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Abstract

Recurrent tasks such as pricing, calibration and risk assessment need
to be executed accurately and in real time. We concentrate on Paramet-
ric Option Pricing (POP) as a generic instance of parametric conditional
expectations and show that polynomial interpolation in the parameter
space promises to considerably reduce run-times while maintaining ac-
curacy. The attractive properties of Chebyshev interpolation and its
tensorized extension enable us to identify broadly applicable criteria for
(sub)exponential convergence and explicit error bounds. The method
is most promising when the computation of the prices is most chal-
lenging. We therefore investigate its combination with Monte Carlo
simulation and analyze the effect of (stochastic) approximations of the
interpolation. For a wide and important range of problems, the Cheby-
shev method turns out to be more efficient than parametric multilevel
Monte-Carlo. We conclude with a numerical efficiency study.

Keywords: Multivariate Option Pricing Complexity Reduction (Ten-
sorized) Chebyshev Polynomials Polynomial Interpolation Fourier Trans-
form Methods Monte-Carlo Parametric Monte-Carlo online-offline de-
composition
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1 Introduction

The development of fast and accurate computational methods for parametric
models is one of the central issues in computational finance. Financial insti-
tutions dedicated to the trading or assessment of financial derivatives have to
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cope with the daily tasks of computing numerous characteristic financial quan-
tities. Examples of interest include prices, sensitivities and risk measures for
products on different models and for varying parameter constellations. With
regard to the ever growing market activities, more and more of these evalua-
tions need to be delivered in real time. In addition we face constantly rising
model sophistication since the original work of [1] and [35]. From the early
nineties onwards stochastic volatility and Lévy models as well as models based
on further classes of stochastic processes have been developed that reflect the
observed market data in a more appropriate way. For asset models, see e.g.
[27], [12], [10], [8]. In the case of fixed income models, see e.g. [13], [29],
[15]. The aftermath of the financial crisis 2007–2009, moreover, has lead to a
new generation of more complex models, for instance by incorporating more
risk factors. The usefulness of a pricing model critically depends on how well
its numerical implementation captures the relevant aspects of market reality.
Exploiting new ways to deal with the rising computational complexity there-
fore supports the evolution of pricing models and touches a core concern of
present-day mathematical finance.

A large body of computational tasks in finance needs to be repeatedly
performed in real time for a varying set of parameters. Prominent examples
include option pricing and hedging of different option sensitivities, e.g. delta
and vega, that also need to be calculated in real time. In particular for opti-
mization routines arising in model calibration, large parameter sets come into
play. Further examples arise in the context of risk control and assessment, such
as for the quantification and monitoring of risk measures. The following ques-
tion serves as a starting point of our investigations: How can we systemically
exploit the recurrent nature of parametric computational problems in finance
with the objective of gaining efficiency? Looking for answers to this question,
we focus in the sequel on Parametric Option Pricing (POP) that we identify
as a generic instance.

In the present literature on computational methods in finance, complexity
reduction for parametric problems has largely been addressed by applying
Fourier techniques following the seminal works of [6] and [41]. See also the
monograph [2]. Research in this area concentrates on adopting fast Fourier
transform (FFT) methods and variants for option pricing. [33] accurately
describes pricing European options with FFT. Further developments are for
instance provided by [34] for early exercise options and by [14] and [31] for
barrier options. Another path towards efficiently handling large parameter
sets that has been pursued in finance relies on reduced basis methods. These
are techniques for solving parametrized partial differential equations. [44], [7],
[38] and [23] and [4] applied this approach to price European, American plain
vanilla options and European baskets. FFT methods on the one hand can
be highly beneficial when the prices are required in a large number of Fourier
variables, e.g. for a large set of strikes of European plain vanillas. A method
that tailors Fourier pricing to the whole parametric family of integrands has
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recently been developed in [17]. On the other hand numerical experiments have
shown a promising gain in efficiency of reduced basis methods when an accurate
PDE solver is readily available. In essence, all these approaches reveal an
immense potential of complexity reduction by targeting parameter dependence.
To do this, they exploit the functional architecture of the underlying pricing
technique for varying parameters.

Financial institutions have to deal simultaneously with a diversity of mod-
els, a multitude of option types, and—as a consequence—a wide variety of
underlying pricing techniques. It is therefore worthwhile to explore the pos-
sibility of a generic complexity reduction method that is independent of the
specific pricing technique. To do so, we focus on the set of option prices and
the set of parameters of interest, deliberately disregard the pricing technology
and view the option price as a function of the parameters. The core idea is
now to introduce interpolation of option prices in the parameter space as a
complexity reduction technique for POP.

The resulting procedure naturally splits into two phases: Pre-computation
and real-time evaluation. The first one is also called the offline phase while
the second is also called the online phase. In the pre-computation phase, the
interpolation is made available. In the case of polynomial interpolation, this
steps amounts to the computation of the coefficients for the basis functions.
The actual procedure depends on the choice of the interpolation method. In
all cases, however, the prices have to be computed for some fixed parame-
ter configurations. Here, any appropriate pricing method—for instance based
on Fourier, PDE or even Monte-Carlo techniques—can be chosen. The real-
time evaluation phase then consists in evaluating the interpolation. Provided
that the evaluation of the interpolation is faster than the benchmark tool,
the scheme permits a gain in efficiency in all cases where accuracy can be
maintained. Then, we distinguish several use cases:

• In comparison to the benchmark pricing routine, the fast evaluation of
the interpolation will eventually outweigh the expensive pre-computation
phase, if pricing is a task which is repeatedly employed. Optimization
procedures are an obvious instance where this feature becomes advanta-
geous.

• The interpolation can simultaneously deliver a multitude of outputs. For
instance as we will see in the sequel the interpolation can be setup such
that it delivers sensitivities as well.

• Even if the number of price computations is limited, we can still benefit
from separating the procedure into its two phases. In this way, e.g., idle
times in the financial industry can be put to good use by preparing the
interpolation for whenever real-time pricing is needed during business
activities.

The question arising at this stage is: Under what circumstances can we hope
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to find an interpolation method that delivers both reliable results and a consid-
erable gain in efficiency?

One could now be tempted to proceed in a naive manner and first define
an equidistant grid and then interpolate piecewise linearly in the parameter
space. Numerical experiments for Black&Scholes call prices as function of the
volatility, for instance, would then provide convincing evidence that the num-
ber of nodes needed for a given accuracy is considerably high. Increasing the
polynomial degree might lead to better results. However, convergence might
not be guaranteed. [43] showed that polynomial interpolation on equispaced
grids may diverge—even for analytic functions. Second, the evaluation of the
polynomial interpolants may be numerically problematic, as it is shown in [43]
that “the interpolation problem for polynomial interpolation on an equidis-
tant grid is exponentially ill-conditioned”, a formulation we borrow from [47].
For these reasons, we abstain from polynomial interpolation with equidistant
grids. Rather, we take a step back and ask: Which methods of interpolating
prices as functions of model and payoff parameters are numerically promising
in terms of convergence, stability and implementational ease?

Regarding this research question, we need to take into consideration both
the set of interpolation methods as such and the specific features of the func-
tions we investigate. It is well-known that the efficiency of interpolation meth-
ods critically depends on the degree of regularity of the approximated function.
For the core problem of our study—European (basket) options—we investigate
the regularity of the option prices as functions of the parameters. We find that
these functions are indeed analytic for a large set of option types, models and
parameters. Taking the perspective of approximation theory, this inspires the
hope that suitable interpolation methods can be found. In particular, it is
well-known that orthogonal polynomial interpolation yields (sub)exponential
convergence in this case.

In this article we propose and investigate the interpolation of financial
quantities in the parameter space by Chebyshev polynomials. This has vari-
ous reasons. We empirically observe that parameters of interest often range
within bounded intervals, and Chebyshev polynomial interpolation is well-
known for its excellent numerical properties in approximating analytic func-
tions on bounded intervals. Their following key properties are of particular
interest for our purposes:

• For univariate functions that are several times differentiable, the method
converges polynomially and, for univariate analytic functions, conver-
gence is exponential—in stark contrast to polynomial interpolation on
equally spaced nodal points. Even more, Chebyshev polynomials appear
as an optimal choice when minimizing the error in a certain way among
the nodal polynomial interpolations, see Appendix A.

• The method can be implemented in a numerically stable way. This is
crucial for its actual performance.
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• The interpolation nodes are explicitly available and thus the coefficients
are explicitly given as a linear transformation of the function values at the
nodel points. On the one hand this makes the implementation straight-
forward, a feature that is valuable for both the application of the method
in complex IT infrastructures of financial industry and for further devel-
opments of the method. On the other hand, since the interpolation
nodes are explicitly given we can avoid a significant approximation step,
typically a regression, and therewith a major source of inaccuracy.

• The derivatives are trivial for the interpolation and known to converge
as well with a rate that is determined by the regularity of the function
that is interpolated. Thus sensitivities are additional outputs of high
accuracy.

• Chebyshev interpolation can be easily concatinated yielding Chebyshev-
spline approximation, which is extremely appealing when the function
exhibits discontinuities for instance.

• Chebyshev interpolation can be highly efficiently extended to higher di-
mensionality, for instance by low-rank tensor and sparse grid techniques.

