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Abstract

All collected data on any physical, technical or economical process is subject to uncertainty. By incorporating

this uncertainty in the model and propagating it through the system, this data error can be controlled. This

makes the predictions of the system more trustworthy and reliable. The multi-level Monte Carlo (MLMC)

method has proven to be an effective uncertainty quantification tool, requiring little knowledge about the

problem while being highly performant.

In this doctoral thesis we analyse, implement, develop and apply the MLMC method to partial differential

equations (PDEs) subject to high-dimensional random input data. We set up a unified framework based on

the software M++ to approximate solutions to elliptic and hyperbolic PDEs with a large selection of finite

element methods. We combine this setup with a new variant of the MLMC method. In particular, we propose

a budgeted MLMC (BMLMC) method which is capable to optimally invest reserved computing resources

in order to minimize the model error while exhausting a given computational budget. This is achieved by

developing a new parallelism based on a single distributed data structure, employing ideas of the continuation

MLMC method and utilizing dynamic programming techniques. The final method is theoretically motivated,

analyzed, and numerically well-tested in an automated benchmarking workflow for highly challenging problems

like the approximation of wave equations in randomized media.
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1
Motivation and Introduction

All models are wrong, but some are useful - George Box, 1978, [41]

The process of model and hypothesis building and their falsification is central to the scientific method of

any discipline. In particular, in natural sciences, engineering and economic studies these models are often

mathematical systems giving an incredibly precise and well-defined description of the real-world problem.

However, even if the mathematical model does account for all aspects of the underlying system, the significance

of the predictions is vulnerable to uncertainty in the input data. Picking up on the quote by George Box, we

raise the following questions:

• How wrong is the model and can we quantify the error?

• Can we improve the model to better approximate the underlying system?

• Can we measure and discriminate between good and bad models?

• When is a model actually useful and what makes it useful?

Up until the 1990s, uncertainty quantification (UQ) was mostly studied with statistical methods. It became

a highly interdisciplinary field by incorporating techniques from numerical analysis, scientific computing and

problem domains such as quantum physics or mechanical engineering. Additionally, as solutions to interesting

problems in application are usually intractable for human beings, computers and software development are

essential within end-to-end UQ. In end-to-end UQ, we try to consider all contributions to the total error

1



2 Motivation and Introduction

which can be informally expressed as

errtotal = errinput + errmodel + errdisc + errsolve + errfloat + errbug + . . . . (1.1)

It is this sum, which motivates all aspects considered in this thesis.

The input error errinput stems from incomplete or inaccurate knowledge and can be of various types -

uncertain boundary or initial conditions, unknown shapes of the computational domain and unknown material

parameters or external forces. Usually, this input data is collected by a measuring process and inherently

contains uncertainty and thus, is aleatoric. Practical examples for such an aleatoric and inherent uncertainty

are manufacturing tolerances, weather conditions, noisy communication channels or Heisenberg’s uncertainty

principle in quantum mechanics. Consequently, as soon as the mathematical model is fed with this uncertain

input data, this error has to be propagated through the system.

On the other hand, the model error errmodel might be a result from ignorance, namely that we simply did

not consider a certain term or force contributing to the overall system behavior. Thereby, we speak of unknown

unknowns, which are typically associated with epistemic errors due to the lack of knowledge. Often, however,

it might even be a conscious decision to introduce this error since a complete and detailed description of the

model can result in extremely high computational costs or comes with a sacrifice of mathematical properties of

the formulated system. It is in the scientist’s responsibility to state and to argue for the invested assumptions

and model reductions, as well as to quantify the impact of them. This makes the scientific findings trustworthy

and reliable and it acknowledges that high impact decisions might be based on them.

Controlling the discretization error errdisc has been the main objective for researchers in numerical analysis.

In this field, error bounds have been derived, among many others, on quadrature formulas to approximate

integrals, time integration schemes to approximate systems evolving over time and finite difference (FD) and

finite element methods (FEM) to approximate ordinary and partial differential equations (ODE and PDE).

