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Pricing American options by exercise rate optimization
Christian Bayer, Raúl F. Tempone, Sören Wolfers

Abstract

We present a novel method for the numerical pricing of American options based on
Monte Carlo simulation and the optimization of exercise strategies. Previous solutions to
this problem either explicitly or implicitly determine so-called optimal exercise regions,
which consist of points in time and space at which a given option is exercised. In contrast,
our method determines the exercise rates of randomized exercise strategies. We show
that the supremum of the corresponding stochastic optimization problem provides the
correct option price. By integrating analytically over the random exercise decision, we
obtain an objective function that is differentiable with respect to perturbations of the
exercise rate even for finitely many sample paths. The global optimum of this function
can be approached gradually when starting from a constant exercise rate. Numerical
experiments on vanilla put options in the multivariate Black–Scholes model and a
preliminary theoretical analysis underline the efficiency of our method, both with respect
to the number of time-discretization steps and the required number of degrees of freedom
in the parametrization of the exercise rates. Finally, we demonstrate the flexibility of our
method through numerical experiments on max call options in the classical Black–Scholes
model, and vanilla put options in both the Heston model and the non-Markovian rough
Bergomi model.

1 Introduction

American options on d ≥ 1 underlying assets St = (S1,t, . . . , Sd,t) may be exercised by their
holder at any time t before a given expiration time T ∈ R+ := [0,∞), upon which the holder
receives the payoff g(t, St) for some previously agreed function g : [0, T ]× Rd

+ → R+.
If the underlying market is Markovian and has a security with interest rate r > 0, then the
arbitrage-free value of an American option under a risk-neutral measure Q is determined solely
by the current asset values. The value function V : Rd

+ → R+ satisfies

V (s0) = sup
τ∈S

EQ[Yτ∧T |S0 = s0], s0 ∈ Rd
+, (1)

where Yt := exp(−rt)g(t, St), t ≥ 0 is the discounted payoff process and S denotes the set of
all stopping times with respect to the filtration generated by (St)0≤t≤T [24, Theorem 5.3]. In
the remainder of this work, all expectations are taken with respect to the same risk-neutral
measure Q and denoted by E.
Most state-of-the-art methods for American option pricing – including all variants of the
Longstaff–Schwartz [27], PDE [1], binomial tree [16], and stochastic mesh [13] methods –
exploit the dynamic programming principle to determine the value function using a backwards-
iteration scheme. Further approaches are based on dual problems [30, 3], policy iteration [11], or
(quasi-)analytic solutions [5, 26]. The computational cost of many methods grows exponentially
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with respect to the number of dimensions, thus making them prohibitively expensive for options
on many underlying assets. This phenomenon has been coined the curse of dimensionality
[29, 7].
In this work, we propose a method that is based on the following variation of Equation (1),
which states that the optimization may be restricted to hitting times instead of general stopping
times:

V (s0) = sup
E∈B([0,T ]×Rd

+)
E[YτE∧T |S0 = s0], s0 ∈ Rd

+. (2)

Here, the supremum is taken over Borel-measurable subsets of E ⊂ [0, T ]×Rd
+, whose hitting

times are given by τE := inf{t ≥ 0 : (t, St) ∈ E}. To be precise, both Equation (1) and
Equation (2) require some technical conditions on the processes (Yt)0≤t≤T and (St)0≤t≤T [31,
Corollary 2, Section 3.3.1]. Throughout this work, we assume that such conditions hold and
restrict our attention to the solution of Equation (2).
To the best of our knowledge, optimization of the exercise region in Equation (2) was first
proposed in [20] and developed in [2, 17, 23, 8, 18], but it has not yet found its way into the
canon of numerical algorithms for American option pricing. In [20], separate exercise regions
were determined for each exercise date of an American Asian option in a backwards iteration.
The optimization at each step was performed in a brute force fashion, which explains why only
two parameters were allowed in the parametrization of the exercise regions. In [17, 18], ad
hoc parametrizations that exploit known behavior of the optimal exercise regions were used to
optimize exercise regions as subsets of time-space without applying a backwards iteration.
In general, optimization of the exercise region faces two challenges. First, as mentioned in [18],
it is not obvious how to parametrize the possible exercise regions in a multi-dimensional setting,
or even in a one-dimensional setting that goes beyond vanilla options in the Black–Scholes
model. Second, once a parametrization has been found, it is not obvious how to find the global
optimum [17, 18]. Indeed, when the expectation in Equation (2) is replaced by an empirical
average for the purpose of numerical approximations of the expected payoff, the quantity
to be maximized depends highly irregularly on the exercise region E (see Figure 1b below).
Furthermore, even if a large number of sample paths is used to reduce the small scale oscillatory
behavior, the resulting surface may still be non-concave and exhibit isolated local optima, as
reported in [17].
To address these challenges, we introduce, in Section 2, a relaxation of the optimization
problem in Equation (2) wherein the exercise regions E ⊂ [0, T ]×Rd

