736 research outputs found

    Multilevel Monte Carlo Finite Volume Methods for Random Conservation Laws with Discontinuous Flux

    Full text link
    We consider conservation laws with discontinuous flux where the initial datum, the flux function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish a notion of random adapted entropy solutions to these equations and prove well-posedness provided that the spatial dependency coefficient is piecewise constant with finitely many discontinuities. In particular, the setting under consideration allows the flux to change across finitely many points in space whose positions are uncertain. We propose a single- and multilevel Monte Carlo method based on a finite volume approximation for each sample. Our analysis includes convergence rate estimates of the resulting Monte Carlo and multilevel Monte Carlo finite volume methods as well as error versus work rates showing that the multilevel variant outperforms the single-level method in terms of efficiency. We present numerical experiments motivated by two-phase reservoir simulations for reservoirs with varying geological properties.Comment: 25 pages, 9 figures, 4 tables, major revision

    Multilevel Monte Carlo for Random Degenerate Scalar Convection Diffusion Equation

    Full text link
    We consider the numerical solution of scalar, nonlinear degenerate convection-diffusion problems with random diffusion coefficient and with random flux functions. Building on recent results on the existence, uniqueness and continuous dependence of weak solutions on data in the deterministic case, we develop a definition of random entropy solution. We establish existence, uniqueness, measurability and integrability results for these random entropy solutions, generalizing \cite{Mishr478,MishSch10a} to possibly degenerate hyperbolic-parabolic problems with random data. We next address the numerical approximation of random entropy solutions, specifically the approximation of the deterministic first and second order statistics. To this end, we consider explicit and implicit time discretization and Finite Difference methods in space, and single as well as Multi-Level Monte-Carlo methods to sample the statistics. We establish convergence rate estimates with respect to the discretization parameters, as well as with respect to the overall work, indicating substantial gains in efficiency are afforded under realistic regularity assumptions by the use of the Multi-Level Monte-Carlo method. Numerical experiments are presented which confirm the theoretical convergence estimates.Comment: 24 Page

    Adaptive Uncertainty Quantification for Stochastic Hyperbolic Conservation Laws

    Full text link
    We propose a predictor-corrector adaptive method for the study of hyperbolic partial differential equations (PDEs) under uncertainty. Constructed around the framework of stochastic finite volume (SFV) methods, our approach circumvents sampling schemes or simulation ensembles while also preserving fundamental properties, in particular hyperbolicity of the resulting systems and conservation of the discrete solutions. Furthermore, we augment the existing SFV theory with a priori convergence results for statistical quantities, in particular push-forward densities, which we demonstrate through numerical experiments. By linking refinement indicators to regions of the physical and stochastic spaces, we drive anisotropic refinements of the discretizations, introducing new degrees of freedom (DoFs) where deemed profitable. To illustrate our proposed method, we consider a series of numerical examples for non-linear hyperbolic PDEs based on Burgers' and Euler's equations

    A Fully Parallelized and Budgeted Multi-level Monte Carlo Framework for Partial Differential Equations: From Mathematical Theory to Automated Large-Scale Computations

    Get PDF
    All collected data on any physical, technical or economical process is subject to uncertainty. By incorporating this uncertainty in the model and propagating it through the system, this data error can be controlled. This makes the predictions of the system more trustworthy and reliable. The multi-level Monte Carlo (MLMC) method has proven to be an effective uncertainty quantification tool, requiring little knowledge about the problem while being highly performant. In this doctoral thesis we analyse, implement, develop and apply the MLMC method to partial differential equations (PDEs) subject to high-dimensional random input data. We set up a unified framework based on the software M++ to approximate solutions to elliptic and hyperbolic PDEs with a large selection of finite element methods. We combine this setup with a new variant of the MLMC method. In particular, we propose a budgeted MLMC (BMLMC) method which is capable to optimally invest reserved computing resources in order to minimize the model error while exhausting a given computational budget. This is achieved by developing a new parallelism based on a single distributed data structure, employing ideas of the continuation MLMC method and utilizing dynamic programming techniques. The final method is theoretically motivated, analyzed, and numerically well-tested in an automated benchmarking workflow for highly challenging problems like the approximation of wave equations in randomized media
    • …
    corecore