These discretization schemes have, alongside with their implementation on computer systems, given us an

incredible leap in understanding nature by simulating its behavior.

With the use of the above discretization methods, finite dimensional algebraic systems arise. Numerical

methods to solve these algebraic system introduce an error errsolve, too. As an example, we can think of a

Krylov subspace method to solve huge linear systems. In practice, this solver never spans the whole solution

space, but approximates the real solution in a subspace up to an acceptable error.

With the use of computers, rounding errors errfloat and cancellation phenomena in floating point arithmetics

also have to be considered. In fact, numerical instabilities due to floating point operations still lead to special

requirements in high performance computing and in the algorithmic design.

Lastly, programming errors (commonly called bugs) become more likely with an increasing stack of in-

volved algorithms to control the other errors. They are also of epistemic nature since we are not aware of

their existence while executing the program. The only hope to actually control this error is to separate the

responsibilities in the software and to continuously and automatically verify the correctness of the code as

changes are made to it. In the sum (1.1) further error terms might have to be added. However, the intent

here was to list the main contributors considered in this thesis.

To summarize, there is no complete information in real life and there is no perfect algorithm delivering
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exact results. However, the need for model building and error quantification is already given by the simple

fact that it does decrease the cost and development time of new designs and scientific findings dramatically.

Moreover, with global crises like climate change, pandemics or supply chain disruptions and rising prices, we

heavily rely on risk quantification in order to make the right decisions. For a more detailed motivation on

UQ, we refer to the books by Sullivan [241], Soize [229] or McClarren [180] and the reference section.

1.1 On Computational Methods

Computational methods and simulations are used in almost every scientific discipline, having the main goal

to predict the behavior of the underlying system they try to replicate. By doing so, they can get notoriously

complicated, such that even on the fastest and biggest supercomputers no solution or approximation with

an acceptable accuracy can be found. This raises the demand for sophisticated and ever-evolving numerical

and uncertainty quantification methods. In the following, we distinguish between these numerical methods

like FEMs to find approximative solutions to PDEs and UQ methods to control the uncertainty entering the

system by the input data.

The use of FEMs to solve PDEs has proven to be greatly useful, as they come with rigorous convergence

results for many applications. Beyond this, they are deployable on parallel computing clusters and have been

implemented in many commercial and non-commercial open source software tools. Even though FEMs are

well-established, new methods still arise, tailor-made for specific model problems in order to cope with low

regularity, high computational demands, multi-physics systems, stability issues or missing conservation of

certain physical quantities. We refer to standard literature like the books by Brenner and Scott [44], Ern [81]

and Braess [42] to underline the importance and wide range of applications of FEMs. Furthermore, we also

mention more recent developments in the field of mixed FEMs, put together in the book by Boffi, Brezzi and

Fortin in [38] or again by Ern [70] about discontinuous Galerkin (DG) methods. However, up until the early

1990s uncertainty in the input data was not taken into account. Early attempts to tackle this with Monte

Carlo (MC) methods are for example described in [36] and [162].

To capture briefly the history of MC methods, we recall a very early application of the method in the

estimation of π with a rather simple experimental setup. We consider a unit square and draw a quarter

of a circle with radius one around the origin in the lower left corner. Then, we sample from a uniformly

distributed random variable on the unit square and compute the distance of each sample to the origin. Lastly,

we take the ratio from the amount of samples with a distance smaller than one to the total sample amount

which gives in the limit π/4. Surely, there are way better ways to compute π as the convergence rate of

the MC method is rather slow with O(M−1/2), M being the total number of samples. Nevertheless, Enrico

Fermi, Stanislaw Ulam, John von Neumann and Nicholas Metropolis found soon enough other applications

for the MC method in nuclear and particle physics [181] as well as in military research, most famously in

the Manhattan project [127]. The MC method requires little assumptions on the underlying system and is

extremely simple to implement. Thereby the MC method, and the various variants of it, have been used

in applications in biology, chemistry, computer science, economics and finance, physics and engineering. We

refer to the book by Liu [168] discussing many applications and strategies for MC methods.

