. Then,

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:12 Y. Chen et al.

the ELN primitives implementing the RC network (instantiated similarly to Figure 5) are used to build
the ELN equation system, that is enriched with the application of energy conservation laws.
During the simulation phase, activation events coincide with the advancement of time: time is

advanced by one TDF time step, thus triggering the execution of the TDF modules (i.e., of the testbench)
and recomputing the values of the RC network on the new inputs. Note that when the thermal simulator
is executed in more complex scenarios (e.g., the one in Figure 6), the thermal TDF time step may co-exist
with other events, that will be used by the solver to activate and synchronize all system modules.

As anticipated in Section 2.3, the equation system is solved numerically by the linear DAE solver. The
chosen methods (i.e., backward Euler and trapezoidal methods) lead to optimal simulation performance
in other contexts, still preserving a good level of accuracy with respect to more sophisticated tools
[6, 33]. The choice of lightweight methods constitutes a difference with respect to HotSpot, that adopts
more complex methods to achieve higher accuracy and stability, e.g., 4th order Runge-Kutta (that goes
through a number of Euler-style steps to match a Taylor series expansion) [8]. Given that both tools
solve the same RC network, any difference in terms of accuracy or simulation time will reside in the
choice of different DAE solvers. This will be the object of the experimental analysis.

5 EXPERIMENTAL SETUP
This section presents the setup of the experimental analysis, by focusing on adopted tool and simulator
versions, on the automation of the proposed methodology, and on the adopted benchmarks.

5.1 Simulation Setup
Experiments have been run by using SystemC 2.3.1, SystemC-AMS 2.1 and HotSpot 6.0, on an Intel
Xeon 2.40GHz CPU (8 cores, 16 threads each) with 128GB RAM, running the CentOS 6.7 Linux
operating system. Simulation times are calculated as the average over 100 simulations.
As mentioned earlier, recent versions of HotSpot adopt accelerators for smart management of

matrices. For the experimental analysis, we considered two of the available accelerators. SuperLU
is an open source library for direct solution of sparse systems of linear equations, and it is adopted
by HotSpot only for steady simulation and in grid mode [18, 40]. For transient simulation, HotSpot
6.0 adopts a number of architecture-specific accelerators, including the Intel Math Kernel Library
(MKL) [14], that automatically partitions matrix operations onto a number of pthreads.

5.2 Automatic RC network generation
The construction of the SystemC-AMS RC network has been automated in a C++ tool, that takes in
input the desired simulation mode (i.e., grid or block level, and steady state or transient) and two
files, modeling floorplan and technology information, respectively. The floorplan file contains a
line per component, and for each component it lists the width, height, and (x,y) coordinates of the
lower-left corner in meters. The technology information file follows the format defined by HotSpot,
and it lists the configuration parameters as command line options. The whole generation process
of RC network is automatic, and it saves the generated code to a SystemC file. As a by-product, the
tool also generates the interface of the testbench module to be connected to the RC network and
used in the simulation, while its implementation is left to the designer.

5.3 Benchmarks
We used five benchmarks of different sizes and complexity. Benchmark 1 is the example in Figure
4: we used this relatively simple floorplan in order to easily investigate the internal simulation
mechanisms between SystemC-AMS and Hotspot. Benchmark 2 and 3 are the typical case studies
of HotSpot: an Alpha 21364 microprocessor and a POWER4-like microprocessor. The simulation
results of these two microprocessors can provide a real thermal simulation, compared to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:13

synthetic benchmark 1. We additionally created two synthetic benchmarks (4 and 5), by replicating
the components of benchmarks 2 and 3 (and the corresponding power consumption traces) a
number of times, such as replicating cores and caches in the floorplan. We selected them in order
to analyse effectiveness and scalability of the proposed simulation approach. All floorplans have
been derived by using HotFloorplan, i.e., the thermal-aware floor-planning tool included in the
HotSpot distribution.
To ensure a fair comparison, both HotSpot and our tool have always been run with the same

time step (of 1ms) and fed with the same power traces, floorplans and technology files. Table 1
summarizes the adopted technology values. Air is set to a fixed ambient temperature of 40oC.
Convection capacitance with respect to ambient is 140.4 J

K , and convection resistance is 0.1 K
W .

Die TIM Heat-spreader Heat-sink
Thickness [m] 1.5e-4 2.0e-5 1.0e-3 6.9e-3

Thermal conductivity [W
m ·K] 100.0 4.000 400.0 400.0

Table 1. Technology parameters.

6 EXPERIMENTAL RESULTS
In this section we demonstrate the effectiveness of the proposed SystemC-AMS thermal simulator by
comparing simulation accuracy and performance with respect to HotSpot. Given that the underlying
model is identical for the two simulators, it is thus crucial to apply an extensive experimental analysis
to understand the behavior of the generated code and its main stregths and weaknesses w.r.t. HotSpot.

The experiments are organized as follows. Sections 6.1 and 6.2 focus on the block-level mode and on
the grid-level mode, respectively, to evaluate accuracy and performance of the generated code. Section
6.3 compares the characteristics of the two modes on a benchmark. Section 6.4 applies the experimental
analysis to a set of benchmarks provided by the IEEE PATMOS design contest [13], to validate the
proposed approach in a typical application scenario. Section 6.5 proposes a case study where the thermal
simulation is run in parallel with functional and power models, by adopting the framework in [32].
Finally, Section 6.6 discusses the main findings and outcomes of the experimental analysis.

6.1 Block-Level Mode

Benchmark Components Nodes Rs (#) Cs (#) Floorplan density (%)
1 4 28 64 28 98.91
2 18 84 288 84 98.22
3 30 132 442 132 97.10
4 40 172 586 172 95.36
5 86 356 1,206 356 93.62

Table 2. Characteristics of the computed RC networks for the block level mode.

Table 2 summarizes the main characteristics of the RC networks of the five benchmarks, in terms
of number of nodes, resistors, and capacitors. The floorplan density column will be commented
later on in the paper. The network built by our approach for each benchmark is identical to the
one built by HotSpot, since the two network construction algorithms are similar. Therefore, both
SystemC-AMS and HotSpot solve the same equations; any difference in execution times and in
accuracy is thus due only to the underlying solvers, and not to differences in the networks.

6.1.1 RC Network Initialization. Table 3 reports the time required to build the RC network
for HotSpot and SystemC-AMS. Time is obviously correlated with the number of component,
since in order to determine the value of any resistor or capacitor, the algorithm must consider the

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:14 Y. Chen et al.

characteristics of the involved blocks and layers, together with the neighbouring relations between
components (e.g., shared length of two neighbouring blocks). Similarly, initialization time is larger
for transient simulation, since the RC network includes also one capacitor per network node.