In a remarkable monograph, [48] gives a comprehensive review of Cheby-
shev interpolation. Its appealing theoretical properties are indeed of practical
use as the software tool Chebfun1 demonstrates. In this implementation, [40]
aim “to combine the feel of symbolics with the speed of numerics”. Exploring
the potential of interpolation methods for more than one single free parameter,
we choose a tensorized version of Chebyshev interpolation:

For parameters p ∈ [−1, 1]D, where D ∈ N denotes the dimensionality of
the parameter space, the price Pricep is approximated by tensorized Chebyshev
polynomials Tj with pre-computed coefficients cj, j ∈ J , as follows,

Pricep ≈
∑
j∈J

cjTj(p).

Chebyshev interpolation is a standard numerical method that has proven to
be extremely useful for applications in such diverse fields as physics, engineer-
ing, statistics and economics. Nevertheless, for pricing tasks in mathematical
finance, Chebyshev interpolation still seems to be rarely used and its potential
is yet to be unfolded. [39] use Chebyshev interpolation of Black&Scholes prices
in the volatility as an intermediate step to derive a pricing methodology for
a time-changed model. Independently from us, [37] recently proposed Cheby-
shev interpolation as a quadrature rule for the computation of option prices
with a Fourier-type representation, which is comparable to the cosine method.

Our main results are the following:

1Chebfun is an open-source software system, see http://www.chebfun.org
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• Proposition 2.1 refines the known result that analyticity guarantees an

asymptotic error decay of order O
(
%−

D√N) in the total number N of
interpolation nodes where % > 1 is given by the domain of analyticity
and D is the number of varying parameters.

• Proposition 2.3 and 2.4 show convergence results for the related sensi-
tivities.

The method is promises the highest gain in efficiency for the most challenging
and therefore most computationally extensive problems. In these cases, the
computation of the values at the nodal points cannot be delivered at machine
precision but is affected by an approximation error. This approximation error
in turn affects the accuracy of the interpolation.

• Theorem 2.5 therefore provides an error bound including distorsions of
the nodal points. We consider two types of distorsions, those bounded
by a common deterministic threshold and those that are normally dis-
tributed. The first case is tailored to an underlying pricing method that
is accurate up to a pre-specified deterministic accuracy, the latter to the
computation of the values at the nodal points by Monte Carlo.

Qualitatively, we illustrate the relation to advanced Monte-Carlo techniques
and compare our approach with the parametric multilevel Monte-Carlo ap-
proach of [24] and [26]. We derive a theoretical result of the ”offline efficiency”,
i.e. the asymptotic rate of convergence in terms of the offline cost. This is a
measure for the accuracy versus the offline cost:

• In Theorem 2.6, we show that for each β > D/2 there exist constants
c̄1, c̄2 > 0 such that the offline cost is bounded by c̄1M and the expected
error of the Chebyshev method is bounded by c̄2 log(M)βM−1/2.

In Section 3, we introduce the general framework of POP (parametric option
pricing).

• Theorem 3.2 provides accessible sufficient conditions on options and mod-
els that guarantee analyticity in the parameters. Moreover it estab-
lishes a method to access the domain of analyticity. In combination with
Proposition 2.1 this allows to conclude for (sub)exponential convergence
rate, as well as to access the constants in the exact error bound.

This motivates us to further explore the potential of the Chebyshev method
for multivariate options. Here we also deliberately go beyond the scope of
our theoretical results and consider additional features like path-dependency.
We present empirical results demonstrating the efficiency of the Chebyshev
method:

• The explicit gains in efficiency in comparison to standard Monte-Carlo
methods are shown in Section 4.2, taking multivariate lookback options
in the Heston model as examples.
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To conclude this introduction we mention some of the areas, where we
expect the application of this approach to be especially fruitful, namely the

• approximation of the implied volatility, see [20],

• development of efficient solvers for stochastic dynamic programming prob-
lems, see [21],

• acceleration of calibration procedures,

• acceleration of nested Monte Carlo simulations, for instance in risk sce-
nario evaluation.

The remainder of the article is organized as follows. In Section 2 we introduce
Chebyshev interpolation in detail and present the general error estimates and
convergence results. Section 3 establishes a convergence analysis of Cheby-
shev interpolation for POP. The numerical experiments in Section 5 confirm
these findings using Fourier techniques. The gain in efficiency when pricing
basket options is numerically investigated. Experiments based on Monte-Carlo
and finite differences moreover suggest to further explore the potential of the
approach beyond the scope of the theoretical investigations from the previ-
ous sections. We conclude the section with complexity considerations and
by discussing the relation to advanced Monte-Carlo techniques. The result-
ing conclusion and outlook are presented in Section 6. Finally, the appendix
provides the proof of the multivariate convergence result.

2 Chebyshev Polynomial Interpolation

Let us introduce the notation for Chebyshev interpolation along with its tensor-
based extension to the multivariate case, see e.g. [45]. In order to obtain
convenient notation, consider the interpolation of prices

Pricep, p ∈ [−1, 1]D. (1)

For a more general hyperrectangular parameter space P = [p
1
, p1] × . . . ×

[p
D
, pD], appropriate linear transformations need to be applied. Let N :=

(N1, . . . , ND) with Ni ∈ N0 for i = 1, . . . , D. The interpolation, which has∏D
i=1(Ni + 1) summands, is given by

IN(Price(·))(p) :=
∑
j∈J

cjTj(p), (2)

where the summation index j is a multi-index ranging over J := {(j1, . . . , jD) ∈
ND

0 : ji ≤ Ni for i = 1, . . . , D}, the basis functions

Tj(p1, . . . , pD) =
D∏
i=1

Tji(pi), Tji(pi) := cos
(
ji arccos(pi)

)
, (3)
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the coefficients

cj =
( D∏
i=1

21{0<ji<Ni}

Ni

) N1∑
k1=0

′′
. . .

ND∑
kD=0

′′
Pricep

(k1,...,kD)
D∏
i=1

cos

(
jiπ

ki
Ni

)
, (4)

where
∑ ′′

indicates that the first and last summands are halved, and the
Chebyshev nodes pk for the multi-index k = (k1, . . . , kD) ∈ J given by

pk = (pk1 , . . . , pkD), pki = cos

(
π
ki
Ni

)
. (5)

At the Ni+1 points pki , the Chebyshev polynomial TNi(x) reaches its extreme
values. These points are also referred to as Chebyshev-Lobatto points, Cheby-
shev extreme points, or Chebyshev points of the second kind and satisfy a
discrete orthogonality property, see (26).2

2.1 Exponential Convergence

The following proposition is a slight improvement of [45, Lemma 7.3.3]. Namely,
the error bound is given in terms of the constants %1, . . . , %D rather than by
% := minDi=1 %i. For our purpose, it is worth to provide this generalization since
the different Bernstein radii %i are accessible in examples, compare Section
(3). This allows to derive stricter error bounds and improved assertions on the
convergence rates.

Proposition 2.1. Let P 3 p 7→ Pricep be a real-valued function that has
an analytic extension to some generalized Bernstein ellipse B(P , %) for some
parameter vector % ∈ (1,∞)D and suppose that supp∈B(P,%) |Pricep| ≤ V . Then

max
p∈P

∣∣Pricep − IN(Price(·))(p)
∣∣ ≤ 2

D
2

+1 · V ·

(
D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

) 1
2

.

The proof of the proposition is provided in Appendix B and is based on
the proof of [45, Lemma 7.3.3]. A further improved error bound for tensorized
Chebyshev interpolation is presented in [22]. Sharper error bounds reduce the
computational cost, because they allow us to use fewer nodal points to achieve
a given accuracy.

Corollary 2.2. Under the assumptions of Proposition 2.1, there exists a con-
stant C > 0 such that

max
p∈P

∣∣Pricep − IN(Price(·))(p)
∣∣ ≤ C%−N , (6)

where % = min
1≤i≤D

%i and N = min
1≤i≤D

Ni.

2According to [48], these points are more often applied than the Ni + 1 zeros of TNi+1(x)
as nodal points, which are the Chebyshev points of the first kind.
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In particular, under the assumptions of Proposition 2.1, whereN =
∏D

i=1(Ni+
1) denotes the total number of nodes, Corollary 2.2 shows that the error decay

has (sub)exponential order O
(
%−

D√N) for some % > 1.

2.2 Convergence of the Sensitivities

The sensitivities play a crucial role in financial applications. We therefore state
convergence results for the partial derivatives as well. The one-dimensional
result is shown in [46] and a multivariate result is derived in [5] for functions in
Sobolev spaces. These results allow us to obtain the Chebyshev approximation
of derivatives at no additional cost. To state the corresponding convergence
results, we follow the approach of [5] and introduce the weighted Sobolev spaces
for σ ∈ N as

W σ,ω
2 (P) =

{
φ ∈ L2(P) : ‖φ‖Wσ,ω

2 (P) <∞
}
, (7)

with norm

‖φ‖2
Wσ,ω

2 (P) =
∑
|α|≤σ

∫
P

|∂αφ(p)|2ω(p) d p, (8)

where α = (α1, . . . , αD) ∈ ND
0 is a multi-index, ∂α = ∂α1 · · · ∂αD , and the

weight function ω on P is given by

ω(x) :=
D∏
j=1

ω(τ−1
[p
j
,pj ]

(xj)), ω(τ−1
[p
j
,pj ]

(xj)) := (1− τ−1
[p
j
,pj ]

(xj)
2)−

1
2

with τ[p
j
,pj ](p) = pj +

p
j
−p
2

(
1 − p

)
. We are now in a position to present the

following result.