+ are replaced by exercise
rates f : [0, T ] × Rd

+ → R+, which define randomized exercise strategies where options are
exercised with an infinitesimal probability depending on the current time and asset values.1
The space of exercise rates can easily be parametrized even in high dimensions using a finite-
dimensional spaces of polynomials on [0, T ]× Rd. The resulting optimization problem exhibits
the same maximum as the original optimization problem over deterministic strategies but has
the advantage of a differentiable objective function and a lower risk of getting stuck in local
minima because of a richer search space. Indeed, by integrating analytically with respect to the
exponential distribution that underlies the random exercise decision, we obtain an objective
function that is smooth even when finitely many sample paths are used in the computations.
We may then use gradient-based optimization routines to determine an optimal coefficient

1We were informed after the initial submission of this manuscript that randomized stopping was previously
studied from a theoretical perspective [21, 25]. These references do not contain discussions of numerical solution
of the resulting stochastic optimization problem, however.
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vector. Furthermore, we may start this optimization from an exercise rate that has a constant
non-zero value across time and space and let the optimization routine gradually refine this
neutral strategy towards an optimal one with marked variations in the exercise rate. This
facilitates the search for a global optimum without requiring an informed initial guess that
is already close to the optimum. Details of the numerical implementation are discussed in
Section 2.1. There, we also briefly discuss how the accuracy of our method depends on the
various discretization parameters. In particular, we provide heuristic bounds on the number of
degrees of freedom in the exercise rate that are required for satisfactory randomized exercise
strategies. These bounds are given in terms of the smoothness of the optimal exercise boundary
as a manifold, not as a function of time.
Finally, Section 3 presents numerical experiments for various market models and options. In
Sections 3.1 and 3.2, we consider vanilla put options in the classical Black–Scholes model.
In the case of a single underlying, the exercise boundary of an American put option, whose
payoff function is given by g(t, s) := g(s) := (K − s)+ for some strike K > 0, can be written
as a function of time with asymptotic behavior s(t) ≈ K − C1

√
(T − t) log(T − t) for some

C1 > 0 as t→ T . Despite the square-root singularity near the expiration time, the experiments
presented in Section 3.1 show that low-degree polynomials suffice to capture the optimal exercise
boundary well. In fact, we obtain a relative error of less than 0.1% with quadratic polynomials.
This can be explained by the fact that the graph of the similar function s̃(t) = K−C1

√
(T − t)

is smooth as a one-dimensional manifold in R2 and, indeed, coincides with the zero level set
(intersected with x < K) of the quadratic polynomial f(t, s) := (K − s)2 −C2

1 (T − t), whose
scalar multiples therefore constitute close-to-optimal exercise rates.
Although we solve non-concave maximization problems, we are able to find global optima
starting from a constant exercise rate. Furthermore, in Section 3.2 we show that our algorithm
outperforms the Longstaff–Schwartz algorithm with respect to the required polynomial degree
for the pricing of basket put options, which is crucial when the number of underlying asset is
large.
In Section 3.3, we consider call options on the maximum of a number of underlying assets,
g(s) = maxdi=1(si −K)+. Numerical algorithms for the pricing of such max call options were
previously discussed in [3, 28]. Max call options pose a challenge to the direct determination of
exercise regions because the optimal exercise regions are disconnected [12]. Still, our results
show that polynomials of low degree suffice to obtain highly accurate estimates despite the
nontrivial topology of the optimal exercise region.
In Section 3.4, we consider the Heston model, in which the underlying asset and its stochastic
volatility form a joint Markov process. Since our method involves the market model for the
generation of random sample paths only, its application in this scenario is straightforward.
Finally, we consider the non-Markovian rough Bergomi model [6] in Section 3.5. To recover
Markovianity, we must extend our process by its past values. In practice, using a large but
finite number of past values leads to very high-dimensional approximation problems. However,
our experiments indicate that exercise strategies depending only on the spot values of the
underlying asset and its volatility achieve near-optimal performance.

2 Exercise rate optimization

We let T := [0, T ] and assume throughout that (St)t∈T is conditioned on S0 = s0.
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Definition 2.1. For any f : T × Rd
+ → R+, the randomized exercise strategy with exercise

rate f is given by early exercise at the time

τf := inf{t ≥ 0 :
∫ t

0
λu du ≥ X}, (3)

where λt := f(t, St), t ∈ T , and X is a standard exponential random variable that is
independent of (St)t∈T .