Benchmark Steady state simulation [ms] Transient Simulation [ms]
SystemC-AMS HotSpot SystemC-AMS HotSpot

1 0.558 0.318 0.655 0.341
2 1.840 0.705 2.528 0.751
3 3.262 1.633 3.959 1.802
4 4.951 2.528 5.896 2.997
5 14.835 10.067 16.084 13.711

Table 3. Comparison of RC Network Initialization Time for the block level mode.

The construction of the RC network in HotSpot and SystemC-AMS implies different sequences of
operations; in HotSpot, the values of thermal resistances and capacitances are directly stored into
matrices to be used by the circuit solver. Conversely, SystemC-AMS needs to explicitly instantiate
resistances and capacitances as connected ELN instances in a source file (see Figure 5), which
is compiled and used by the SystemC-AMS solver to build the underlying system matrices. The
SystemC-AMS flow has therefore an intrinsically higher overhead. In spite of that, for such small
numbers of blocks, the initialization times for the two simulators are comparable.

6.1.2 Steady-State Simulation. Table 4 reports the simulation time for the steady-state mode
of SystemC-AMS code and HotSpot. Note that no accelerator is available for HotSpot in this
configuration. Steady state stimulation is very efficient for both simulators, at it requires the
solution of just one, relatively simple RC network (maximum 1,200 resistors, no capacitors). As
Column speedup shows, simulation times are comparable, although SystemC-AMS tends to scale
better with network sizes (from 1.1x for the smallest network to 2.3x for the largest one).

Benchmark HotSpot SystemC-AMS
[ms] [ms] speedup

1 10.476 9.563 1.10x
2 45.079 40.024 1.13x
3 95.343 84.365 1.13x
4 121.748 99.981 1.22x
5 565.041 246.014 2.30x

Table 4. Comparison of Steady-State Simulation Time for the block level mode.

6.1.3 Transient Simulation. Table 5 reports the performance of SystemC-AMS and HotSpot
(with and without the MKL accelerator) with transient simulation. With transient simulation the
advantage of the SystemC-AMS implementation becomes evident. The speedup again improves
with the size of the circuit, reaching a remarkable 279x for the largest benchmark. The speedup
is mainly due to the differences between the solvers. As briefly mentioned in Section 4.4, the
SystemC-AMS solver uses lightweight numerical methods, i.e., backward Euler and trapezoidal
methods, thus accepting to potentially sacrifice accuracy for the sake of simulation speed. Further
optimization techniques, e.g., LU decomposition and Woodbury formulas, are also adopted to speed
up matrix factorization [8, 25]. This constitutes a major difference with respect to HotSpot, that
adopts more complex numerical methods to achieve higher accuracy and stability. HotSpot mainly
relies on the Runge-Kutta method, that goes through a number of Euler-style steps to match a
Taylor series expansion, thus resulting in heavier simulation overheads [8].

Results in Table 5 also show that the Intel MKL accelerator is basically useless for block level mode
simulations. The number of threads is indeed automatically determined by the MKL library, given the

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:15

Benchmark HotSpot HotSpot+MKL SystemC-AMS
[s] [s] threads (#) [s] speedup w.r.t. Standard speedup w.r.t. MKL

1 1.279 1.280 1 0.051 25.08x 25.09x
2 11.252 11.303 1 0.216 50.09x 52.33x
3 27.013 27.011 1 0.387 69.80x 69.80x
4 47.488 47.491 1 0.539 88.10x 88.11x
5 353.329 353.132 1 1.263 279.75x 279.60x

Table 5. Comparison of Transient Simulation Time for the block level mode.

size of the problem to be solved: since the RC networks are small (maximum 1,500 network elements),
the code is considered too small to effectively partition the computation load into multiple threads. As
only one thread is used, simulation times are comparable with the standard version of HotSpot.

Even if simulation speed is not our main goal, these numbers prove that the lightweight solvers
of SystemC-AMS enable efficient thermal simulation in transient scenarios.

6.1.4 Accuracy. We assessed the accuracy of our simulator in terms of the relative error with respect
to HotSpot, defined as: TAMS−THotSpot

THotSpot−TAmbient
, where TAMS and THotSpot are the temperatures estimated

by the simulators (i.e., ambient temperature plus estimated temperature variation), and TAmbient
is ambient temperature. The latter term appears at the denominator since both simulators compute
thermal variation with respect to ambient temperature, rather than the actual temperature value. The
error of SystemC-AMS simulation for the steady-state case is negligible with a maximum error over
all benchmarks of 10−6%. This is expected since the simulation implies solving a resistive network
without requiring iterations, thus avoiding the accumulation of approximations. The transient
scenario is more interesting, as the thermal RC network includes also capacitors and multiple
iterations are required to compute the instantaneous temperature trace over time. Table 6 shows
that the average error of SystemC-AMS on all benchmarks is well below 1%, and the maximum
error is about 1%.

Benchmark Max error [%] Avg error [%]
1 1.07 0.034
2 1.06 0.052
3 1.17 0.040
4 1.15 0.060
5 1.03 0.015

Table 6. Accuracy of transient temperature estimation for block level mode.

This proves that the SystemC-AMS solver is extremely accurate with respect to the HotSpot
simulation kernel in spite of the faster execution time. This is evident also from Figures 7, that
proves the high level of accuracy by showing that the temperature curves computed by SystemC-
AMS and HotSpot are almost indistinguishable. For space reasons we report only the plots for
Benchmark 1, but results for the other benchmarks exhibit a similar accuracy.

Fig. 7. Transient temperature profile computed by SystemC-AMS and HotSpot for benchmark 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:16 Y. Chen et al.

6.2 Grid-Level Mode
When adopting grid level mode, the impact of the different benchmarks on the generated RC
network becomes less evident. The size of the RC network is in fact independent from both the
functional components and the floorplan, and the latter impacts only the thermal coefficients used
for resistors and capacitors. For the sake of readability, in the following we will refer to Benchmark
1 for our detailed analysis; we will discuss the extension of the concepts to generic floorplans in
Section 6.2.5.

6.2.1 RC Network Initialization. Table 7 reports the time necessary to setup the RC network for
HotSpot and SystemC-AMS, for different grid sizes, together with the sizes of the corresponding
network (number of nodes, resistors, and capacitors).