Proposition 2.3. Let P 3 p 7→ Pricep ∈ W σ,ω
2 (P) and set Ni = N, i =

1, . . . , D, i.e. the same number of nodal points in each dimension. Then for
any D

2
< σ ∈ N and any σ ≥ µ ∈ N0 there exists a constant C > 0 such that

‖Price(·) − IN(Price(·))(·)‖Wµ,ω
2 (P) ≤ CN2µ−σ‖Price(·)‖Wσ,ω

2 (P),

The proof of the proposition is provided in Appendix C and applies [5,
Theorem 3.1] together with the transformation τ .

The result in Proposition 2.3 is given in terms of weighted Sobolev norms.
In the following proposition, we relate the approximation error in the weighted
Sobolev norm to the C l(P) norm, where C l(P) is the Banach space of all
functions u in P such that u and ∂αu with |α| ≤ l are uniformly continuous
on P and the norm

‖u‖Cl(P) = max
|α|≤l

max
p∈P
|∂αu(p)|

is finite.
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Proposition 2.4. Let P 3 p 7→ Pricep ∈ W σ,ω
2 (P) and set Ni = N, i =

1, . . . , D, i.e. the same number of nodal points in each dimension. Then, for
any D

2
< σ ∈ N and any σ ≥ µ ∈ N0 and l ∈ N0 with µ− l > D

2
, there exists

a constant C̄(σ) > 0 depending on σ such that

‖Price(·) − IN(Price(·))(·)‖Cl(P) ≤ C̄(σ)N2µ−σ max
|α|≤σ

sup
p∈P
|∂αPricep|.

The proof of the proposition is elementary and combines [5, Theorem 3.1]
and [49, Corollary 6.2].

2.3 Interaction of Approximation Errors at Nodal Points
and Interpolation Errors

The Chebyshev method is most promising for use cases where computationally
intensive pricing methods are required. In such cases, the issue of distorted
prices and their consequences arises naturally when computing the prices at
the Chebyshev nodes. The observed noisy prices at the Chebyshev nodes are

Pricep
(k1,...,kD)

ε = Pricep
(k1,...,kD)

+ εp
(k1,...,kD)

,

where εp
(k1,...,kD)

is the approximation error introduced by the underlying nu-
merical technique at the Chebyshev nodes. By linearity, the resulting interpo-
lation is of the form

IN(Price(·)
ε )(p) = IN(Price(·))(p) + IN(ε(·))(·) (9)

with error function

ε(p) =

ND∑
jD=0

. . .

N1∑
j1=0

cεj1,...,jDTj1,...,jD(p), (10)

where the coefficients cεj for j = (j1, . . . , jD) ∈ J are given by

cεj =
( D∏
i=1

21{0<ji<Ni}

Ni

) N1∑
k1=0

′′
. . .

ND∑
kD=0

′′
εp

(k1,...,kD)
D∏
i=1

cos

(
jiπ

ki
Ni

)
. (11)

We are interested in two types of distorsions εp
j

for the multiindices j =
(k1, . . . , kD) ∈ J . First, analysing the case that all distorsions are bounded
by a fixed constant ε will give a stability result. Second, when computing the
values at the nodal points independently with a crude Monte Carlo method,
the distorsions will be i.i.d. and asympotically normally distributed, εp

j ∼=
N(0, σM) with σM = σ/

√
M . Third, in practice it will often turn out to

be considerably more efficient to compute the values at the nodal points in
the offline phase in a stochastically dependent way. For instance it is often
advantageous to sample the driving stochastic process once and reuse it for
the whole set of parameters pj.

Formally, we distinguish the following cases
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(i) |εpj | ≤ ε for all j ∈ J ,

(ii) εp
j

is normally distributed with distribution N (0, σj,M) for all multi-
indices j ∈ J (not necessarily independent).

In order to express the error bounds for these different cases, let

ε∗(N1, . . . , ND) :=

ε, in case (i)√
2log

(
2
∏D

i=1(Ni + 1)
)
maxj∈Jσj,M , in case (ii).

Theorem 2.5. Let P 3 p 7→ Pricep be given as in Proposition 2.1 and asume
one of the conditions (i), respectively (ii), for the distorsions εp

j
, j ∈ J . Then

the interpolation including the distorsions, IN(Price(·)
ε ) satisfies

E

(
max
p∈P

∣∣Pricep − IN(Price(·)
ε )(p)

∣∣)

≤ 2
D
2

+1 · V ·

(
D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

) 1
2

+ ΛN · ε∗(N1, . . . , ND), (12)

where the Lebesgue constant ΛN is bounded by ΛN ≤ 2D

πD

∏D
i=1

(
log(Ni+1)+1

)
.

Proof. In order to derive a significant estimate, we rewrite the interpolation
in Lagrangian form, i.e.

IN(f)(p) =

N1∑
k1=0

. . .

ND∑
kd=0

f(p(k1,...,kD))λ(k1,...,kD)(p) (13)

with the appropriate polynomials λ(k1,...,kD). From Proposition 2.1 we deduce

E

(
max
p∈P

∣∣Pricep − IN(Price(·)
ε )(p)

∣∣) ≤ c+ E

(
max
p∈P

N1∑
k1=0

. . .

ND∑
kd=0

|εp(k1,...,kD)||λ(k1,...,kD)(p)|

)
with constant c as defined in the assertion of the theorem. Invoking the
well-known estimate for the Lebesgue constant, which is defined by ΛN :=
maxp∈P

∑ND
kd=0 . . .

∑ND
kd=0

∣∣λ(k1,...,kD)(p)
∣∣, immediately yields the result for case

(i).
Assuming (ii), for arbitrary t > 0 we estimate using Jensen’s inequality

and the symmetry of the centered normal distribution

etE(maxj∈J |pj |) < E etmaxj∈J |pj | = Emax
j∈J

et|p
j | <

∑
j∈J

E
(

et|p
j | ) < 2

∑
j∈J

E
(

etp
j )
.

(14)
Inserting the characteristic function of the normal distribution and setting n :=∏D

i=1(Ni + 1) and σ := maxj∈J σj,M we obtain E(maxj∈J |pj|) ≤ log(2n)/t +
σ2t/2. Finally, minimizing over t > 0 yields

E
(

max
j∈J
|pj|
)
<
√

2 log(2n)σ.
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2.4 Relation to parametric multilevel Monte-Carlo

There is an interesting relation between the Chebyshev interpolation approach
that we proposed in this section and the parametric multilevel Monte-Carlo
method suggested by S. Heinrich in [24] and [26]. To be more precise, as
concisely explained in Section 2.1 in [25], the starting point of [24] is the
interpolation of the function

p1 7→ E
(
fp

1

(X)
)

(15)

and the computation of E[fpk(X)] at the nodes pk with Monte-Carlo. Note
that in this setting, the random variable X is not parametric. Next, he in-
troduces the multilevel Monte-Carlo method. This is a hierarchical procedure
based on nested grids. In each step, the estimator of the coarser grid serves
as a control variate. The grids then are chosen optimally to balance cost and
accuracy. [26] shows that the resulting algorithm is optimal for a certain class
of problems. This class of problems is characterized by the regularity of the
function (p1, x) 7→ fp

1
(x), namely that it belongs to a Sobolev space of a cer-

tain order r. The order r for which partial derivatives in (p1, x) are assumed
is the determining factor for the efficiency. In particular, the weak partial
derivatives in both the parameters p1 ∈ RD and in x ∈ Rd need to exist in
order to apply the approach of [26].

In contrast, our error analysis is based on the regularity of the mapping

(p1, p2) 7→ E
(
fp

1

(Xp2)
)
. (16)

The resulting problem class is significantly larger than the setting of [24] and
[26]. This is essential for applications in finance, as the examples of a European
call and digital option prove: The payoff function of a European call has a
kink. According to the ansatz of [24] this yields a very poor convergence rate.
The call option prices as a function of the parameters, however, are in many
cases even analytic as we will prove in the following Section 3. The situation
is even more severe for digital options, whose payoffs are not even weakly
differentiable. Here, the approach of [24] does not even yield convergence.
The Chebyshev method as proposed in this article, however, can be shown to
converge with an exponential rate for a wide range of applications. We again
refer to Section 3.