The exercise time τf equals the first jump time of a Poisson process with rate (λt)t∈T . In other
words, the exercise rate f determines the time- and space-dependent infinitesimal probability
with which the American option is exercised in a infinitesimal time interval dt.
With Equation (2) in mind, we are interested in the expected payoff under a randomized
exercise strategy with early exercise time τf , which we denote by

ψ(f) := E[Yτf∧T ]. (4)

Since
∫ t

0 λu du is a deterministic function of the asset path until t, and X is independent of
(Su)u∈T , we have

P(τf ≥ t | (Su)u∈T ) = P(X >
∫ t

0
λu du | (Su)u∈T ) = exp

(
−
∫ t

0
λu du

)
=: Ut

and
P(τf ∈ dt | (Su)u∈T ) = − dUt = λtUt dt.

Hence, we obtain

φ(f, (Su)u∈T ) := E[Yτf∧T | (Su)u∈T ] =
∫ T

0
YtλtUt dt+ YTUT .

By the law of total expectation, which we may apply because all the random variables involved
are nonnegative, we deduce the formula

ψ(f) = E[φ(f, (Su)u∈T )] = E
[∫ T

0
YtλtUt dt+ YTUT

]
. (5)

It is advisable to replace λUt dt by − dUt in numerical implementations of this formula to avoid
cancellations. The following proposition shows that, in theory, exercise rate optimization yields
the correct option value. It is a special case of Theorem 2.2 in [21].

Proposition 2.2. We have

V (s0) = sup
f : [0,T ]×Rd

+→R+

ψ(f). (6)

Proof. For any E ∈ B(T × Rd
+), we may formally insert the indicator function

fE(t, s) :=

+∞, (t, s) ∈ E
0, (t, s) 6∈ E

into Equation (3) to obtain τfE
= τE. After replacing +∞ with large numbers that diverge

to +∞ and applying Fatou’s lemma, we may take the supremum over E to conclude from
Equation (2) that supf : [0,T ]×Rd

+→R+ ψ(f) ≥ V (s0).
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Conversely, the law of total expectation shows, for any f : [0, T ]× Rd
+ → R+, that

ψ(f) = E[Yτf∧T ] = E
[
E
[
Yτf∧T | X

] ]
.

Because τf conditioned on X is a stopping time and (St)t∈T is independent of X, Equation (1)
implies that E

[
Yτf∧T | X

]
≤ V (s0) almost surely; hence, ψ(f) ≤ V (s0).

2.1 Numerical algorithm

To determine optimal exercise rates numerically, we

(i) replace the time-continuous model of the stochastic process (St)t∈T with a discretization
with N <∞ time steps, such as the the Euler–Maruyama scheme;

(ii) replace the expectation in Equation (5) with an average over M <∞ fixed sample paths
(S(m)

n )1≤n≤N,1≤m≤M ;

(iii) introduce a B-dimensional, B <∞ parametrization RB 3 c 7→ fc of the space of exercise
rates;

(iv) maximize the surrogate function

ψ : RB → R

c 7→ 1
M

M∑
m=1

φ(fc, (S(m)
t )1≤n≤N).2

Parametrization To address step (iii), we work with the logarithmic asset values xi := log(si),
1 ≤ i ≤ d and let

FP :=
{
fp(t, x) := 1g(t,s)>0 exp(p(t, x))

∣∣∣ p ∈ P}
for any finite-dimensional linear space P of functions on T × Rd. After choosing a basis of P ,
we obtain the desired parametrization c 7→ fc. Throughout the remainder of this manuscript, we
work with spaces Pk of polynomials of degree less than or equal to k ≥ 0 in d+1 variables, and we
use an orthonormal basis with respect to the inner product ‖f‖2 := 1

NM

∑N
n=1

∑M
m=1 f(tn, xn,m)

induced by the time-space samples (tn, xn,m := log(Smn ))1≤n≤N,1≤m≤M .

Optimization Concerning step (iv), it is not clear that globally optimal coefficients, which
may even lie at infinity, can be found numerically because ψ is not concave. However, in
our numerical experiments, we found that the Quasi-Newton L-BFGS-B algorithm [14], as
implemented in Python’s SciPy library3, performs well and does not get stuck in local maxima
when started from a constant exercise rate.

2To evaluate φ, we use piecewise constant interpolation between the N nodes of the time-discretization
scheme.

3https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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The advantage of exercise rate optimization over exercise region optimization is illustrated by
Figure 1. Even a simple gradient ascent algorithm could be used to maximize ψ in Figure 1a,
where we show the dependence on the coefficient c(0,0) of the constant polynomial p(0,0) ≡ 1
for a one-dimensional put option. For comparison, this is not possible for the function shown in
Figure 1b, which arises from the optimization of deterministic exercise regions and requires the
use of finite-difference stochastic-gradient algorithms.