Benchmark Nodes Rs (#) Cs (#) Steady state (ms) Transient (ms)
SystemC-AMS HotSpot SystemC-AMS HotSpot

4x4 76 208 76 1.678 0.30 1.982 0.31
8x8 268 784 268 6.979 0.32 8.318 0.34
16x16 1,036 3,088 1,036 58.461 0.38 71.806 0.39
32x32 4,108 12,304 4,108 971.397 0.50 1,405.12 0.52
32x64 8,204 24,328 8,204 3,661.510 0.58 5,445.83 0.60
64x64 16,396 49,168 16,396 9,033.730 0.68 9,781.29 0.71

Table 7. Comparison of RC Network Initialization Time for the grid level mode.

The initialization time is very small for HotSpot, if compared to the corresponding time for
block-level mode (Table 3). The reason is that the RC network construction algorithm is different
for the two versions in HotSpot. Block-level mode requires to consider the layout of blocks to
determine the adjacency relations between functional blocks. On the contrary, the division of the
floorplan into cells of identifcal size yields a corresponding regular structure of the RC network
and simplfies significantly the computation. As an example, the time to build the largest network
(64x64, 16,396 nodes) requires 0.71 ms, roughly the same time required to build the block-level
network of Benchmark 2, which only has 84 nodes.

The initialization time for SystemC-AMS is much larger, and grows super-linearly with the size
of the network. This is due to the fact that SystemC-AMS is a general-purpose simulation language,
that thus requires to construct data structures that go beyond the sole needs of thermal simulation,
e.g., including data structures related to kernel routines, modules, and equation management. At
initialization time, all data structures have to be initialized and populated by querying all network
elements. This constitutes a main difference with respect to HotSpot, that simply fills a matrix of coeffi-
cients, while SystemC-AMS actually builds the actual code of the RC network, deriving the underlying
equations from the instantiated ELN primitives and their connections. Additionally, SystemC-AMS
makes intensive use of dynamic memory, that allows the construction of larger networks at the price of
slower access, due to dereferencing pointers. However, it is important to note that improving memory
usage is not something that can be done by users, as it would require an extensive reorganization of
the SystemC-AMS kernel code.
In spite of a worst scalability of this setup phase, the time required by SystemC-AMS remains

reasonable. In the case of the largest network (64x64) it takes just about 9 seconds to build the
network (results in the table are inmilliseconds). A 64x64 grid is considered the reference granularity
for grid simulation to guarantee a good resolution in the thermal map [13], and the numbers shows
that SystemC-AMS has no problem in handling this size. Supporting larger RC networks might
require an optimization of memory usage, given that the allocated heap memory grows super-linearly
with grid size.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:17

Notice also that the initialization time is larger for the transient version, since the RC network
includes also one capacitor per network node.

6.2.2 Steady-State Simulation. The overhead incurred by SystemC-AMS for the RC network
construction becomes evident when analyzing the runtime of steady-state simulation. In this case,
in fact, running a single iteration penalizes the SystemC-AMS implementation, as shown in Table 8.

Grid SystemC-AMS HotSpot HotSpot + SuperLU
size time (ms) time (ms) time (ms)
4x4 36.46 15.1 10.4
8x8 167.86 20.1 11.9
16x16 1,246.85 33.4 15.5
32x32 16,493.32 94.3 39.8
32x64 54,521.86 169.9 77.6
64x64 92,449.81 564.8 206.5

Table 8. Comparison of Steady-State Simulation Time for the grid level mode.
HotSpot is clearly more scalable and much more efficient than SystemC-AMS by about two

orders of magnitude. Nevertheless, times are in all cases reasonable (values are in milliseconds):
even the slowest 64x64 case for SystemC-AMS requires about 90 seconds to compute. It is worth
mentioning that the combination (grid mode/steady-state simulation) is the least “interesting” of
the four possible combinations (block/grid and steady-state/transient): having a single average
value per grid point is not a very useful information. As a matter of fact, benchmarks for thermal
simulation typically consider grid mode/transient simulation as a reference scenario [13].
Notice that HotSpot is also more efficient than in the case of steady-state simulation in block

mode. This is due to the adoption of a more effective solver for steady-state simulation, based
on the Gauss-Seidel kernel for the grid-level mode. Moreover, HotSpot steady-state simulation is
additionally improved by the adoption of SuperLU, that further speeds up simulation.

6.2.3 Transient Simulation. When moving to transient simulation, the SystemC-AMS overhead
for the RC network construction gets easily amortized over the large number of iterations required
by the computation. Table 9 show the simulation times of SystemC-AMS and HotSpot for the case
of transient simulation. The advantage of the SystemC-AMS implementation is now evident, with
speedups of up to 60x. This is due to the longer simulation, which requires 6,000 simulation steps
to complete. The speedup of SystemC-AMS remains roughly flat in the range 20-25% for smaller
grid sizes, but grows for the largest grids. Results are consistent with those for block-level transient
simulation (Table 5), although speedups are smaller in this case due to the management overhead
resulting from a larger RC network. Even if simulation speedup with respect to HotSpot is not the
main goal of this work, Table 9 proves that SystemC-AMS allows effective runtime evaluation of
the thermal evolution of a system, thanks to the effective transient simulation.

Grid HotSpot HotSpot +MKL SystemC-AMS
Size [s] [s] threads (#) [s] Speedup w.r.t Standard Speedup w.r.t MKL
4x4 3.508 3.510 1 0.163 21.52x 21.34x
8x8 13.438 13.092 1 0.671 20.02x 19.51x
16x16 59.903 58.899 1 3.019 19.84x 19.12x
32x32 779.093 778.285 3 30.735 25.31x 25.00x
32x64 4,966.469 4,866.789 5 145.464 34.14x 33.46x
64x64 11,849.712 11,827.830 9 191.176 61.98x 61.78x

Table 9. Comparison of Transient Simulation Time for the grid level mode.
Notice that in this case HotSpot does not benefit from architecture-specific libraries, such as the

MKL. The versions with grid size up to 16x16 are still considered too small to benefit from parallelization

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:18 Y. Chen et al.

Fig. 8. Speed-up of SystemC-AMS code with respect to HotSpot (a) and its MKL accelerated version (b).

Fig. 9. Average (a) and maximum (b) error of SystemC-AMS with respect to HotSpot for transient simulation.

by the MKL, and thus they run on a single thread. The other versions are run on multiple threads (up
to 9), given the larger number of RC network elements. However, the high synchronization overhead of
the pthread library basically nullifies the potential of the parallel code [5], yielding simulation times
only slightly lower than the sequential version of HotSpot.
As mentioned in Section 6.2, the above analysis uses Benchmark 1 as the underlying circuit.

