933 research outputs found

    Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation

    Full text link
    The multilevel Monte Carlo path simulation method introduced by Giles ({\it Operations Research}, 56(3):607-617, 2008) exploits strong convergence properties to improve the computational complexity by combining simulations with different levels of resolution. In this paper we analyse its efficiency when using the Milstein discretisation; this has an improved order of strong convergence compared to the standard Euler-Maruyama method, and it is proved that this leads to an improved order of convergence of the variance of the multilevel estimator. Numerical results are also given for basket options to illustrate the relevance of the analysis.Comment: 33 pages, 4 figures, to appear in Discrete and Continuous Dynamical Systems - Series

    Pricing American Options by Exercise Rate Optimization

    Get PDF
    We present a novel method for the numerical pricing of American options based on Monte Carlo simulation and the optimization of exercise strategies. Previous solutions to this problem either explicitly or implicitly determine so-called optimal exercise regions, which consist of points in time and space at which a given option is exercised. In contrast, our method determines the exercise rates of randomized exercise strategies. We show that the supremum of the corresponding stochastic optimization problem provides the correct option price. By integrating analytically over the random exercise decision, we obtain an objective function that is differentiable with respect to perturbations of the exercise rate even for finitely many sample paths. The global optimum of this function can be approached gradually when starting from a constant exercise rate. Numerical experiments on vanilla put options in the multivariate Black-Scholes model and a preliminary theoretical analysis underline the efficiency of our method, both with respect to the number of time-discretization steps and the required number of degrees of freedom in the parametrization of the exercise rates. Finally, we demonstrate the flexibility of our method through numerical experiments on max call options in the classical Black-Scholes model, and vanilla put options in both the Heston model and the non-Markovian rough Bergomi model

    Computing mean first exit times for stochastic processes using multi-level Monte Carlo

    Get PDF
    The multi-level approach developed by Giles (2008) can be used to estimate mean first exit times for stochastic differential equations, which are of interest in finance, physics and chemical kinetics. Multi-level improves the computational expense of standard Monte Carlo in this setting by an order of magnitude. More precisely, for a target accuracy of TOL, so that the root mean square error of the estimator is O(TOL), the O(TOL-4) cost of standard Monte Carlo can be reduced to O(TOL-3|log(TOL)|1/2) with a multi-level scheme. This result was established in Higham, Mao, Roj, Song, and Yin (2013), and illustrated on some scalar examples. Here, we briefly overview the algorithm and present some new computational results in higher dimensions

    Chebyshev Interpolation for Parametric Option Pricing

    Get PDF
    Function approximation with Chebyshev polynomials is a well-established and thoroughly investigated method within the field of numerical analysis. The method enjoys attractive convergence properties and its implementation is straightforward. We propose to apply tensorized Chebyshev interpolation to computing Parametric Option Prices (POP). This allows us to exploit the recurrent nature of the pricing problem in an efficient, reliable and general way. For a large variety of option types and affine asset models we prove that the convergence rate of the method is exponential if there is a single varying parameter and of any arbitrary polynomial order in the multivariate case. Numerical experiments confirm these findings and show that the method achieves a significant gain in efficiency

    Multilevel Monte Carlo methods for applications in finance

    Full text link
    Since Giles introduced the multilevel Monte Carlo path simulation method [18], there has been rapid development of the technique for a variety of applications in computational finance. This paper surveys the progress so far, highlights the key features in achieving a high rate of multilevel variance convergence, and suggests directions for future research.Comment: arXiv admin note: text overlap with arXiv:1202.6283; and with arXiv:1106.4730 by other author

    Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI

    Full text link
    In this paper we develop a very efficient approach to the Monte Carlo estimation of the expected value of partial perfect information (EVPPI) that measures the average benefit of knowing the value of a subset of uncertain parameters involved in a decision model. The calculation of EVPPI is inherently a nested expectation problem, with an outer expectation with respect to one random variable XX and an inner conditional expectation with respect to the other random variable YY. We tackle this problem by using a Multilevel Monte Carlo (MLMC) method (Giles 2008) in which the number of inner samples for YY increases geometrically with level, so that the accuracy of estimating the inner conditional expectation improves and the cost also increases with level. We construct an antithetic MLMC estimator and provide sufficient assumptions on a decision model under which the antithetic property of the estimator is well exploited, and consequently a root-mean-square accuracy of Δ\varepsilon can be achieved at a cost of O(Δ−2)O(\varepsilon^{-2}). Numerical results confirm the considerable computational savings compared to the standard, nested Monte Carlo method for some simple testcases and a more realistic medical application
    • 

    corecore