The MC method belongs to the class of non-intrusive statistical estimators, that is, the method is based
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on independent sample-wise experiments. Within the scope of this thesis such an ”experiment” is essentially

the task of finding an approximative solution to a PDE. This is by itself already a computationally challenging

task. Therefore, the great benefit of such non-intrusive methods is that they can build on existing tools to solve

sample-wise the deterministic problems. Additionally, as the used samples are required to be independently

and identically distributed (iid), the methods provide a natural parallelization scheme and are deployable

on extremely large computing clusters. Nevertheless, the poor convergence rate of O(M−1/2) leads to the

evaluation of a huge amount of samples M to achieve an acceptable accuracy, which has motivated numerous

authors to find better methods.

The Quasi-Monte Carlo (QMC) method is as the MC method a quadrature rule to an expectation integral,

but where the MC method chooses its quadrature points (pseudo-)randomly, the QMC method employs a

quasi-random selection instead. Early works on this method go back to Niederreiter [198, 199] as well as Sloan

and co-authors [226, 71] and Calfisch [51]. It finds applications in financial product valuation [204, 106] and

if the problem satisfies certain conditions, the convergence rate gets close to O(M−1) (confer [10] or the other

mentioned resources).

As the QMC method, the stochastic collocation (SC) method also employs a deterministic choice of

quadrature (collocation) points [265]. However, the weights of the quadrature rule are not uniform as in the

MC or QMC method. The collocation points are taken from a sparse tensor grid [227, 48] and if the solution

provides sufficient regularity with respect to the stochastic parameter, this results in very fast convergence.

SC methods have for example been used by Xiu to solve differential equations with random input [264].

The stochastic Galerkin (SG) method does differ from the other methods substantially as it is not a non-

intrusive method. It aims to satisfy the governing equations in a weak form and not at given sample points

by incorporating the uncertainty in the ansatz space to the weak formulation. In particular, the solution is

sought in a polynomial basis which usually consists of orthonormal polynomials with respect to the probability

distribution function. Hence, the solution is expressed in an expansion which is commonly called generalized

polynomial chaos (gPC) expansion. This expansion is then plugged into the PDE which then is solved with a

Galerkin approximation. Further details can be found in the upcoming section or in the book by Ghanem [104].

Multi-level Monte Carlo (MLMC) methods have been receiving much attention since the initial publication

by Heinrich [135], who was inspired by a multigrid approach for fluids under gravity [43]. Giles [109, 110]

applied the MLMC method in mathematical finance to stochastic differential equations (SDEs). Since then, he

has been continuously contributing to the field [108] and maintains a list of all publications on MLMC methods

on [107]. The core benefit of the MLMC algorithm is that it finds a way to balance the computational cost of

samples on different discretization levels and the total number of samples, resulting in an efficient algorithm.

To refer to equation (1.1), the algorithm basically invests computational resources in controlling errinput and

errdisc. This makes it very attractive for simulations where the model evaluation of one sample is exceptionally

expensive.

All the mentioned methods face common challenges one way or the other. For example, a high dimensional

stochastic space results in worse performance of all methods. Whereas for the MC-type methods the conver-

gence rate is independent of the stochastic dimension, the variance, and thus the constant in the convergence

result, often is not [92]. However, for SC-type methods a large dimension can result in a dramatic explosion

of computational effort. There is no easy answer to which method is actually faster or even applicable, as the
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answer to this question is highly problem dependent. Therefore, knowledge from the application domain is

often of high importance to actually design the best methods, and beyond this, it is also needed in order to

root out all epistemic errors.