We relate the error analysis presented in Section 2.3 with the results of
[26]. [26] presents a bound of the expected error in the L2−norm as a function
of the cost to obtain an asymptotic analysis of the efficiency. In [25], it is
shown that there exist constants c1 and c2 such that for each integer M the
cost of the parametric Monte-Carlo method is bounded by c1M and the error
is bounded by c2M

−α, where α depends on the regularity of the function f
and α ∈ (0, 1

2
). The index α depends on the dimension of the parameter space

and the Sobolev order of the function space to which f belongs.
To present an error analysis in the same spirit, we observe that the cost

for estimating Price(p) for a fixed p is bounded by c̄1M for M Monte-Carlo
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simulations with a constant c̄1 > 0. It follows directly that the cost of deriving
the interpolation IN(Price(·)

ε ) is bounded by c̄1M = c̄1

∏D
i=1(Ni + 1)M , where

Ni is the number of nodal points in dimension i and M is the number of sample
paths at each nodal point. In order to estimate the error, according by the
central limit theorem it is reasonable to assume σj,M = σj/

√
M for large M

and σM from case (ii) in Theorem 2.5.
Departing from the framework of [25], we estimate the expectation of the

L∞−norm of the error, instead of the weaker L2−norm. The maximum norm is
more suitable for quantifying mispricing and it is available without additional
cost, since the Chebyshev interpolation is tailored to minimize the maximum
error.

Theorem 2.6. Let the assumptions of Theorem 2.5 with condition (ii) on the
distorsions hold and σj,M = σj/

√
M . For each β > D/2 there exist constants

c̄1, c̄2 > 0 such that for each integerM > 1 there is a choice of M,N such that
the offline cost of the Chebyshev method is bounded by c̄1M and

E

(
max
p∈P

∣∣Pricep − IN(Price(·)
ε )(p)

∣∣) ≤ c̄2 log(M)βM−1/2.

Proof. Combining (12) and Corollary 6 results in

err := E

(
max
p∈P

∣∣Pricep − IN(Price(·)
ε )(p)

∣∣) ≤ C1%
−N + ΛN · ε∗(N1, . . . , ND),

(17)

where % = min
1≤i≤D

%i and N = min
1≤i≤D

Ni. Setting Ni(M) = N(M) = α log(M) for

some α > 1/(2 log(%)) andM = cN(M)DM the result follows from elementary
estimations.

Remark 2.7. In Theorem 2.6, the error of the resulting Chebyshev interpola-
tion is put in relation to the cost of the offline phase. This is in the spirit of
[25]. The following two observations show that our approach is in this regard
competitive:

(i) In contrast to [25, Theorem 1], the payoff function (p1, x) 7→ fp
1
(x) is

not required to be weakly differentiable to a specific order. Moreover,
Theorem 2.6 allows a parametrized random variable Xp2.

(ii) The error of the multilevel Monte-Carlo estimate of [25, Theorem 1]
decays with

√
M, if the function f is of high regularity. This is the only

case in which the asymptotic order of convergence in [25, Theorem 1] is
slightly better than the rate of Theorem 2.6, where the logarithmic term
appears additionally. Note that the error in Theorem 2.6 is measured in
the stronger L∞−norm, however.
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We emphasize that the analysis according to [25] considers efficiency in
terms of accuracy versus the cost of the offline phase and ignores the online
phase. From an application point of view, however, the cost of the online phase
is crucial. This is especially the case where real-time evaluation is required.
In some applications, it is even rather the offline cost that can be disregarded.
This is for instance the case if the offline phase can be executed in idle times.

To make the implications clear, let us consider a concrete example. Fol-
lowing the reasoning of efficiency as accuracy versus ”offline cost”, the number
of nodal points of the interpolation is of minor importance. So is the choice
of the interpolation method. This is in line with [26] choosing piecewise lin-
ear interpolation to illustrate the multilevel Monte-Carlo method, that they
originally described for an arbitrary nodal interpolation. Whereas this choice
of interpolation can be appropriate for a one-dimensional parameter space, a
simple calculation makes clear how crucial it becomes for multivariate param-
eter spaces to require as few nodal points as possible to achieve a pre-specified
accuracy. For instance, when interpolating piecewise linearly on an equidis-
tant grid in the multilevel Monte-Carlo method of [25] with L levels, 2L nodal
points in each direction are applied. For a D-dimensional parameter space,
this results in 2LD nodal points. For L = 10 and D = 2, this results in more
than 1 million nodal points. In this case, the ”online cost” is in the range of
the cost of a Monte-Carlo simulation, which makes the interpolation redun-
dant. Applying Chebyshev polynomial interpolation, a small number of nodal
points such as 7, as shown in Section 4.2, suffices for the Chebyshev interpola-
tion method to obtain an appropriate accuracy. In this case, the total number
of nodes is 49 for the tensorized Chebyshev interpolation in two dimensions.
Thus, the online cost outperforms Monte-Carlo significantly.

This highlights the fact that the choice of the interpolation method is cru-
cial. Let us now turn to an algorithmic structure to balance accuracy and
online cost in the Chebshev interpolation approach.

Remark 2.8. The online cost is proportional to the number of nodal points.
If the highest priority is given to the efficiency of the online phase, one can
proceed as follows to achieve a pre-specified accuracy ε: First, choose the num-
ber of nodal points such that the first summand of the error bound in (12)
is smaller than ε/2. Then, choose the number of samples M of the selected
Monte-Carlo technique such that also the second summand of the error bound
in (12) is smaller than ε/2.

3 Exponential Convergence of Chebyshev In-

terpolation for POP

In this section, we embed the multivariate Chebyshev interpolation into the op-
tion pricing framework. We provide sufficient conditions under which option
prices depend analytically on their parameters. We keep the option pricing
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framework sufficiently abstract so that it also comprises various different ap-
plications such as the computation of risk quantities on basis of parametric
random variables.

Let us first observe that an analysis along the lines of [24] and [26] would
start from the regularity of the function p1 7→ fp

1
(X). Yet, we have to

recognize that basic functions such as the payoff of a plain vanilla option,
K 7→ (ST ±K)+, a digital option, B 7→ 1(−∞,B](S), B 7→ 1[B,∞)(S) (the latter
also underlies the computation of the quantile function and thus the Var for
instance) are not differentiable respectively not even continuous. We there-
fore conclude that the approach of [24] and [26] is too restrictive for financial
applications.

Invoking that–although the payoff of a plain vanilla option has a kink–
its price function is smooth in virtually all models, we exploit the smoothing
property of the distribution in order to derive analyticity of the price as func-
tion of its parameters. For linear problems, this can be conveniently studied
in terms of Fourier transforms. First, Fourier representations of option prices
are explicitly available for a large class of both option types and asset mod-
els. Second, Fourier transformation unveils the analytic properties of both the
payoff structure and the distribution of the underlying stochastic quantity in
a beautiful way. The Fourier transform of the damped call or digital payoff
function for instance evidently is analytic in the strike.

To introduce a general option pricing framework we consider option prices
of the form

Pricep=(p1,p2) = E
(
fp

1

(Xp2)
)

(18)

where fp
1

is a parametrized family of measurable payoff functions fp
1

: Rd →
R+ with payoff parameters p1 ∈ P1 and Xp2 is a family of Rd-valued random
variables with model parameters p2 ∈ P2. The parameter set

p = (p1, p2) ∈ P = P1 × P2 ⊂ RD (19)

is again of hyperrectangular structure, i.e. P1 = [p
1
, p1]× . . .× [p

m
, pm] and

P2 = [p
m+1

, pm+1]× . . .× [p
D
, pD] for some 1 ≤ m ≤ D and real p

i
≤ pi for all

i = 1, . . . , D.
Typically, we are given a parametrized Rd-valued driving stochastic process

Hp′ where Sp
′

is the vector of asset price processes modelled as an exponential
of Hp′ , i.e.

Sp
′,i
t = Sp

′,i
0 exp(Hp′,i

t ), 0 ≤ t ≤ T, 1 ≤ i ≤ d, (20)

and Xp2 is an FT -measurable Rd-valued random variable, possibly depending
on the history of the d driving processes, i.e. p2 = (T, p′) and

Xp2 := Ψ
(
Hp′

t , 0 ≤ t ≤ T
)
,
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where Ψ is an Rd-valued measurable functional.
We now focus on the case where the price (18) is given in terms of Fourier

transforms. This enables us to provide sufficient conditions under which the
parametrized prices have an analytic extension to an appropriate generalized
Bernstein ellipse. For most relevant options, the payoff profile fp

1
is not inte-

grable and its Fourier transform over the real axis is not well-defined. Instead,
there exists an exponential damping factor η ∈ Rd such that e〈η,·〉 fp

1 ∈ L1(Rd).
We therefore introduce exponential weights in our set of conditions and denote
the Fourier transform of g ∈ L1(Rd) by

ĝ(z) :=

∫
Rd

ei〈z,x〉 g(x) dx

and we denote the Fourier transform of e〈η,·〉 f ∈ L1(Rd) by f̂(· − iη). The ex-
ponential weight of the payoff will be compensated by exponentially weighting
the distribution of Xp2 and that weight will reappear in the argument of ϕp

2
,

the characteristic function of Xp2 .

Conditions 3.1. Let P = P1×P2 ⊂ RD be a parameter set with hyperrect-
angular structure as in (19). Let % ∈ (1,∞)D and denote %1 := (%1, . . . , %m)
and %2 := (%m+1, . . . , %D), and consider a weight η ∈ Rd.

(A1) For every p1 ∈ P1 the mapping x 7→ e〈η,x〉 fp
1
(x) is in L1(Rd).