−10 −5 0 5 10
0

2

4

6

8

10

c(0,0)

(a) ψ : R → R with P the space of constant
functions

50 60 70 80 90 100
0

2

4

6

8

10

s

(b) s 7→ 1
M

∑M
m=1[Y (m)

τEs∧T
] with Es := [0, T ] ×

[0, s]

Figure 1: Functions to be maximized in a one-parameter optimization of a randomized
exercise strategy (a) and a one-parameter optimization of a deterministic strategy (b) for a
one-dimensional American put option with K = s0 = 100 and T = 1 in the Black–Scholes
model with r = 0.05 and σ = 0.3. Both plots were generated using M = 100 sample paths
with N = 100 time steps.

Differentiability of φ, ψ, and ψ with respect to f is easy to show. Using the fact that
λtUt dt = − dUt, we obtain the simple gradient formula

〈∇fφ(f, (St)t∈T ), h〉 = −
∫ T

0
Yt d〈∇fUt, h〉+ 〈∇fUT , h〉YT , h : T × Rd

+ → R,

where

〈∇fUt, h〉 = −Ut
∫ t

0
h(u, Su) du, t ∈ T .

Figure 2 shows four snapshots of the search for an optimal exercise rate for max call options
on two underlying securities.

Accuracy To obtain accurate results, we must choose large enough values for the number
of samples, M , the number of time steps, N , the number of iterations of the optimization
routine, `, and the polynomial degree, k.
For a fixed exercise rate and a fixed number of time steps, convergence with respect to the
number of sample paths, M , occurs asymptotically at the Monte Carlo rate M−1/2. Pre-
asymptotically, the number of Monte Carlo samples has to be larger than a threshold depending
on the dimension of the polynomial subspace to avoid overfitting, see the next paragraph.
For a fixed, smooth exercise rate, the expected payoff converges at the weak convergence
rate of the discretization scheme with respect to the number of time steps (e.g., N−1 for the
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(a) 10th iteration (b) 20th iteration

(c) 30th iteration (d) 40th iteration

Figure 2: Four iterations of the exercise rate optimization for a max call option (all figures
show a slice of the exercise rate at t = T/2). High color intensities represent high exercise rates.
The white region in the bottom left contains the points with zero payoff, {g = 0}. Random
sample values of the two underlying securities at T/2 are shown in blue.

Euler–Maruyama scheme). In the limit of increasingly steep exercise rates approaching the
optimal deterministic exercise regions, the weak convergence rate is expected to deteriorate
to N−1/2. However, this effect does not become noticeable in our numerical experiments (see
Section 3.1).
With everything else held fixed, we expect exponential or faster convergence with respect to `,
depending on what type of deterministic optimization routine is used. Figure 4 in Section 3
provides numerical evidence of exponential convergence using the L-BFGS-B algorithm.
To characterize the convergence of the optimal exercise rate with respect to k under the
simplifying assumptions M =∞ and N =∞, we note that for any polynomial 0 6= pk ∈ Pk
the randomized exercise strategies with exercise rates fL := exp(Lpk) ∈ Fk converge to a
deterministic strategy with early exercise region Ek := {pk ≥ 0} as L → ∞. Therefore, it
suffices to study the approximability of the optimal exercise region E∗ by polynomial superlevel
sets, and the sensitivity of the expected payoff on the right-hand side of Equation (2) with
respect to perturbations of the exercise region. Regarding the approximability of E∗, we observe
that if E∗ is a bounded Cm-submanifold, m ≥ 2, of (0, T ) × {g > 0}, then there exists a
sequence of polynomials pk such that the boundaries Bk := ∂Ek of the corresponding exercise

DOI 10.20347/WIAS.PREPRINT.2651 Berlin 2019
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regions Ek := {pk ≥ 0} satisfy

Bk = {(t, s) + Θ(t, s) : (t, s) ∈ B∗} (7)

for some Θ: B∗ → R1+d such that

sup
(t,s)∈B∗

|Θ(t, s)| < Ck−m.

This follows from a combination of the multi-dimensional Jackson theorem [4] with a partition
of unity and elementary geometry. Regarding the sensitivity of the expected payoff, [15] showed
differentiability with respect to perturbations of the exercise region in spatial directions under
the assumption that (0, s0) 6∈ E∗ and that the payoff function lies in some Hölder space
C1,α, α > 0. Unfortunately, this result is not quite general enough for our purposes, since we
require bounds with respect to general, spatio-temporal perturbations of the domain (as in
Equation (7)) and for payoff functions that are only Lipschitz.
A rigorous analysis of the interplay of the various discretizations will be the topic of future
work; some numerical results are presented in Section 3.1 below.