In order to see if the considerations apply also to other benchmarks, we also ran the other four
benchmarks with the five grid sizes. Results are summarized in Figure 8, that plots the speed-up of
SystemC-AMS over HotSpot and its MKL-accelerated version for the five benchmarks. The plots
clearly show the trends of a speedup that increases with the number of grid cells applies to all
benchmarks. However, the range of the speed-ups is quite circuit-dependent; the largest one is for
Benchmark 1 (of about 60x), while the lowest ones are for Benchmarks 2 and 3 (about 25x). This
difference in speedup will be elaborated in Section 6.2.5.

6.2.4 Accuracy. Table 10 reports the accuracy of SystemC-AMS in grid-level mode compared
with respect to HotSpot, again using the results of Benchmark 1 as a reference, and shows the
average and themaximum error of each configuration. Steady state simulation proved to be extremely
accurate also in grid level mode, with errors lower than 0.00001%. Transient simulation exhibits a
larger error, due to the presence of multiple simulation steps. However, the average error is still
well below 1%, and the maximum error is only 1%.

Grid Steady State Temperature Transient Temperature
size Avg.error (%) Max.error (%) Avg.error (%) Max.error (%)
4x4 0.23e-5 0.66e-5 0.079 0.980
8x8 0.15e-5 0.56e-5 0.062 1.020
16x16 0.19e-5 0.79e-5 0.078 1.010
32x32 0.16e-5 0.68e-5 0.086 0.930
32x64 0.21e-5 0.72e-5 0.055 1.050
64x64 0.13e-5 0.51e-5 0.063 0.990

Table 10. Accuracy of Steady state and transient temperature of test bench 1 for the grid level mode.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:19

6.2.5 Dependence on Floorplan, Power Variance and Simulation Time Step. In this section we
analyze the sensitivity of the thermal simulation with respect to (i) the floorplan, (ii) the the
distribution of the power values, and (iii) the adopted simulation time step. It is intuitive that
these factors might affect the performance of the simulator because the former determines the
values of the electrical elements, which can impact simulation time, whereas the latter two might
affect the number of iterations required to reach convergence. To this purpose, we ran three sets of
experiments to illustrate how these factors affect the simulation speed. Due to space constraints, in
this sections we will apply the analysis only to Benchmark 1. However, the same considerations
hold for all benchmarks.

Impact of floorplan. The main impact of varying the floorplan is that the values of resistances
and capacitances change, even if the reminder of benchmark configuration is unchanged. Indeed,
such values strictly depend on the area of each grid cell (in grid mode) and on the thickness of
each layer in the model. We thus decided to explore the behavior of the simulators by artificially
modifying the floorplans, by inserting blank spaces. In other words, this experiment could be seen
as an analysis of the sensitivity of the simulator to the utilization of the floorplan, i.e., whether a
denser or sparser floorplan affects simulation time.

Grid size Floorplan 1 Floorplan 2 Floorplan 3
Width [mm] 3.80 6.84 9.45
Height [mm] 5.63 7.71 8.33
Utilization [%] 93.69 78.82 62.73

Table 11. Width and height of different floorplans.
Table 11 shows the width and height of three different floorplans used and the resulting utilization.

The different floorplan configuration and the presence of blank spaces affects the computed RC
network, as the values of resistors and capacitors are different across the floorplans. Table 12 reports
the corresponding simulation time on the three floorplans, when varying grid granularity. The
table highlights that SystemC-AMS is consistent across all floorplans, as simulation time is mainly
dominated by the size of the RC network. On the contrary, HotSpot simulation time varies across
the benchmarks (this is more evident for larger RC networks).

Grid HotSpot SystemC-AMS
size Floorplan 1 Floorplan 2 Floorplan 3 Floorplan 1 Floorplan 2 Floorplan 3
4x4 3.521 3.491 3.517 0.163 0.162 0.163
8x8 13.573 13.599 13.521 0.671 0.671 0.672
16x16 59.876 59.916 59.862 3.019 3.016 3.015
32x32 779.703 543.779 287.742 30.735 30.733 30.736
32x64 4,967.191 2,506.741 1,788.125 145.464 145.460 145.462
64x64 11,851.297 5,486.625 3,639.255 191.176 191.171 191.177

Table 12. Simulation of HotSpot and SystemC-AMS for benchmark 1 for the floorplans in Table 11.
To explain this behavior, it is necessary to look deeply into the solvers. SystemC-AMS uses

simple solvers, like Euler and trapezoidal methods, that have a fixed number of iterations at any
time step. On the other hand, HotSpot uses the 4th order Runge Kutta method, that performs a
number of iterations that varies with the slope of temperature variation. At any time instant, in
HotSpot the slope for a given cell is directly proportional to power consumption P of the cell and
to the gradient of the temperature with respect to the adjacent cells i , and inversely proportional to
the values of resistances and of cell capacitance:

dT

dt
=
*.
,
P −
∑
i

T −Ti
Ri

+/
-
·
1
C

(2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:20 Y. Chen et al.

Grid size Constant (s) 10% Variance (s) 50% Variance (s)
4x4 0.162 0.163 0.162
8x8 0.670 0.672 0.672
16x16 3.016 3.016 3.018
32x32 30.733 30.734 30.734
32x64 145.460 145.460 145.461
64x64 191.177 191.177 191.176

Table 13. SystemC-AMS simulation time for different power traces.

An effect of this dependence is that larger values of Rs and Cs make convergence faster, and thus
require fewer solver iterations. At any time step, HotSpot conducts multiple steps of the Runge
Kutta algorithm, and the number of iterations is adaptive: when the slope is steep, it is possible
to decrease the number of iterations and to accordingly decrease simulation time significantly.
Vice versa, less steep slopes require more iterations to converge. This is proven by the fact that
the denser floorplans (e.g., Floorplan 1) result into longer simulation times: the smaller values for
Rs and Cs slow down convergence. Conversely, the simulation time is up to 3 times faster for the
less utilized floorplan (Floorplan 3). Since optimized floorplans are denser for obvious area and
performance reasons, the speedup figures shown so far are conservative. Note that the floorplan
density of the benchmarks adopted throughout the experimental analysis is similar to the one of
Floorplan 1 (average density 96.64%, see Table 2).
To further argument this result, we deeply analysed the HotSpot execution flow, to extract the

number of iterations of the Runge Kutta solver over the whole simulation. To get significative
numbers, we focused on the 64x64 grid granularity, whose simulation times vary significantly over
the three floorplans. Floorplan 1 takes 11,851.715s, as a result of 969,568 Runge Kutta iterations.
Simulation is 2.16x faster for Floorplan 2, that requires 571,352 Runge Kutta iterations. Finally,
Floorplan 3 requires only 462,582 Runge Kutta iterations, thus resulting in a speedup of 3.26x with
respect to the initial floorplan. These numbers highlight the impact of the floorplan over HotSpot
simulation, and the weight of the Runge Kutta iterations over the resulting simulation time.