Goals of the Method Design

Within this thesis, we think of a method as a combination of algorithms to solve mathematical problems

with soft- and hardware systems to control the total error in (1.1). The complexity of this problem requires

to tackle several issues at once and thereby to consider the above definition of a method. For epistemic

errors, e.g. resulting from model simplification or software bugs, this is really hard to rigorously quantify in

a mathematical way. Nevertheless, if we impose to the method that it should deliver fast feedback about its

validity and its performance on a particular problem, we can get back control over epistemic errors in some

way. Fast feedback and a method design from the application point of view is crucial to be actually able to

distinguish between good and bad models and to incorporate knowledge from the problem domain.

For the parts of the error (1.1) where we actually have convergence results, we want to achieve a balance in

the invested resources. We know by utilizing more computational resources that the discretization error errdisc

gets smaller. By having a suitable stochastic model for the input data we also know that, by computing more

samples, the input error errinput is controlled as well. Thereby, to be actually able to tell which algorithm stack

is indeed the best one for a particular problem, we want to be able to answer the question, which method leads

to the smallest total error (1.1), given a certain computational budget. Unfortunately, in most cases we can

only prove and numerically verify the convergence of an error with respect to some discretization parameter

or consumed computational resources, not the actual size of the error. Nevertheless, this asymptotic behavior

and a-posteriori error estimates are often the only results that can be achieved and are thereby good enough

for our goal.

Lastly, we want the developed methods to be robust. To define robustness, we want the method to deliver

fast and reliable results under various circumstances which might be a varying problem class, an interplay

of different algorithms or different soft- and hardware architectures. The overall method is exposed to a

wide range of influences of theoretical or technological nature, and we demand that the approach is robustly

performing under all of them.

Summed up, we want to develop robust methods yielding repeatable and reliable results, where the method-

ology does account for all aspects of the error equation (1.1), invests computational resources economically

and which gives fast feedback for the model building process. Thereby, we aim for a holistic method design -

from mathematical theory to automated large-scale computations.

1.2 Main Contributions and Outline

In order to achieve the outlined goal of a holistic method design to approximate solutions of PDEs subject to

uncertain input data, we draw the attention to the Venn diagram 1.1. To find the approximative solutions,

we have mostly focused our work on three main areas.

First, we aimed for the unified application of various finite element methods on a new parallel data structure
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Contributions to FEM:
- Multi-mesh parallelism 2.1.3
- Unified application of various FE spaces 2.2
- Multi-sample systems on distributed memory 2.4.3
- Software contributions to M++ 2.5

Contributions to UQ:
- Efficient implementation of
sample generators 3.2
- Considered high dimen-
sional model problems 3.3
- Parallel & multi-estimation
update method 3.4.4
- Budgeted MLMC 3.5.3
- UQ Software Extension 3.6

Contributions to HPC:
- Automated investigation /
falsification via (CD) pipeline
- Parallelization experiments
- Model & Method experiments

FEM
chapter 2

UQ
chapter 3

HPC
chapter 4

Holistic method design

Figure 1.1: Main contributions of this thesis in a Venn diagram.

suitable for UQ problems. To do so, we used and extended the parallel FEM library M++. The intent

behind this is to develop a framework with which PDEs of different types can be numerically approximated.

This includes the approximation of highly challenging problems like wave equations with randomized wave

speeds or transport equations on randomized flux fields in multiple space dimensions (confer section 1.3 for

the problem definition). To do so, we use space-time discontinuous Galerkin approximations and implicit

time-stepping methods to discretize the deterministic version of the PDE. Furthermore, we have employed

many other discretizations like the enriched Galerkin discretization or mixed FEM for elliptic model problems

and utilized the broad selection of numerical solvers M++ [28] is offering. A central contribution to M++

is the new multi-mesh parallelization which can be employed for arbitrary finite element spaces and non-

intrusive UQ algorithms. This parallelization follows a very simple, yet extremely adaptive rule for the load

distribution. Shortly speaking, the idea is to assemble huge linear systems on distributed memory over multiple

computing nodes, while the structure of the system is adapted to the needs of the problem. This integrated

approach intertwines the FEM with the UQ methods resulting in a highly efficient and hardware proximal

implementation without sacrificing the non-intrusiveness of the UQ methods.