Overfitting Choosing a subspace with a large number of degrees of freedom, B � 1, to
improve the flexibility of the candidate exercise rates increases the cost of computations and
the risk of overfitting. This means that the value of ψ(c∗) at the optimized coefficients c∗

may overestimate the true value ψ(fc∗) unless a correspondingly large number M = M(B) of
sample paths is used. Numerical experiments indicate that M(B) ≈ CB2 for some C > 0 but
we were not able to prove such a formula. In practice, we can simply compute an unbiased
estimate of ψ(fc∗) using a new set of sample paths (S̃(m)

t )t∈T , 1 ≤ m ≤M ; similar techniques
are used in classical regression-based methods such as the Longstaff–Schwartz algorithm.
Following statistical learning terminology, we refer to the biased and unbiased estimators of
ψ(fc∗) as training and test values, respectively. One way to avoid overfitting is to recompute
the test value at each step of the optimization and to terminate as soon as the test value
decreases. Note that, as in the case of the Longstaff–Schwartz algorithm, the test values are
biased low, i.e., are Monte Carlo estimates of lower bounds of the option price.

Remark 1. Note that time discretization does not correspond to restricting the exercise
opportunities to a finite number of exercise times. In other words, the result of the exercise rate
optimization based on a certain time-discretization of the above integrals does not correspond
to the price of a Bermudan option. In fact, the randomization allows taking into account the
possibility of exercising between time points.

3 Numerical experiments

Throughout this section, we use the L-BFGS-B algorithm with initial coefficients c ≡ 0 to
maximize ψ.

3.1 Convergence with respect to discretization parameters

In this subsection, we study the convergence of our method with respect to the discretization
parameters M , N , k, and ` by pricing the vanilla put option from Figure 1 with strike K = 100

DOI 10.20347/WIAS.PREPRINT.2651 Berlin 2019
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and expiry T = 1 in the Black–Scholes model with volatility σ = 0.3, risk-free interest rate
r = 0.05, and spot price s0 = 100. Using a binomial tree algorithm with 50 000 levels (i.e.,
50 000 time steps and 50 000 spatial discretization nodes at T = 1), we obtain the reference
value V ∗ = 9.8701. Figures 3a and 3b show that the prices found through exercise rate
optimization with polynomial degree k = 2 and Mn := 200× 4n sample paths with Nn := 2n
time-steps converge towards this reference value as n→∞. In particular, our maximization
does not get stuck in local optima of ψ. Furthermore, Figure 3a shows that test and training
values converge at roughly the same speed, which means that we do not suffer from overfitting.
This is not surprising, since the space of bivariate quadratic polynomials is only 6-dimensional.
We restrict the following plots to the test value, which constitutes an unbiased estimate of the
quality of a given exercise rate.
In the logarithmic scale of Figure 3b, we see that our approximations converge to the reference
value at roughly the rate 2−n = O(N−1

n +M−1/2
n ). We obtain an accuracy of about four signif-

icant digits, despite using only quadratic polynomials for the exercise boundary approximation.
This confirms that singularities of the exercise boundary as a function of time do not pose a
problem for our polynomial approximation scheme. For comparison, Figures 3c and 3d show
results for k ∈ {0, 1}, that is, for constant exercise rates and for exercise rates that depend
only linearly on space and time, respectively. For k = 1, the results are astoundingly similar to
the case k = 2, though closer inspection on a logarithmic scale reveals stagnation at a relative
error of 0.5%. For k = 0, our method stagnates around the value 9.35, which is roughly the
price of a European option with the same parameters.
To study the effects of M , N , and k, we performed experiments in this and the following
subsection with the tolerance of the L-BFGS-B optimization set to machine precision, which
required between 70 and 200 function evaluations to achieve. However, an error comparable
to that of the remaining discretization errors can already be achieved with significantly fewer
evaluations. Indeed, for n = 4 and k = 2 the relative error between ψ(c`) and the final value is
already below 0.1% when ` = 20 (Figure 4). For this reason, we limit the number of iterations
below to 20.