Impact of power traces. To prove that SystemC-AMS performance is determined only by the size
of the RC network, we also investigate the impact of the input power traces on simulation time. We
artificially created synthetic traces for the components of benchmark 1. All traces have the same
average value (equal to the average value of the original power trace). The three traces are then
created by varying the variance of the power values: constant power trace, 10% variance and 50%
variance.

Table 13 reports the corresponding SystemC-AMS simulation time. The table proves that the
times are consistent, and that they are not affected by the different distribution of power values.
This confirms that the SystemC-AMS performance is sound: it is affected only by the size of the RC
network, and thus by the number of network elements. Other dimensions, like floorplan density or
input power distribution, do not impact on simulation time, thus ensuring consistent performance
and that no worst-case simulation scenarios do exist.

Impact of simulation time step. The last analysis focuses on the impact of the simulation time
step, i.e., the step at which power values are fed into the simulator, and at which the corresponding
temperature values are expected in output. Table 14 reports the simulation time of HotSpot and
SystemC-AMS when running 6,000 simulation steps of variable length for the 64x64 configuration.
The table highlights that the behavior of SystemC-AMS and HotSpot are different for a given

value of time step. SystemC-AMS is basically insensitive to the step value across all simulations. As
a matter of fact, SystemC-AMS recomputes the RC network once per time step, and the number
of time steps is the same across all simulations (i.e., 6,000). On the contrary, HotSpot simulation

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:21

Time Simulation HotSpot SystemC-AMS
step Steps (#) Length (ms) Time (s) Runge Kutta (#) Time (s) Speedup Avg. error (%)

1 ms 6,000 6,000 11,846.87 969,572 191.17 61.97x 0.097
100 us 6,000 600 1,864.71 116,112 191.72 9.73x 0.018
10 us 6,000 60 277.95 29,866 191.92 1.45x 0.015
1 us 6,000 6 149.13 24,224 191.67 0.78x 0.014

Table 14. Simulation time for SystemC-AMS and HotSpot for different time step sizes.

time varies significantly across the experiments, with simulation times from about 60x slower to
values slightly smaller than those of SystemC-AMS. This can be explained by recalling that HotSpot
performs a number of iterations of the Runge Kutta solver for each time step, until convergence is
reached. The time step used by HotSpot for such iterations is adaptive, with a minimum value set
by default to 100ns: as a consequence, the larger the time step, the more Runge Kutta iterations
will be necessary to achieve convergence. To prove this, we extracted the number of Runge Kutta
iterations: given the same number of simulated time steps, HotSpot spends almost one billion
iterations for time step 1ms, and less than 25,000 for time step 1us.
As a consequence, the performance of SystemC-AMS over HotSpot strictly depends on the

simulation time step. SystemC-AMS has runtimes comparable with HotSpot on cycle accurate
simulations (e.g., 1us-10us), typical of architectural or RTL simulations. However, for system-level
simulations in which we need to evaluate transient behavior over longer time intervals (in the
milliseconds to second range), SystemC-AMS sensibly outperforms HotSpot, with speedups of up
to two orders of magnitude.

The table highlights that the time step impacts also on the accuracy of the SystemC-AMS simulation
w.r.t. HotSpot. This can be explained by considering that the larger the time step, the more Runge
Kutta iterations will be necessary to achieve convergence (Table 14). Indeed, this implies that the result
achieved by the SystemC-AMS solver will be less accurate with the larger time steps, as each iteration
of Runge Kutta is almost equivalent to one Euler-style step. Vice versa, when the time step is smaller,
the Runge Kutta method used by the HotSpot solver will require fewer iterations to converge, thus
behaving similarly to the SystemC-AMS solver and reducing the sources of errors.

6.3 Comparison of Block-Level Mode and Grid-Level Mode
Even if the underlying RC network model is the same, the block mode and the grid mode provide two
different granularities to thermal analysis, with effects on the characteristics of thermal simulation.
By comparing the accuracy of the two configurations (Tables 6 and 10), it is evident that the the

error is almost independent from the granularity. Accuracy is indeed affected whenever the HotSpot
solver behaves differently from the SystemC-AMS solver (e.g., requires more Runge Kutta iterations), so
that the solvers converge on different results. Given that granularity does not impact on the behavior of
the solvers, the block mode behaves similarly to the grid mode, and the error is thus mostly determined
by the simulation mode: average error is 1.5 10−6% for steady-state simulation and 0.05% for transient,
and maximum error is 6 10−6% and about 1%, respectively.

When looking at the speed-up, it is easy to notice that the performance of both block mode and grid
mode is always determined by the number of RC network elements, but there is no evident correlation
between the two simulation modes. The difference is due to HotSpot, that has two different algorithms
to build the RC network model: the block mode version requires to take into account at any time
the adjacencies between functional components and their irregular shape, thus affecting simulation
performance. Vice versa, computation is heavily simplified for the grid mode, where all grid cells have
the same size and their adjacency relations are pre-defined. This improves the performance of HotSpot
in the grid mode, and thus lowers the speed-up of SystemC-AMS.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:22 Y. Chen et al.

6.4 IEEE PATMOS 2017 Thermal Simulation Contest
This section applies the proposed SystemC-AMS thermal simulators to the benchmarks proposed
by the 2017 IEEE PATMOS contest [13]. Table 15 reports the characteristics of all benchmarks. It is
important to note that this experiment is especially useful, as it allows to evaluate the characteristics
of the thermal simulators on a typical configuration and on non-trivial benchmarks.

Given the sensitivity of HotSpot with respect to floorplan, we considered two different floorplans
for the benchmarks: an area-optimized floorplan (generated with the HotFloorplan tool, column
Optimized floorplan), and a thermal-aware floorplan (provided by the contest, column Thermal-
aware floorplan). The main difference between the floorplans is area utilization, which is on average
91,90% for the optimized version and 75.15% for the thermal-aware version, respectively.