Secondly, we have designed the new parallel data structure such that any non-intrusive UQ method can

easily be executed on it, i.e., we used it for Monte-Carlo-like and stochastic collocation methods. In particular,

we employed it in a new method we propose with this thesis - the budgeted MLMC (BMLMC) method. The

BMLMC method breaks up the initial problem into multiple subsequent problems, where each is solved under
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an optimality condition. Thereby, the BMLMC method utilizes techniques from dynamic programming and

requires basically no a priori knowledge about the problem or its computational complexity. This method is

motivated by the fact that in high performance computing applications a computational budget has to be

reserved in order to deploy a job on the computing cluster. With the BMLMC method this can be done by

imposing the reserved computational budget as a constraint to the problem, i.e., the method solves a knapsack

problem. The method inherits the properties of the MLMC method and has proven to be extremely robust,

highly performant, and widely applicable in combination with the new parallelization. Lastly, we want to

mention that with this method we can empirically study the question: Which algorithm stack should be used

to minimize (1.1)? This is done in particular by imposing the same computational budget to all algorithm

combinations and deciding for the one which gives the smallest error estimate.

Lastly, we mention that these empirical investigations are done completely automated. In order to do so

we have developed a continuous delivery (CD) pipeline which builds and verifies the software prior to the

deployment on the high performance computing cluster. Then, the newest version of the software is executed

as a benchmark job offering fast feedback about the method development and the model building process.

This workflow enables stable, sustainable and transparent software engineering, continuously checked and

benchmarked, such that further work can easily and confidently build up on the achieved results.

Concluded, one main contribution is the unified application of a broad selection of finite element and

uncertainty quantification methods in a single framework. Beyond this, we propose the new BMLMC method

and the new parallel data structure based on multi-sample systems, as well as the automated investigation

with a CD pipeline. Lastly, we want to emphasize that a central research product of this thesis is the piece

of software handling all the above.

Outline

We will close this introductory chapter by giving a detailed study on recent literature on uncertainty quantifi-

cation and scientific computing in section 1.3. We will focus on publications which are related to the topics

and problems we want to investigate in this thesis.

By drawing the attention to diagram 1.1 one more time, we also want to motivate the structure of the main

chapters of this thesis. Namely, chapter 2 introduces the theory on FEM, chapter 3 explains UQ applications

and algorithms and chapter 4 discusses the numerical results achieved on the HoReKa super computer [249].

The actual outline within chapter 2 and 3 is further motivated by the build structure of the developed software,

i.e., we will introduce the mathematical theory to the reader in the same order as we define the objects for

the C++ compiler. In particular, this means for the FEM chapter that we explain the triangulation of the

computational domains in 2.1 and the multi-mesh parallelism. This section is followed by an overview on

the used finite element spaces in 2.2 and the discretized deterministic model problems in 2.3. In 2.4, we

shortly explain the usage of the numerical solvers on multi-sample systems before we close the chapter with

section 2.5, giving an overview on the project and software structure of M++.

The next chapter on UQ starts by recalling some theory on random fields and Bochner spaces in 3.1, and

based on that theory, we explain how we efficiently sample from the input data in 3.2 to hand it over to

the PDE solver. We will further investigate the uncertain model problems in 3.3 and derive some of their
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properties. Towards the end of the chapter, we explain the used UQ algorithms in the sections 3.4 and 3.5,

where we will also explain the development of the BMLMC method in full detail and analyze its properties.

Lastly, we present a discussion on the parallelization properties of the overall method and finish the chapter

with a short recapitulation of the UQ extension to M++ in 3.6.