(A2) For every z ∈ Rd the mapping p1 7→ f̂p1(z − iη) is analytic in the
generalized Bernstein ellipse B(P1, %1) and there are constants c1, c2 > 0

such that supp1∈B(P1,%1) |f̂p
1(−z − iη)| ≤ c1e

c2|z| for all z ∈ Rd.

(A3) For every p2 ∈ P2 the exponential moment condition E
(

e−〈η,X
p2 〉 ) <∞

holds.

(A4) For every z ∈ Rd the mapping p2 7→ ϕp
2
(z + iη) is analytic in the

generalized Bernstein ellipseB(P2, %2) and there are constants α ∈ (1, 2]
and c1, c2 > 0 such that supp2∈B(P2,%2) |ϕp

2
(z + iη)| ≤ c1 e−c2|z|

α
for all

z ∈ Rd.

Conditions (A1)–(A4) are satisfied for a large class of payoff functions and
asset models, see [16]

Theorem 3.2. Let % ∈ (1,∞)D and consider a weight η ∈ Rd. Under condi-
tions (A1)–(A4), P 3 p 7→ Pricep has an analytic extension to the generalized
Bernstein ellipse B(P , %) and supp∈B(P,%) |Pricep| ≤ V , and therefore,

max
p∈P

∣∣Pricep − IN(Price(·))(p)
∣∣ ≤ 2

D
2

+1 · V ·

(
D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

) 1
2

.
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Proof. Thanks to assumptions (A2) and (A4), the mapping z 7→ f̂p1(−z −
iη)ϕp

2
(z + iη) belongs to L1(Rd) for every p = (p1, p2) ∈ P . Together with

conditions (A1) and (A3), we therefore can apply [11, Theorem 3.2]. This
gives the following Fourier representation of the option prices,

Pricep =
1

(2π)d

∫
Rd+iη

f̂p1(−z)ϕp
2

(z) d z.

By assumptions (A2) and (A4), the mapping

p = (p1, p2) 7→ f̂p1(−z)ϕp
2

(z)

has an analytic extension to B(P , %).
Let γ be the contour of a compact triangle in the interior of B([p

i
, pi], %i)

for arbitrary i = 1, . . . , D. Then, by assumptions (A2) and (A4) we may apply
Fubini’s theorem to obtain∫

γ

Price(p1,...,pD)(z) d pi =
1

(2π)d

∫
γ

∫
Rd+iη

f̂p1(−z)ϕp
2

(z) d z d pi

=
1

(2π)d

∫
Rd+iη

∫
γ

f̂p1(−z)ϕp
2

(z) d pi d z = 0.

Moreover, thanks to assumptions (A2) and (A4), dominated convergence shows
continuity of p 7→ Pricep in B(P , %) which yields the analyticity of p 7→ Pricep

in B(P , %) thanks to a version of Morera’s theorem provided in [28, Satz 8].

Similar to Proposition 2.3, if Conditions 3.1 are satisfied, the Chebyshev in-
terpolation also allows the corresponding derivatives to be well approximated.
One very interesting application of this result in finance is the computation of
sensitivities like delta or vega of an option price for risk assessment purposes.
Theorem 3.2 together with Proposition 2.3 yield the following corollary.

Corollary 3.3. Set Ni = N, i = 1, . . . , D, i.e. the same number of nodal
points in each dimension. Under Conditions 3.1, P 3 p 7→ Pricep ∈ W σ,ω

2 (P)
for all σ ∈ N, and therefore for all l ∈ N, µ and σ with σ > D

2
, 0 ≤ µ ≤ σ

and µ− l > D
2

there exists a constant C such that

‖Pricep − IN(Price(·))(p)‖Cl(P) ≤ CN2µ−σ‖Pricep‖Wσ
2 (P).

4 Numerical Experiments

In this section, we use the Chebyshev method to price basket and path-
dependent options. First, we apply the method to interpolate Monte-Carlo
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estimates of prices of financial products and check the resulting accuracy.
To this end, we choose example basket, barrier and lookback options in 5-
dimensional Black&Scholes, Heston and Merton models. Second, we combine
the Chebyshev method with a Crank-Nicolson finite difference solver using
the Brennan Schwartz approximation, see [3], in order to price a univariate
American put option in the Black&Scholes model.

In our Monte-Carlo simulation, we use 106 sample paths, antithetic variates
as a variance reduction technique, and 400 time steps per year. The error of the
Monte-Carlo method cannot be computed directly. We thus turn to statistical
error analysis and use 95% confidence bounds to determine the accuracy. These
bounds are derived from the assumption of a normally distributed Monte-
Carlo estimator with mean equal to the estimator’s value and variance equal
to the empirical variance of the payoff on the Monte-Carlo samples. The
confidence bounds then yield a range around the mean that includes the true
price with 95% probability. We pick two free parameters pi1 , pi2 out of (19),
1 ≤ i1 < i2 ≤ D, in each model setup and fix all other parameters at reasonable
constant values. In this section, we define the discrete parameter grid P ⊆
[p
i1
, pi1 ]× [p

i2
, pi2 ] by

P =
{(
p
ki1
i1
, p

ki2
i2

)
, ki1 , ki2 ∈ {0, . . . , 40}

}
,

p
kij
ij

= p
ij

+
kij
40

(
pij − pij

)
, kij ∈ {0, . . . , 40}, j ∈ {1, 2},

(21)

and call P the test grid. On this test grid, the largest confidence bound is
0.025, and is less than 0.013 on average. For the finite difference method,
we find that the absolute error between the numerical approximation and the
option price is below 0.005 on all computed parameter tuples in P . This error
bound was computed by comparing each approximation to the limit of the
sequence of finite difference approximations as the grid size is increased. In
our calculations, we work with a grid size in time as well as in space (log-
moneyness) of 50 · max{1, T} and compare the result to the prices obtained
using grid sizes of 1000 · max{1, T}. This grid size was determined to be
sufficient for approximating the limit, since it was observed that a grid size of
500 ·max{1, T} produces nearly identical prices.

Here, our main concern is the accuracy of the Chebyshev interpolation
as we vary the strike and maturity parameters of each option analogously
to the previous section. For N ∈ {5, 10, 30}, we precompute the Chebyshev
coefficients as defined in (4) with D = 2 while always keeping N1 = N2 = N .
An overview of the fixed and free parameters in our model selection is given
in Table 1. For computational simplicity in the Monte-Carlo simulation, we
assume that the underlyings are uncorrelated.

Let us briefly define the payoffs of the multivariate basket and path-dependent
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Model fixed parameters free parameters
p1 p2 p1 p2

BS Sj0 = 100, σj = 0.2 K ∈ [83.33, 125] T ∈ [0.5, 2]
r = 0.005

Heston Sj0 = 100, κj = 2, K ∈ [83.33, 125] T ∈ [0.5, 2]
r = 0.005 θj = 0.22,

σj = 0.3,
ρj = −0.5,
vj,0 = 0.22

Merton Sj0 = 100, σj = 0.2, K ∈ [83.33, 125] T ∈ [0.5, 2]
r = 0.005 αj = −0.1,

βj = 0.45,
λj = 0.1

Table 1: Parametrization of models, basket and path-dependent options. The model pa-
rameters are given for j = 1, . . . , d to reflect the multivariate setting with free parameters
given by the strike K and the maturity T . Note that, in contrast to the two-dimensional
Heston model described in Section ??, in the numerical experiments here we use a multivari-
ate Heston model in which the volatility of each underlying is driven by its own volatility
process.

options. The payoff profile of a basket option for d underlyings is given as

fK
(
S1
T , . . . , S

d
T

)
=

((
1

d

d∑
j=1

SjT

)
−K

)+

.

We write St = (S1
t , . . . , S

d
t ), SjT := min0≤t≤T S

j
t and S

j

T := max0≤t≤T S
j
t . A

lookback option for d underlyings is defined as

fK
(
S

1

T , . . . , S
d

T

)
=

((
1

d

d∑
j=1

S
j

T

)
−K

)+

.

As an example of a multivariate barrier option on d underlyings, we define the
payoff

fK
(
{S(t)}0≤t≤T

)
=

((
1

d

d∑
j=1

SjT

)
−K

)+

· 1{SjT≥80, j=1,...,d}.

The payoff of an American put option is the same as that of a European put,

fK
(
St
)

= (K − St)+ ,

but the option holder has the right to exercise the option at any time t up to
maturity T .
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4.1 Accuracy study

We now turn to the results of our numerical experiments. In order to evaluate
the accuracy of the Chebyshev interpolation. We investigate the worst-case
error εL∞ . The absolute error of the Chebyshev interpolation method can
be directly computed by comparing the interpolated option prices with those
obtained by the reference numerical algorithm i.e. either the Monte-Carlo
or the Finite Difference method. Since the Chebyshev interpolation matches
the reference method on the Chebyshev nodes, we will use the out-of-sample
test grid as in (21). Table 2 shows the numerical results for the basket and
path-dependent options for N = 5, Table 3 shows N = 10, and Table 4 shows
N = 30. In addition to the L∞ errors, the tables display the Monte-Carlo (MC)
prices, the Monte-Carlo confidence bounds, and the Chebyshev Interpolation
(CI) prices for the parameters at which the L∞ error is realized.