3.2 Comparison with Longstaff–Schwartz algorithm

In this subsection, we consider basket put options on linear combinations of d ∈ {2, 5}
underlying assets. The payoff function of such options is given by g(s) := (K − c · s)+ for
K > 0 and c ∈ Rd. In our experiments, we use K := 100 and ci := 1/d, 1 ≤ i ≤ d.
We compare our method to the Longstaff–Schwartz algorithm, as implemented in the freely
available version 16 of the derivative pricing software Premia4. Like our method, the Longstaff–
Schwartz algorithm requires specification of the number of sample paths, the number of
time-steps used for their simulation, and the polynomial degree, which controls the accuracy of
approximations of the value function. For simplicity, we restrict the simulations in this section to
N = 8 time steps. To prevent our comparison being skewed by the fact that the two algorithms
use different sample paths, we use the same large number of M = 3.2× 106 samples for both.
Finally, we use a risk-free interest rate r = 0.05 and a diagonal volatility matrix Σij = 0.32δij,
1 ≤ i, j ≤ d in the underlying Black–Scholes model with s0 = (100, . . . , 100).
To emphasize the efficiency of exercise rate optimization with respect to the polynomial degree,

4https://www.rocq.inria.fr/mathfi/Premia
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Figure 3: Exercise rate optimization with polynomial degree 0 ≤ k ≤ 2, Mn = 200× 4n and
Nn = 2n, 0 ≤ n ≤ 7 applied to a one-dimensional American put option in the Black–Scholes
model with σ = 0.3, r = 0.05, K = 100, s0 = 100, and T = 1.

DOI 10.20347/WIAS.PREPRINT.2651 Berlin 2019



American options by ERO 11

0 5 10 15 20 25 30 35 40
10−7

10−6

10−5

10−4

10−3

10−2

10−1

`

Figure 4: Convergence with respect to the number of function evaluations, `, in the training
step of exercise rate optimization for an American put option using the L-BFGS-B algorithm.

we compute reference values V ∗ = 6.5479 and V ∗ = 3.6606 using exercise rate optimization
with polynomial degree kERO = 2 for d = 2 and d = 5, respectively. Figure 5 shows that the
Longstaff–Schwartz algorithm converges to these values as kLS → ∞, but only achieves a
comparable performance for k ≈ 6. We show 95% confidence bands around our reference value,
which are based on the empirical variance in the evaluation of our test value. From these we
see that the remaining difference between the two methods can be explained by the random
sampling error.

0 2 4 6 8

6.5

6.52

6.54

kLS

LS
ERO

(a) d = 2

0 1 2 3 4 5 6

3.62

3.63

3.64

3.65

3.66

kLS

LS
ERO

(b) d = 5

Figure 5: Convergence of the Longstaff–Schwartz algorithm (LS) for {2, 5}-dimensional basket
put options with increasing polynomial degree kLS to reference values computed via exercise
rate optimization (ERO) with polynomial degree kERO = 2 and 95% confidence bands (dashed).
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Runtime comparison To obtain a fair runtime comparison, we created a Python package5
with straightforward implementations of both algorithms, which we ran on a 12 core Intel Xeon
X5650 CPU.
For the same polynomial degree, exercise rate optimization is slower than the Longstaff–
Schwartz algorithm. However, as we have seen above, the latter requires larger polynomial
degrees for accurate results. Since the ratio between the dimensions of polynomial subspaces
with degrees k = 2 and k > 2 grows with respect to the dimension of the domain, exercise
rate optimization returns accurate results faster than the Longstaff–Schwartz algorithm in
high-dimensional examples.
For example, for a basket put option as above with d = 10, the Longstaff–Schwartz algorithm
returns 2.235 with k = 2 after 530 seconds and 2.237 with k = 4 after 7437 seconds. Exercise
rate optimization, on the other hand, returns 2.240 with k = 2 after 2493 seconds. All these
results were obtained with the same 3.2× 106 Brownian motion samples.

3.3 Max call options

In this subsection, we consider max call options on two underlying assets, for which g(s) :=
max{(s1 − K)+, (s2 − K)+}. These max call options present an interesting challenge for
our method, since the optimal exercise region at any time before expiry has two connected
components [12]. Lower and upper bounds for the option prices in the Black–Scholes model
with r = 0.05, Σij = 0.22δij, K = 100, N = 8 and dividend δ = 0.1 are taken from [3] and
provided in Table 1 alongside the results of our method for k ∈ {1, 2, 3} and M = 1 000 000.
The optimized exercise rates with k ∈ {2, 3} are shown in Figure 6. As expected, they are

k
95% CI 1 2 3

90 [8.053,8.082] 7.126 8.009 8.039
s0 100 [13.892,13.934] 12.311 13.821 13.865

110 [21.316, 21.359] 19.133 21.220 21.256

Table 1: Prices of max call option. 95% confidence intervals (CI) taken from [3].

almost deterministic, which means that they exhibit steep slopes from values close to zero
to values close to infinity. Since the specific values are irrelevant, we restrict our plots to the
level sets of exercise rate 0.001 and 1000. The results in this subsection were obtained using a
maximal number of 20 optimization steps. Performing more steps would further reduce the
distance between these level sets without a noticeable difference in the resulting option price.
As predicted by theory, there are two disjoint regions of high exercise rates. Furthermore, due
to the symmetry of the underlying model and the payoff, the optimized exercise rate is almost
axisymmetric even though we do not enforce this symmetry. While modeling the disconnected
regions is not possible with log-linear exercise rates available for k = 1, the hyperbolic conic
sections available with k = 2 already provide satisfactory approximations.