Benchmark Blocks Thermal-aware Floorplan Optimized Floorplan
[#] Width × Height [mm] Utilization [%] Width × Height [mm] Utilization [%]

PATMOS 1 30 8.00 × 6.64 66.5 7.85 × 4.75 94.8
PATMOS 2 30 10.56 × 6.05 66.2 8.34 × 5.26 96.3
PATMOS 3 20 4.82 × 6.11 83.7 5.16 × 5.07 94.1
PATMOS 4 60 9.46 × 9.64 73.7 8.90 × 9.19 82.2
PATMOS 5 25 5.56 × 5.85 77.0 5.23 × 4.98 96.1
PATMOS 6 35 7.91 × 5.15 86.7 6.27 × 6.05 93.2
PATMOS 7 40 7.94 × 7.72 78.4 8.05 × 6.22 90.0
PATMOS 8 40 8.38 × 6.46 80.9 8.09 × 5.95 91.0
PATMOS 9 45 8.28 × 8.23 71.3 7.16 × 7.64 90.8
PATMOS 10 50 8.34 × 8.15 66.8 6.83 × 7.37 90.2

Table 15. Characteristics of the RC thermal networks of the IEEE PATMOS contest benchmarks.

The scenario of interest defined by the contest is a 6000 ms transient simulation for a 64x64
grid. To further support the claim of flexibility of our method, we ran SystemC-AMS and HotSpot
(with and without MKL-accelerator) on these benchmarks with a time step of 1ms. RC network
initialization performance is aligned with the numbers in Table 7, with an average time of about 9
seconds for SystemC-AMS and of 2 ms for both versions of HotSpot.

Tables 16 and 17 report the simulation performance of transient simulation on the thermal-aware
and the area-optimized floorplans, respectively. From the tables it is evident that SystemC-AMS
performance is consistent with the one reported for the 64x64 granularity in Table 9, about 190
seconds for all benchmarks2. As a matter of fact, for all SystemC-AMS simulations, the difference
over all benchmarks for both floorplans is less than 0.5%. This independence of the benchmark (in
particular, its power distribution) and of the floorplan is an important property of the SystemC-AMS
solver. Performance only depends on the size and the connections of the RC network.

The same does not hold for HotSpot, as already demonstrated in the previous section. Simulation
times, besides being again much longer than those of our method (28x to 35x, depending on the
floorplan density), vary sensibly across different benchmarks (about 5300s difference between the
slowest and fastest case, more than a 2x variation). Benchmarks with less steep temperature curves
have faster convergence and less iterations of the solver functions (e.g., benchmark 4). Viceversa,
simulation times grow when convergence requires more solver steps (e.g., benchmark 3).

6.5 Concurrent Simulation of Functionality, Power, and Temperature
An additional strength of the proposed approach is the possibility to run thermal simulation in
parallel with respect to functional and power simulation. As a final experiment, we thus implemented
2Note that the simulations have the same length

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:23

Benchmark SystemC-AMS HotSpot HotSpot + MKL
time (s) time (s) speedup (x) threads (#) time (s) speedup (x)

PATMOS 1 192.174 5,262.99 27.39 9 5,166.33 26.88
PATMOS 2 191.793 5,089.78 26.53 9 5,031.42 26.23
PATMOS 3 191.374 9,456.60 49.41 9 9,357.12 48.89
PATMOS 4 194.681 3,082.81 15.84 9 3,002.41 15.42
PATMOS 5 192.831 8,127.52 42.15 9 8,084.80 41.93
PATMOS 6 191.888 6,961.85 36.28 9 6,901.22 35.96
PATMOS 7 192.617 4,148.77 21.54 9 4,078.94 21.18
PATMOS 8 192.859 5,296.57 27.46 9 5,216.96 27.05
PATMOS 9 193.514 4,172.22 21.56 9 4,072.62 21.05
PATMOS 10 194.553 4,181.85 21.49 9 4,095.31 21.50
Average 28.96 - 28.61

Table 16. Transient Simulation Time for the benchmarks adopted by the IEEE PATMOS design contest with
the thermal-aware floorplans.

Benchmark SystemC-AMS HotSpot HotSpot + MKL
time (s) time (s) speedup (x) threads (#) time (s) speedup (x)

PATMOS 1 193.261 7,979.98 41.29 9 7,868.74 40.64
PATMOS 2 192.188 6,629.55 34.50 9 6,558.03 34.12
PATMOS 3 192.287 10,574.82 54.99 9 10,415.24 54.16
PATMOS 4 193.846 4,367.72 22.53 9 4,289.86 22.13
PATMOS 5 192.605 10,508.38 54.56 9 10,463.62 54.33
PATMOS 6 191.918 7,374.79 38.43 9 7,227.53 37.66
PATMOS 7 192.622 5,327.02 27.65 9 5,271.11 27.37
PATMOS 8 192.994 5,972.41 30.95 9 5,873.77 30.43
PATMOS 9 193.226 5,001.62 25.88 9 4,983.08 25.79
PATMOS 10 193.892 5,158.78 26.61 9 5,040.02 25.99
Average 35.74 - 35.26

Table 17. Transient Simulation Time for the benchmarks adopted by the IEEE PATMOS design contest with
optimized floorplans.

a scenario in which the SystemC-AMS thermal simulation of case study 1 (Figure 4.a) is run
concurrently with functional and power models, by adopting the framework proposed in [32]
(left-hand side of Figure 10). To this extent, we implemented all functional components of case study
1 as SystemC modules, whose functional evolution drives a model of power consumption. In detail,
the core implements an instruction-based power model similar to [29] (load/store instructions
require 2 mW, arithmetic instructions 1 mW, branches 0.4 mW and NOPs 0.1 mW). The power
consumption of the other components depends on the device state, e.g., the UART consumes 9.98
µWwhen idle and 1.43 mW when transmitting or receiving.
The right-hand side of Figure 10 shows an excerpt of the simulation, by focusing on the current

consumption (top) and thermal profile (middle) of the core, and on the thermal profile of the UART
(bottom) over 150ms. During this interval, the UART is in idle mode to avoid cross interference.
It is worth re-emphasizing that curves are obtained as traces of a single simulation run; SystemC
automatically manages the appropriate model of computation for different description styles.
The solid blue lines highlight the dependency between power consumption and temperature.

A time slot of high activity of the core determines a larger current demand for a prolonged time.
The corresponding increase of temperature of the core (arrow 1) affects also the neighbours, as
highlighted by the small fluctuations of the temperature of the UART (arrow 3).

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

39:24 Y. Chen et al.