Model Option εL∞ MC price MC conf. bound CI price
BS Basket 1.338 · 10−1 8.6073 1.171 · 10−2 8.4735
Heston Basket 9.238 · 10−2 0.0009 1.036 · 10−4 0.0933
Merton Basket 9.815 · 10−2 8.8491 1.552 · 10−2 8.7510
BS Lookback 2.409 · 10−1 9.4623 9.861 · 10−3 9.2213
Heston Lookback 5.134 · 10−1 0.0314 6.472 · 10−4 -0.4820
Merton Lookback 2.074 · 10−1 1.0919 9.568 · 10−3 0.8844
BS Barrier 1.299 · 10−1 1.0587 5.092 · 10−3 1.1887
Heston Barrier 1.073 · 10−1 2.7670 9.137 · 10−3 2.6597
Merton Barrier 9.916 · 10−2 1.3810 1.102 · 10−2 1.4802

Table 2: Interpolation of exotic options with Chebyshev interpolation. N = 5 and d = 5
in all cases. In addition to the L∞ errors, the table displays the Monte-Carlo (MC) prices,
the Monte-Carlo confidence bounds, and the Chebyshev Interpolation (CI) prices for the
parameters at which the L∞ error is realized.

The results show that for N = 30 the accuracy of all selected options is
10−3. We see that the Chebyshev interpolation error is dominated by the
Monte-Carlo confidence bounds to the extent that the interpolation error be-
comes negligible when comparing the two. For basket and barrier options,
the L∞ error already reaches satisfying levels of order 10−3 at N = 10. Again,
the Chebyshev approximation falls within the confidence bounds of the Monte-
Carlo approximation. Thus, Chebyshev interpolation with only 121 = (10+1)2

nodes suffices to mimic the Monte-Carlo pricing results. This statement does
not hold for lookback options, where the L∞ error still differs noticeably when
comparing N = 10 to N = 30. As can be seen from Table 2, Chebyshev inter-
polation with N = 5 may yield unreliable pricing results. For lookback options
in the Heston model, we even observe negative prices in individual cases.

We conclude that the Chebyshev interpolation is highly promising for the
evaluation of multivariate basket and path-dependent options. However, the
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Model Option εL∞ MC price MC conf. bound CI price
BS Basket 2.368 · 10−3 2.4543 7.493 · 10−3 2.4566
Heston Basket 2.134 · 10−3 3.1946 1.073 · 10−2 3.1925
Merton Basket 3.521 · 10−3 6.1929 2.231 · 10−2 6.1894
BS Lookback 2.861 · 10−2 0.9827 4.197 · 10−3 0.9541
Heston Lookback 1.098 · 10−1 2.0559 4.826 · 10−3 2.1656
Merton Lookback 3.221 · 10−2 4.7072 1.264 · 10−2 4.7394
BS Barrier 4.414 · 10−3 5.3173 1.725 · 10−2 5.3129
Heston Barrier 5.393 · 10−3 0.7158 5.879 · 10−3 0.7212
Merton Barrier 3.376 · 10−3 9.2688 2.302 · 10−2 9.2722

Table 3: Interpolation of exotic options with Chebyshev interpolation. N = 10 and d = 5
in all cases. In addition to the L∞ errors, the table displays the Monte-Carlo (MC) prices,
the Monte-Carlo confidence bounds, and the Chebyshev Interpolation (CI) prices for the
parameters at which the L∞ error is realized.

Model Option εL∞ MC price MC conf. bound CI price
BS Basket 1.452 · 10−3 5.1149 1.200 · 10−2 5.1163
Heston Basket 1.047 · 10−3 7.6555 1.371 · 10−2 7.6545
Merton Basket 3.765 · 10−3 7.2449 2.359 · 10−2 7.2412
BS Lookback 3.766 · 10−3 25.9007 1.032 · 10−2 25.9045
Heston Lookback 1.914 · 10−3 16.4972 9.754 · 10−3 16.4991
Merton Lookback 3.646 · 10−3 27.1018 1.623 · 10−2 27.1054
BS Barrier 5.331 · 10−3 5.6029 1.730 · 10−2 5.6082
Heston Barrier 2.486 · 10−3 3.6997 1.353 · 10−2 3.6972
Merton Barrier 4.298 · 10−3 6.6358 2.309 · 10−2 6.6315

Table 4: Interpolation of exotic options with Chebyshev interpolation. N = 30 and d = 5
in all cases. In addition to the L∞ errors, the table displays the Monte-Carlo (MC) prices,
the Monte-Carlo confidence bounds, and the Chebyshev Interpolation (CI) prices for the
parameters at which the L∞ error is realized.

accuracy of the interpolation critically depends on the accuracy of the reference
method at the nodal points, which motivates further analysis that we perform
in the subsequent subsection.

4.2 Study of the gain in efficiency

We compute the results on a standard PC with an Intel i5 CPU, 2.50 GHz
with cache size 3 MB. In Section 4.2, we used a PC with Intel Xeon CPU with
3.10 GHz with 20 MB SmartCache. All codes are written in Matlab R2014a.
In this section, we choose a multivariate lookback option in the Heston model,
based on 5 underlyings, as an example. For the efficiency study, we first vary

21



Varying εL∞ MC price MC conf. bound CI price
σ, ρ 5.260 · 10−2 5.239 1.428 · 10−2 5.292

Table 5: Interpolation of multivariate lookback options with Chebyshev interpolation for
N = 6 based on an enriched Monte-Carlo setting with 5 · 106 sample paths, antithetic
variates, and 400 time steps per year. In addition to the L∞ error on the test grid, we also
report the Monte-Carlo (MC) price, the Monte-Carlo confidence bound, and the Chebyshev
Interpolation (CI) price for the parameters at which the L∞ error is realized. We observe
that the accuracy of the Chebyshev interpolation N = 6 is roughly in the same range as the
accuracy of the benchmark Monte-Carlo setting (worst-case confidence bound of 6.783 ·10−2

and worst-case error of 2.791 · 10−2).

one parameter, then we vary two.

Variation of two model parameters
We choose ρj = ρ, j = 1, . . . , 5, and vary

ρ ∈ [ρmin, ρmax], ρmin = −1, ρmax = 1,

σ ∈ [σmin, σmax], σmin = 0.1, σmax = 0.5,
(22)

fixing all other parameters to the values of setting (??). In order to guarantee
a roughly comparable accuracy between the Chebyshev interpolation method
and the benchmark Monte-Carlo pricing, we use the following test grid P ⊆
[σmin, σmax]× [ρmin, ρmax],

P =
{(
σk1 , ρk2

)
, k1, k2 ∈ {0, . . . , 20}

}
,

σk1 = σmin +
k1

20
(σmax − σmin) , k1 ∈ {0, . . . , 20},

ρk2 = ρmin +
k2

20
(ρmax − ρmin) , k2 ∈ {0, . . . , 20}.

In Table 5, we present the accuracy results for the Chebyshev interpolation
with NHeston

Cheby = 6 based on the enriched Monte-Carlo setting. Comparing
the benchmark Monte-Carlo setting and the enriched Monte-Carlo setting on
this test grid, we observe that the maximal absolute error is 2.791 · 10−2 and
the confidence bounds of the benchmark Monte-Carlo setting do not exceed
6.783 · 10−2.

To compare the run-times, we show the run-times necessary to compute the
prices for M2 parameter tuples for different values of M . Again, the run-times
are measured for M = 1 and extrapolated for other values of M . Table 6
presents the results. In Figure 1, for each M = 1, . . . , 100, the run-times of the
Chebyshev interpolation method, including the offline phase, are presented and
compared to the Monte-Carlo method. We observe that for M = 15 both lines
intersect and for M > 15 the Chebyshev method outperforms its benchmark.
Contrary to the case where only one parameter is varied, the intersection of
both lines occurs at a significantly lower value of M due to the fact that for
each M pricing must be performed for M2 parameter tupels.
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Heston
M 1 10 50 100

TCheby
online (s) 7.1·10−4 7.1·10−2 1.8 7.1

TCheby
offline+online (s) 8.2·104 8.2·104 8.2·104 8.2·104

TMonte-Carlo (s) 3.4·102 3.4·104 8.4·105 3.4·106

TCheby
offline+online

TMonte-Carlo
24313.9% 243.1% 9.7% 2.4%

Table 6: Efficiency study for a multivariate lookback option in the Heston model based on
5 underlyings. Here, we vary two model parameters and compare the Chebyshev results
to Monte-Carlo. Both methods have been set up to deliver comparable accuracies. As the
number of computed prices increases, the Chebyshev algorithm increasingly profits from the
initial investment of the offline phase.
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Figure 1: Effiency study for a multivariate lookback option in the Heston model based on
5 underlyings, varying the two model parameters σ and ρ. Comparison of run-times for
Monte-Carlo pricing and Chebyshev pricing including the offline phase. Both methods have
been set up to deliver comparable accuracies. We observe that the Monte-Carlo and the
Chebyshev curves intersect at roughly M = 15.
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Additionally, Table 6 highlights that, in the case of a total number of 502

parameter tuples, the Chebyshev method exhibits a significant decrease in
(total) pricing run-times. For the maximal number of 1002 parameter tuples
that we investigated, pricing in either model resulted in more than 97% of run-
time savings in our implementation. While computating 1002 Heston prices
using the Monte-Carlo method requires up to 39 days, the Chebyshev method
computes the very same prices in 23 hours only. Note that only 7 seconds of
this time span are consumed by actual pricing during the online phase.