5https://pypi.org/project/pryce/
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Figure 6: Level sets of optimal exercise rates for a max call option with k = 2 (dashed) and
k = 3 (solid).

3.4 Stochastic volatility

In this subsection, we apply our method to pricing in a stochastic volatility model.
For this purpose, we consider the basic Heston model as described in [22], which models the
evolution of a single underlying asset Xt and its instantaneous variance vt using the coupled
system of stochastic differential equations

dXt = µXt dt+√vtXt dWX
t , (8)

dvt = κ(θ − vt) dt+ ξ
√
vt dW v

t , (9)

where µ > 0, κ > 0, θ > 0, ξ > 0 with 2κθ > ξ2, and WX
t and W v

t are Wiener processes with
correlation −1 ≤ ρ ≤ 1.
Since our method requires Markovian markets, we must include the volatility and define
St := (Xt, vt), t ∈ T . This means that knowledge of the current volatility is required to make
optimal exercise decisions in stochastic volatility models.
To obtain a risk neutral measure, we replace µ with the risk-free rate r = 0.05 in Equation (8).
We choose the remaining parameters κ = 3, θ = 0.05, ξ = 0.5, ρ = −0.5 and compute
estimates of vK(s0) for a put option with s0 = (100, 0.15) and 25 different values of the strike
K ∈ [90, 150]. For this purpose, we use polynomials of degree k ∈ {0, 1, 2} and M = 100 000
samples with N = 32 time steps.
For comparison, we also show the results of the finite difference method FD_Hout_Heston
implemented in Premia, with 32 time steps and a grid of 100× 100 nodes in the discretization
of the stock-volatility plane. The results are shown in Figure 7. The maximal relative difference
between the two methods is 1% and occurs around K∗ = 130. Up to roundoff error, the prices
computed by our method are equal to K − 100 for all K ≥ K∗. This behavior is expected,
since for large enough K the initial point (100, 0.15) lies within the optimal exercise region
and the option is thus exercised immediately.
Figure 8 shows the numerically optimized exercise rates (with k = 2) at t = 0.5 for K ∈
{100, 110}.
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Figure 7: Dependence of the put option price on the strike in the Heston model; computed
using exercise rate optimization (ERO) and a finite-difference method (FD).
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Figure 8: Level sets of optimal exercise rates at t = 0.5 for a put option in the Heston model.

Finally, we consider a 10-dimensional portfolio where each underlying (X i
t)t∈T , 1 ≤ i ≤ 10

follows Equation (8) with the same volatility process (vt)t∈T (and the same parameter values
as in the one-dimensional case) but different Wiener processes (WXi)t∈T , 1 ≤ i ≤ 10 such
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that the 11-dimensional Wiener process (WX1
t , . . . ,WX10

t ,W v
t ) has the covariance matrix

Σ =



1. 0.2 0.2 0.35 0.2 0.25 0.2 0.2 0.3 0.2 −0.5
0.2 1. 0.2 0.2 0.2 0.125 0.45 0.2 0.2 0.45 −0.5
0.2 0.2 1. 0.2 0.2 0.2 0.2 0.2 0.45 0.2 −0.5
0.35 0.2 0.2 1. 0.2 0.2 0.2 0.2 0.425 0.2 −0.5
0.2 0.2 0.2 0.2 1. 0.1 0.2 0.2 0.5 0.2 −0.5
0.25 0.125 0.2 0.2 0.1 1. 0.2 0.2 0.35 0.2 −0.5
0.2 0.45 0.2 0.2 0.2 0.2 1. 0.2 0.2 0.2 −0.5
0.2 0.2 0.2 0.2 0.2 0.2 0.2 1. 0.2 −0.1 −0.5
0.3 0.2 0.45 0.425 0.5 0.35 0.2 0.2 1. 0.2 −0.5
0.2 0.45 0.2 0.2 0.2 0.2 0.2 −0.1 0.2 1. −0.5
−0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 1


Figure 9 shows estimates of the values of American basket put options (with coefficients
c ≡ 1/10) that were obtained by exercise rate optimization for the corresponding 11-dimensional
process St := (X1

t , . . . , X
10
t , vt) using the same discretization parameters as before.

90 100 110 120 130
0

10

20

30

K

ERO (k = 2)
ERO (k = 1)
ERO (k = 0)
European

Figure 9: Dependence of basket put option price on the strike in the 10-dimensional Heston
model.