①

②

③

④

Functional BUS

Thermal RC network

Power BUS

Core Mem UART RF

Core Mem UART RF

Core Mem UART RF

①

① ② ④

Fig. 10. Power and thermal profile of the core and the UART of case study 1. The arrows highlight the mutual
dependence between power consumption and thermal evolution.

To show also the impact of temperature over power, we extended the power model of the core
with the dependence of static power from temperature (dashed orange lines). In this scenario, arrow
2 highlights that higher component temperature is reflected as a higher static power consumption
during idle periods. As an additional side effect, arrow 4 highlights that modifications in the
power model of one component affect the thermal profile also of neighbours, as the higher static
power of the core slightly increases the temperature of the UART. This experiment proves that the
adoption of SystemC-AMS for the thermal simulator allows to reproduce mutual dependencies
between power and temperature, and to get a more accurate picture of system evolution. Such a
run-time tracking could not be simulated with trace-based approaches, which usually estimate
temperature from power traces, thus loosing the cyclic dependence.

As a further analysis, we investigated the possibility of replacing the SystemC-AMS RC network
with HotSpot. This was achieved by compiling the HotSpot library to generate a static library, and
by replacing the SystemC-AMS RC network with invocations to the HotSpot library functions. All
the rest of the system, including the dependencies between power and temperature, have not been
modified, so to evaluate only the impact of the thermal simulator.
We run both simulations for 6,000ms which is same length as all previous simulations. The

version including HotSpot took 4,165s, while the system implemented entirely in SystemC-AMS
took only 673s, with a speed up of 6.2×. Note that the speedup is lower than for the transient
simulation shown in Section 6.1.3 (25×), as an effect of the additional simulation overhead due to
the functional and the power layers. However, adopting SystemC-AMS for thermal simulation still
allows good simulation performance, together with an easier integration flow.
To confirm this, we run a longer simulation (for 600,000ms). Here the speedup increases up to

57.4×: SystemC-AMS takes 6,508s, and the version including HotSpot takes 373,417s. This implies
that the SystemC-AMS-based solution scales better on longer simulations, a 100x longer simulation
time required only 10x longer with our approach. These experiments thus confirm the effectiveness

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:25

of SystemC-AMS for the concurrent simulation of multiple aspects of a system: a good accuracy
and an easy integration process is indeed accompanied by good simulation performance.

6.6 Summary and Discussion
Our analysis highlighted that SystemC-AMS has several strengths over state of the art of thermal
simulation:
• SystemC-AMS, as a general purpose simulator, allows simulating the thermal evolution con-
currently with functional and power simulation, as well to reliability, with the advantage of
straightforward integration and support for the modeling of mutual interactions;
• Effective simulation performance:

• The only weakness of SystemC-AMS for thermal simulation is its higher overhead at
initialization time when the thermal network gets large. However, this is an issue only
when considering steady-state simulation, which is a less interesting scenario from the
point of view of thermal analysis, since it yields a single number per element (grid or block)
determined by the average power of that element;
• Steady-state simulation is still feasible even for the largest grid sizes;
• For transient thermal simulation, SystemC-AMS yields speedups between 15x to 60x for
grid-level simulation and up to 280x for block-level simulation;
• SystemC-AMS simulation time is virtually insensitive to the power distribution of the
underlying circuit and of the floorplan and only depends on the number of blocks (block-
level mode) or the number of grid points (grid-level mode), that vice versa heavily affect
HotSpot;

• Despite of relying on simpler solvers, SystemC-AMS simulations yield remarkable accuracy,
with maximum error over all possible scenarios in the order of 1%.

7 CONCLUSIONS
This work proposed the adoption of SystemC-AMS for the runtime monitoring of temperature, with
the goal of improving extra-functional property evaluation at all design stages. The generated code
exploits the ELN abstraction level, and it does not require the development of ad-hoc circuit simu-
lators. The experimental analysis proved the effectiveness of the generated code. The initialization
overhead, due to the general-purpose nature of SystemC-AMS, is indeed compensated by speedups
up to two orders of magnitude in case of transient simulation. This, together with a high level of
accuracy (max. error in the order of 1%), allows to effectively evaluate the thermal evolution, also in
case of complex benchmarks. Additionally, the SystemC-AMS thermal simulator can be simulated
in a single run with power and functional models, thus allowing to reproduce mutual dependencies
among different aspects of a smart system. Future work will focus on additional refinements to the
methodology, to reduce the initialization and memory overhead.

REFERENCES
[1] B. Beckmann, Y. Eckert, et al. 2013. A Comprehensive Timing, Power, Thermal, and Reliability Model for Exascale

Node Architectures. In Proc. of DOE MODSIM. 1–3. cseweb.ucsd.edu/~marora
[2] L. Benini, R. Hodgson, and P. Siegel. 1998. System-level power estimation and optimization. In Proc. of ACM/IEEE

ISLPED. 173–178.
[3] T. Bouhadiba, M. Moy, F. Maraninchi, J. Cornet, L. Maillet-Contoz, and I. Materic. 2013. Co-simulation of Functional

SystemC TLM Models with Power/Thermal Solvers. In Proc. of IEEE IPDPSW. 2176–2181.
[4] L. Bousquet and E. Simeu. 2013. System-level modeling of electromechanical devices with energy consumption. In

Proc. of IEEE SysCon. 756–761.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

cseweb.ucsd.edu/~marora

39:26 Y. Chen et al.

[5] D. Buttlar, J. Farrell, and B. Nichols. 2013. PThreads Programming - A POSIX Standard for Better Multiprocessing. O’Reilly
Media.

[6] Y. Chen, S. Vinco, E. Macii, and M. Poncino. 2016. Fast thermal simulation using SystemC-AMS. In Proc. of ACM/IEEE
GLSVLSI. 427–432.

[7] F. Fummi, M. Lora, F. Stefanni, D. Trachanis, J. Vanhese, and S. Vinco. 2014. Moving from co-simulation to simulation
for effective smart systems design. In IEEE/ACM DATE. 1–4.

[8] P. A. Hartmann, P. Reinkemeier, A. Rettberg, and W. Nebel. 2009. Modelling control systems in SystemC AMS - Benefits
and limitations. In Proc. of IEEE SOCC. 263–266.

[9] N. Hatami, R. Baranowski, et al. 2014. Multilevel Simulation of Nonfunctional Properties by Piecewise Evaluation.
ACM TODAES 19, 4 (2014), 37:1–37:21.

[10] M. Hsieh, K. Pedretti, J. Meng, et al. 2012. SST + Gem5 = a Scalable Simulation Infrastructure for High Performance
Computing. In Proc. of ACM SIMUTOOLS. 196–201.