5 Conclusion and Outlook

This article introduces the famous Chebyshev interpolation method to the
problem of parametric option pricing and more generally of parametric condi-
tional expectations. The introduction explains the advantage of tackling the
complexity by of Chebyshev interpolation in this context and We analysed
the resulting online-offline numerical scheme. The main convergence results
are established in Sections 2, special care is taken of the error resulting from
deriving the prices at the nodal point by Monte Carlo-Simulation. A compar-
ison of the efficiency in terms of accuracy versus offline costs shows significant
improvement over the existing approaches in literature. We emphasize again
that moreover, this type of efficiency needs to be accomplished by efficiency as
online cost versus accuracy. The ”online efficiency” is more signifigant than the
”offline scheme” in many situations, although typically the ”offline efficiency”
still matters on a lower scale. In a numerical case study, we investigated the
gain in ”online efficiency”. The results reveal that the method has a high
potential for a variety of applications and further developments.

The most urgent and challenging problems in finance are of high dimension-
ality. For multivariate polynomial interpolation, the introduction of sparsity
techniques promises higher efficiency, for instance by using compression tech-
niques for tensors as reviewed by [30]. The high potential of low-rank tensor
methods is illustrated in a numerical example for evaluating spread options in
the bivariate Black&Scholes model, which is available online, see [19]. These
types of techniques have to beat the curse of dimensionality for both the online
as well as the offline complexity.

Addressing further the offline complexity, we note that up to this point, we
have compared the Chebyshev interpolation method with a standard Monte-
Carlo technique. Since the invention of Monte-Carlo methods in the 1940s,
see [36], Monte-Carlo techniques have been further developed. In particular,
quasi Monte-Carlo and multilevel Monte-Carlo methods have proved to be sig-
nificantly more efficient in a variety of examples in mathematical finance, [32]
and [18]. Thus, by employing these techniques in the offline phase, the Cheby-
shev interpolation method can be enhanced. In terms of efficiency, we expect
Figure 1 to change only by rescaling the time axis: The run-time for the com-
putation of the Monte-Carlo prices on the test grid is reduced proportionally.
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Obviously, the offline phase of the Chebyshev interpolation scales in the same
way. As a first improvement of our implementation of the offline phase, in
which, for each nodal point we produce a new independent set of samples, one
can reuse a once drawn sample set to compute the prices at all nodal points.
Furthermore, the run-time of the offline phase can be reduced significantly by
parallelisation and computations with the help of technical devices such as
graphics processing unit.

A Remark on Chebyshev polynomials

Following [9] the Chebyshev polynomials appear as an optimal choice when
minimizing the error in a certain way among the nodal polynomial interpola-
tion. Namely, let f be a function that is n times continuously differentiable
on [−1, 1], and for which f (n+1) exists and is bounded on (−1, 1). Let pn be a
polynomial that coincides with f at the nodal points x0, . . . , xn. Then there
exists ζ ∈ (−1, 1) such that the error is given by

∣∣f(x)− pn(x)
∣∣ =

∣∣∣∣∏n
i=0(x− xi)
(n+ 1)!

f (n+1)(ζ)

∣∣∣∣ ≤ ∏n
i=0 |x− xi|
(n+ 1)!

sup
z∈(−1,1)

∣∣f (n+1)(z)
∣∣.

Now minimizing the expression on the right side of the inequality yields the
Chebyshev points of first kind, and the Chebyshev polynomial interpolation
as the resulting minimizing polynomial. We point out that we decide to im-
plement the Chebyshev points of first kind, which are the extrema of the
Chebyshev polynomials. The advantage of this choice will become clear when
generalizing the method presented in this article to the case of piecewise poly-
nomial interpolation: The Chebyshev points of second kind contain the two
end points of the interval, and thus it is straightforward to concatenate inter-
polations on adjacent intervals.

B Proof of Proposition 2.1

The basic structure of the proof is the same as in [45, Proof of Lemma 7.3.3].
To provide a complete, understandable proof, we first show the same steps as
in [45, Proof of Lemma 7.3.3] and state explicitly at which point the proof
changes.

Proof. In [45, Proof of Lemma 7.3.3], the proof is given for the following error
bound:

max
p∈P

∣∣f − IN(f)
∣∣ ≤ √D2

D
2

+1V %−Nmin(1− %−2
min)−

D
2 ,

where N is the number of interpolation points in each of the D dimensions,
%min := minDi=1 %i and V is the bound of f on B(P , %) with P = [−1, 1]D. Here,
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we extend [45, Proof of Lemma 7.3.3] by incorporating the different values of
Ni, i = 1, . . . , D, as well as expressing the error bound with the different %i,
i = 1, . . . , D.

In general, we work with a parameter space P of hyperrectangular struc-
ture, P = [p

1
, p1] × . . . × [p

D
, pD]. The linear transformation introduced in

Section 2 gives a transformation τP : [−1, 1]D → P defined by

τP(p) =

(
pi +

p
i
− pi
2

(1− p)
)D
i=1

.

Let p 7→ Pricep be a function on P . We set P̂ricep = Pricep ◦ τP(p). Further-

more, let ÎN(P̂rice
(·)

)(p) be the Chebyshev interpolation of P̂ricep on [−1, 1]D.
Then it holds that

IN(Price(·))(p) = ÎN(P̂rice
(·)

)(·) ◦ τ−1
P (p).

From this, it directly follows that

Pricep − IN(Price(·))(p) =

(
P̂rice − ÎN(P̂rice

(·)
)(·)
)
◦ τ−1
P (p).

Applying the error estimate from [45, Lemma 7.3.3] results in∣∣Price − IN(Price(·))(·)
∣∣
C0(P)

=
∣∣Price − IN(Price(·))(·)

∣∣
C0([−1,1]D)

≤
√
D2

D
2

+1V̂ %−Nmin(1− %−2
min)−

D
2

=
√
D2

D
2

+1V %−Nmin(1− %−2
min)−

D
2 ,

where V̂ = supp∈B([−1,1]D,%) P̂rice
p
, V = supp∈B(P,%) Pricep. Summarizing, the

transformation τP : [−1, 1]D → P does not affect the error analysis, simply by
applying the transformation as described in Section 2,

B(P , %) := B([p
1
, p1], %1)× . . .×B([p

D
, pD], %D),

with B([p, p], %) := τ[p,p] ◦ B([−1, 1], %). Note that %i is not the radius of the
ellipse B([p

i
, pi], %i) but of the normed ellipse B([−1, 1], %i). Therefore, in the

following it suffices to show the proof for P = [−1, 1]D.
As in [45, Proof of Lemma 7.3.3], we introduce the scalar product

〈f, g〉% :=

∫
B(P,%)

f(z)g(z)∏D
i=1

√
|1− z2

i |
dz

and the Hilbert space

L2(B(P , %)) := {f : f is analytic in B(P , %) and ||f ||2% := 〈f, f〉% <∞}.
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Following the approach in [45, Proof of Lemma 7.3.3], we define a complete
orthonormal system for L2(B(P , %)) w.r.t. the scalar product 〈·, ·〉% by the
scaled Chebyshev polynomials

T̃µ(z) := cµTµ(z) with cµ :=

(
2

π

)D
2

D∏
i=1

(%2µi
i + %−2µi

i )−
1
2 , for all µ ∈ ND

0 .

Then, for any arbitrary bounded linear functional E on L2(B(P , %)), we have

|E(f)| ≤ ||E||%||f ||%, (23)

where ||E||% denotes the operator norm. By the orthonormality of
(
T̃µ

)
µ∈ND0

,

it follows that

||E||% = sup
f∈L2(B(P,%))\{0}

|E(f)|
‖f‖%

=

√∑
µ∈ND0

|E(T̃µ)|2.

In the following, let E be the error of the Chebyshev polynomial interpolation
at a fixed p ∈ P ,

E(f) := f(p)− IN(f(·))(p).

Starting with (23), we first focus on ||E||%,

‖E‖2
% =

∑
µ∈ND0

|E(T̃µ)|2 =
∑
µ∈ND0

c2
µ|E(Tµ)|2.

From now on the proof differs from [45, Proof of Lemma 7.3.3], since we use
the values of Ni, i = 1, . . . , D and %i, i = 1, . . . , D. Since we chose Chebyshev
points of the second kind instead of Chebyshev points of the first kind in the
Chebyshev interpolation, we cannot apply [45, Corollary 7.3.1], but adjust this
in Lemma B.1 to the Chebyshev points of the second kind. At this step, we
apply Lemma B.1 to obtain∑

µ∈ND0

c2
µ|E(Tµ)|2 =

∑
µ∈ND0 ,∃i:µi>Ni

c2
µ|E(Tµ)|2 ≤

∑
µ∈ND0 ,∃i:µi>Ni

4c2
µ.