3.5 Rough volatility

To illustrate the wide applicability of our method, we conclude this section with the non-
Markovian rough Bergomi model, which was previously applied to explain implied volatility
smiles and other phenomena in the pricing of European options [6]. In non-Markovian models,
Equation (2) does not hold because optimal exercise strategies may be based on the entire
history of the path (St)t∈T , which we again assume to include the underlying asset (Xt)t∈T
as well as the volatility (vt)t∈T . Therefore, we consider the infinite-dimensional Markovian
extension

S̃t := (Su)u∈[0,t], t ∈ T ,
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for which Equation (2) formally holds with subsets of T × Rd
+ replaced by subsets of T × Γ,

where Γ := ⋃
t∈T {s : [0, t]→ Rd

+}.
For numerical purposes, we subsample realizations of St (with the convention that St := S0
for t < 0) and define

S̃t := (St, St−∆1 , . . . , St−∆J
) ∈ Rdeff := R2×(1+J), t ∈ T

for some J <∞ and 0 < ∆1 < · · · < ∆J . We apply the algorithm described in Section 2.1 to
the resulting problem of finding exercise rates on the extended space T × Rdeff .
Following [6, Section 4], we generate samples from the risk-neutral measure induced by

dXt = rXt dt+Xt

√
vt dWX

t , X0 = x0, (10)

vt := v0E
(
η
√

2H
∫ t

0

1
(t− u)1/2−H dW v

u

)
, (11)

where E is the stochastic exponential in the Wick sense, H = 0.07, r = 0.05, η = 1.9, and
WX , W v are Wiener processes with correlation ρ = −0.9. Since the asset price process Xt is
a continuous local martingale, standard no arbitrage theory applies even though vt is not a
semi-martingale.
Table 2 shows the American option prices for x0 = 100, v0 = 0.09, T = 1, and different
strikes, which we computed using the discretization parameters M = 100 000, N = 128, k = 2,
and ∆j := j/8, 1 ≤ j ≤ J , J ∈ {0, 1, 3, 7}. For comparison, we include the European prices
computed by simple Monte Carlo simulation. The difference between our estimates for J = 0
and J = 7 is not consistently larger than the Monte Carlo sampling error, indicating that the
exploitation of non-Markovian features does not yield significantly improved exercise strategies.
This is not to say, however, that American option prices in non-Markovian and Markovian
models are similar. The non-Markovianity of the samples of (St)t∈T plays an important role in
the evaluation of any given strategy, even when the strategy only depends on the spot values.

K

70 80 90 100 110 120 130 140
Euro. 1.83 3.13 5.06 7.98 12.21 17.99 25.35 33.88

0 1.88 3.23 5.32 8.51 13.24 20 30 40
1 1.88 3.23 5.31 8.50 13.22 20 30 40

J 3 1.88 3.21 5.31 8.50 13.22 20 30 40
7 1.88 3.22 5.30 8.50 13.23 20 30 40

Table 2: Prices of put options in the rough Bergomi model.

The numerically optimized exercise rates at t = 0.5 for J = 0 and K ∈ {100, 110} are shown
in Figure 10.

4 Conclusion

We have introduced a method of pricing American options by optimization of randomized
exercise strategies, in which deterministic exercise regions are replaced by probabilistic exercise
rates.
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Figure 10: Level sets of optimal exercise rates at t = 0.5 for put options in the rough Bergomi
model (k = 2, J = 0).

Since the objective function of the corresponding relaxed optimization problem is smooth,
optimal exercise rates can be found using simple deterministic optimization routines. Our
numerical experiments show that exercise rates based on quadratic polynomials are sufficient
to obtain remarkably accurate price estimates and that the resulting non-concave objective
functions can be globally maximized using only a few iterations. Since the market model only
appears in the simulation of sample paths, our method is quite flexible and easy to implement.
We demonstrated its practical applicability in uni- and multivariate Black–Scholes, Heston and
rough Bergomi models.
In even higher-dimensional situations than those considered in this work, already the space
of quadratic polynomials may be prohibitively large. In that case, the polynomial subspace
P could be designed in an anisotropic way to exploit, for example, the fact that the exercise
decision of basket put options with coefficients c is most sensitive to the coordinate s̃1 := c · s.
For situations where large polynomial subspaces are unavoidable, a rigorous analysis of the
number of samples that are required to determine a given number of degrees of freedom
without significant overfitting would be of interest; similar but not directly transferable results
were established in [9, 32].
To accelerate numerical implementations, multilevel Monte Carlo methods [19] could be used
for evaluations of the expected payoff and its gradient.
It is an open question whether efficiently computable upper bounds on the option price [10]
can be constructed using exercise rates as well.
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