[11] W. Huang, K. Sankaranarayanan, R. J. Rib, M.R. Stan, and K. Skadron. 2007. An Improved Block-Based Thermal Model
in HotSpot 4.0 with Granularity Considerations. (2007). citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.3864.

[12] IEEE. 2016. IEEE Standard for Standard SystemC Analog/Mixed-Signal Extensions Language Reference Manual. In Std
1666.1-2016. 1–236.

[13] IEEE PATMOS. 2017. DESIGN CONTEST – Design for Performance and Thermal Efficiency. (2017).
http://patmos2017.web.auth.gr/patmos2017_designContest.php.

[14] Intel. 2017. MKL – Math Kernel Library (2017.2.174). (2017). https://software.intel.com/en-us/intel-mkl.
[15] L. Jani and A. Poppe. 2017. Adaptive co-simulation of functional-thermal behaviour of integrated circuits. In IEEE

THERMINIC. 1–8.
[16] T. Kemper, Y. Zhang, Z. Bian, and A. Shakouri. 2006. Ultrafast Temperature Profile Calculation in IC Chips. In IEEE

THERMINIC. 133–137.
[17] S. S. Kumar, A. Zjajo, and R. v. Leuken. 2015. Ctherm: An Integrated Framework for Thermal-Functional Co-simulation

of Systems-on-Chip. In Proc. of Euromicro PDP. 674–681.
[18] X. S. Li. 2005. An Overview of SuperLU: Algorithms, Implementation, and User Interface. ACM TOMS 31, 3 (2005),

302–325.
[19] P. Liu, Z. Qi, H. Li, L. Jin, W. Wu, S.X. Tan, and J. Yang. 2005. Fast thermal simulation for architecture level dynamic

thermal management. In IEEE ICCAD. 639–644.
[20] W. Liu, A. Calimera, A. Macii, et al. 2013. Layout-Driven Post-Placement Techniques for Temperature Reduction and

Thermal Gradient Minimization. IEEE TCAD 32, 3 (2013), 406–418.
[21] J. Nayfach and J. Renau. 2009. SOI, Interconnect, Package, and Mainboard Thermal Characterization. IEEE ISLPED,

327–330.
[22] M. Ozisik. 1968. Boundary Value Problems of Heat Conduction. Oxford University Press.
[23] X. Pan, J.M. Molina, and C. Grimm. 2015. Modeling power consumption at system-level for design of power integrity-

aware AMS-circuits. In Proc. of ECSI/IEEE FDL. 1–8.
[24] M. Pedram and S. Nazarian. 2006. Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and

Methods. Proc. of the IEEE 94, 8 (2006), 1487–1501.
[25] C. Reuther and K. Einwich. 2012. A SystemC AMS extension for controlled modules and dynamic step sizes. In Proc. of

IEEE/ECSI FDL. 90–97.
[26] K. Skadron, M.R. Stan, Wei Huang, et al. 2003. Temperature-aware computer systems: Opportunities and challenges.

IEEE Micro 23, 6 (2003), 52–61.
[27] K. Skadron, M. R. Stan, B. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan. 2003. Temperature-Aware

Microarchitecture: Extended Discussion and Results. Technical Report CS-2003-08. Univ. of Virginia Dept. of CS.
[28] L. Thiele, L. Schor, H. Yang, and I. Bacivarov. 2011. Thermal-aware system analysis and software synthesis for embedded

multi-processors. In ACM/EDAC/IEEE DAC. 268–273.
[29] V. Tiwari, S. Malik, A. Wolfe, and M.T.C. Lee. 1996. Instruction level power analysis and optimization of software. IEEE

ICVD 13, 2 (1996), 223–238.
[30] A. Viehl, B. Sander, O. Bringmann, and W. Rosenstiel. 2008. Integrated requirement evaluation of non-functional

system-on-chip properties. In ECSI/IEEE FDL. 105–110.
[31] A. Vincenzi, A. Sridhar, M. Ruggiero, and D. Atienza. 2011. Fast thermal simulation of 2D/3D integrated circuits

exploiting neural networks and GPUs. In IEEE/ACM ISLPED. 151–156.
[32] S. Vinco, Y. Chen, F. Fummi, E. Macii, and M. Poncino. 2017. A Layered Methodology for the Simulation of Extra-

Functional Properties in Smart Systems. IEEE TCAD 36, 10 (2017), 1702–1715.
[33] S. Vinco, A. Sassone, et al. 2014. An Open-source Framework for Formal Specification and Simulation of Electrical

Energy Systems. In Proc. of IEEE/ACM ISLPED. 287–290.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

SystemC-AMS Thermal Modeling for the Co-simulation of Functional and Extra-Functional
Properties 39:27

[34] H. Wang, J. Ma, S. Tan, C. Zhang, H. Tang, K. Huang, and Z. Zhang. 2016. Hierarchical Dynamic Thermal Management
Method for High-Performance Many-Core Microprocessors. ACM TODAES 22, 1 (2016), 1:1–1:21.

[35] H. Wang, J. Wan, S. X. D. Tan, C. Zhang, H. Tang, Y. Yuan, K. Huang, and Z. Zhang. 2018. A Fast Leakage-Aware
Full-Chip Transient Thermal Estimation Method. IEEE TC 67, 5 (2018), 617–630.

[36] T.-Y. Wang and C.C.P. Chen. 2004. SPICE-compatible thermal simulation with lumped circuit modeling for thermal
reliability analysis based on modeling order reduction. In IEEE ISQED. 357–362.

[37] Z. Wang, S. Kanwal, L. Wang, and A. Chattopadhyay. 2017. Automated High-level Modeling of Power, Temperature
and Timing Variation for Microprocessor. KMUTNB IJAST 10, 3 (2017), 163–175.

[38] Y. Yang, Z. Gu, C. Zhu, R.P. Dick, and L. Shang. 2007. ISAC: Integrated Space-and-Time-Adaptive Chip-Package
Thermal Analysis. IEEE TCAD 26, 1 (2007), 86–99.

[39] Y. Zhan, S.V. Kumar, and S.S. Sapatnekar. 2008. Thermally Aware Design. FTEDA 2, 3 (2008), 255–370.
[40] R. Zhang, M. R. Stan, and K. Skadron. 2015. HotSpot 6.0: Validation, Acceleration and Extension. Technical Report

CS-2015-04. Univ. of Virginia Dept. of CS.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 39. Publication date: 0.