Overall, using
(∏D

j=1 %
2µj
j + x

)−1

≤
(∏D

j=1 %
2µj
j

)−1

=
∏D

j=1 %
−2µj
j for x > 0,
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µj ∈ N0 and j = 1, . . . , D and this leads to

‖E‖2
% ≤ 4

∑
µ∈ND0 ,∃i:µi>Ni

c2
µ ≤ 4

(
2

π

)D D∑
i=1

 ∑
µ∈ND0 ,µi>Ni

D∏
j=1

%
−2µj
j


≤ 4

(
2

π

)D D∑
i=1

%−2Ni
i

 ∑
µ∈ND0 ,µi>Ni

%
−2(µi−Ni)
i

D∏
j=1,j 6=i

%
−2µj
j


≤ 4

(
2

π

)D D∑
i=1

%−2Ni
i

∑
µ∈ND0

D∏
j=1

%
−2µj
j

 .

From this point on, we use the convergence of the geometric series, since |%−2
j | <

1, j = 1, . . . , D,

‖E‖2
% ≤ 4

(
2

π

)D D∑
i=1

%−2Ni
i

(
∞∑

µ1=0

. . .
∞∑

µD=0

D∏
j=1

%
−2µj
j

)

= 4

(
2

π

)D D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

.

Recalling (23), we have to estimate ‖f‖%,

‖f‖2
% =

∫
B(P,%)

f(z)f(z)∏D
i=1

√
|1− z2

i |
dz ≤

(
sup

z∈B(P,%)

|f(z)|

)2

‖1‖2
%.

From π
D
2 T̃0 = 1 it directly follows that ‖1‖2

% =
(
π
D
2

)2

‖T̃0‖2
% = πD and hence

‖f‖2
% ≤ πD · V 2.

Combining the results leads to

|E(f)| = |f(p)− IN(f(·))(p)
∣∣ ≤ (πD · V 2 · 4

(
2

π

)D D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

) 1
2

= 2
D
2

+1V

(
D∑
i=1

%−2Ni
i

D∏
j=1

1

1− %−2
j

) 1
2

. �

The following lemma shows that the Chebyshev interpolation of a polyno-
mial with a degree at most as high as the degree of the interpolating Chebyshev
polynomial is exact and furthermore determines an upper bound for interpo-
lating Chebyshev polynomials with higher degrees.
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Lemma B.1. For x ∈ [−1, 1]D, it holds that

|Tµ(x)− IN(Tµ(·))(x)| = 0 ∀µ ∈ ND
0 : µi ≤ Ni, i = 1, . . . , D, (24)

|Tµ(x)− IN(Tµ(·))(x)| ≤ 2 ∀µ ∈ ND
0 : ∃i ∈ {1, . . . , D} : µi > Ni. (25)

Proof. The uniqueness properties of the Chebyshev interpolation directly im-
ply (24). The proof of (25) is similar to [45, Proof of Hilfssatz 7.3.1]. They use
the zeros of the Chebyshev polynomial as interpolation points, whereas we use
the extreme points and, therefore, we use a different orthogonality property
in this proof. We first focus on the one-dimensional case. Recalling (2), the
Chebyshev interpolation of Tµ, µ > N , is given as

IN(Tµ)(x) =
N∑
j=0

cjTj(x) with cj =
210<j<N

N

N∑
k=0

′′
Tµ(xk)Tj(xk), j ≤ N,

where xk denotes the k-th extremum of TN . Here, we can apply the following
orthogonality property ([42, p.54]),

N∑
k=0

′′
Tµ(xk)Tj(xk) =


0, µ+ j 6= 0 mod (2N) and |µ− j| 6= 0 mod (2N),

N, µ+ j = 0 mod (2N) and |µ− j| = 0 mod (2N),
N
2
, µ+ j = 0 mod (2N) and |µ− j| 6= 0 mod (2N),

N
2
, µ+ j 6= 0 mod (2N) and |µ− j| = 0 mod (2N).

(26)

For j ≤ N and µ > N , this yields the existence of γ ≤ N such that

IN(Tµ) = Tγ. (27)

(27) follows elementarily from the case where for any µ > N the orthogonality
leads to a coefficient cj > 0 for exactly one 0 ≤ j ≤ N .

To prove the claim, we distinguish several cases. In all of these cases,
we assume that there exists 0 ≤ j ≤ N such that

∑N
k=0

′′
Tµ(xk)Tj(xk) 6=

0. We will then show that for all other 0 ≤ i ≤ N, i 6= j it follows that∑N
k=0

′′
Tµ(xk)Tj(xk) = 0.

Firstly, assume there exists j such that µ + j = 0 mod (2N) and µ −
j = 0 mod (2N). Then it directly follows for all 0 ≤ i ≤ N , i 6= j that
µ+ i 6= 0 mod (2N) and µ− i 6= 0 mod (2N).

Secondly, assume there exists j such that µ + j = 0 mod (2N) and µ −
j 6= 0 mod (2N). Analogously, for all 0 ≤ i ≤ N , i 6= j, we have µ +
i 6= 0 mod (2N) and additionally from µ + j = 0 mod (2N) it follows that
µ + j − 2N = 0 mod (2N) and hence for all 0 ≤ i ≤ N , i 6= j, we have
µ− i > µ+ j − 2N , which is equivalent to µ− i 6= 0 mod (2N).

Similar argumentation holds for the third case µ+j 6= 0 mod (2N) and |µ−
j| = 0 mod (2N).
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Consequently, (27) holds and it directly follows that |Tµ − IN(Tµ)| ≤
|Tµ|+ |IN(Tµ)| ≤ 1 + 1 = 2. Thus (25) holds in the one-dimensional case. The
extension to theD−dimensional case follows analogously by applying the trian-
gle inequality |

∏D
i=1 Ti,µi −

∏D
i=1 INi(Ti,µi)| ≤ |

∏D
i=1 Ti,µi |+ |

∏D
i=1 INi(Ti,µi)| ≤∏D

i=1 |Ti,µi |+
∏D

i=1 |INi(Ti,µi)| and applying the one-dimensional result to each
tensor component.

C Proof of Proposition 2.3

Proof. Before we apply [5, Theorem 3.1], which assumes P = [−1, 1]D, we
investigate how the linear transformation τP , as introduced in the proof of
Proposition 2.1, influences the derivatives. Let p 7→ Pricep be a function on
P . We set ĥ(p) = Pricep ◦ τP(p). Furthermore, let ÎN(ĥ)(p) be the Chebyshev

interpolation of ĥ(p) on [−1, 1]D. Then, it directly follows that

Pricep − IN(Price(·))(p) =
(
ĥ(·)− ÎN(ĥ)(·)

)
◦ τ−1
P (p).

First, let us assume D = 1, i.e. P = [p, p], and let α ∈ N0. For the partial
derivatives, it holds that

∂αPricep − ∂αIN(Price(·))(p) = ∂α
(

Pricep − IN(Price(·))(p)
)

= ∂α
((
ĥ(·)− ÎN(ĥ)(·)

)
◦ τ−1
P (p)

)
= ∂α−1

(
∂1ĥ(τ−1

P (p))− ∂1ÎN(ĥ(·))(τ−1
P (p))

)
= ∂α−1 2

p− p

([
∂1ĥ
]

(τ−1
P (p))−

[
∂1ÎN(ĥ(·))

]
(τ−1
P (p))

)
.

Repeating this step iteratively yields

∂αPricep − ∂αIN(Price(·))(p) =
2α

(p− p)α
([
∂αĥ

]
(τ−1
P (p))−

[
∂αÎN(ĥ(·))

]
(τ−1
P (p))

)
.

This scales the error in [−1, 1] by a factor 2α

(p−p)α . Extending this to the

D-variate case where α = (α1, . . . , αD) ∈ ND
0 is a multi-index and ∂α =

∂α1 · · · ∂αD results in

∂αPricep − ∂αIN(Price(·))(p) =

D∏
i=1

2|αi|

(pi − pi)
|αi|

([
∂αĥ

]
(τ−1
P (p))−

[
∂αÎN(ĥ(·))

]
(τ−1
P (p))

)
.

From Theorem 3.1 in [5], the assertion follows directly for ĥ(·) on P = [−1, 1]D,
i.e. for any D

2
< σ ∈ N and any σ ≥ µ ∈ N0 there exists a constant C̃ > 0

such that

‖ĥ(·)− ÎN(ĥ)(·)‖Wµ,ω
2 (P) ≤ C̃N2µ−σ‖ĥ(·)‖Wσ,ω

2 (P), (28)
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For arbitrary P , the constant from (28) has to be multiplied with the corre-
sponding factor resulting from the linear transformation τP .
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and defaultable bonds in Lévy process models: A fast Hilbert transform
approach. Mathematical Finance, 18(3):337–384, 2008.
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barrier options under Lévy processes. Finance and Stochastics, 13(4):531–
562, 2009.

[32] Pierre L’Ecuyer. Quasi-Monte Carlo methods with applications in finance.
Finance and Stochastics, 13(3):307–349, 2009.

[33] R. W. Lee. Option pricing by transform methods: Extensions, unification,
and error control. Journal of Computational Finance, 7(3):51–86, 2004.

[34] R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee. A fast and ac-
curate FFT-based method for pricing early-exercise options under Lévy
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