The last main chapter 4 of this thesis outlines the numerical results achieved on the HoReKa supercomputer

in a unified, automated and large-scale (on up to 2048 processing units) manner. We will present model

building experiments, algorithmic benchmarks, investigations on the scaling of the parallelization as well as

other parameters which can influence the outcome of a computation. In particular, we will consider elliptic and

hyperbolic model problems subject to different uncertain input data, approximated with various discretizations

and solved with highly performant algorithms.

Publications and Software Releases

Parts of the work here presented have been subject to publications and software releases. The foundational

work to the framework was published in [28] where we considered elliptic, parabolic and hyperbolic model

problems to demonstrate the non-intrusiveness and the abstract applicability of the framework. However,

even though the overarching theory remained the same, the developed software has changed substantially

since this publication. We want to refer to the release notes {1} for a high-level documentation of the

changes. Following the best practice of short release cycles as suggest in most software engineering workflows,

we have been contributing to 26 stable releases of M++ of which 3 are published on radar4kit [258, 259, 260]

and to 4 stable releases of MLUQ – the UQ extension for M++.

1.3 Existing Research and Model Problems

In the following, we present the model problems used within this thesis, as well as existing literature investi-

gating them with different methods. The intent of this section is to give a first impression of the applications

and to identify existing results. We consider for all model problems that they are defined on a bounded

polygonal domain D ⊂ Rd with d ∈ {1, 2, 3}, a probability space (Ω,F ,P) and possibly a time interval

[0, T ] ⊂ R. We denote the outer unit normal vector on the boundary ∂D with n and subsets of the boundary

with Γ ⊂ ∂D. For now, we assume that the input data is imposed to the model problems, such that they

admit randomly distributed solutions. We are interested in the solution map Ω → V , ω 7→ u(ω), where V

is the solution space of a deterministic PDE. However, in many applications, we are not able to obtain this

complicated mathematical object. To develop an intuition to the solution map Ω → V , we instead denote

for each ω(m) ∈ Ω a sample of the input data with y(m) and a sample of the solution with u(m) ∈ V . Then

we can compute statistical moments of a quantity of interest (QoI) of the solution, which in most cases is a

bounded functional Q: V → R, such that for some constant C > 0

|Q(u)−Q(v)| ≤ C ‖u− v‖V , ∀u, v ∈ V (1.2)

https://git.scc.kit.edu/mpp/mpp/-/tags
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QMC SC MLMC CMLMC MLQMC MLSC MIMC MIQMC MISC

[118, 217,
120, 105]

[12, 200,
201, 13,
35, 89]

[25, 54, 58,
55, 246,
1, 53, 130,
153, 144]

[61] [157]
[133, 262,
245, 132,
160]

[128] [214] [129]

Table 1.1: Literature which considers elliptic model problems and non-intrusive UQ. For an overview on the used
abbreviations we refer to table 1.5 in the upcoming section.

holds. Suitable QoI will be given in the following for each model problem. To summarize, we are interested

in approximations to the expectation value E[Q(u(ω))] or higher statistical moments of the forward problem,

i.e., given a distribution of the input data, we address the question: what are the statistical moments of QoIs

to the randomly distributed solutions of the system.

Subsurface Diffusion Problem

We start by introducing the prototypical model problem in UQ and scientific computing - an elliptic partial

differential equation (PDE) subject to random input data. This PDE is derived by Darcy’s law and is often

used to model subsurface flows in random (unknown) porous media (see for example in [195, 196, 67] or

the reference section). The random input data is often employed to capture the uncertainties resulting from

finitely many measurements of the permeability in the ground. Besides application in geophysics, similar

PDEs arise in many engineering applications. This model problem is of particular interest in UQ since the

(deterministic) theory is well-established and many legacy software tools exist to solve it numerically. This

enables an efficient method development as solutions to this equation typically provide sufficient regularity

with respect to the input data. The elliptic model problem reads as follows.

Model Problem 1.1. We search for a solution u : Ω×D → R, such that
− div(κ(ω,x)∇u(ω,x)) = f(ω,x) x ∈ D

κ(ω,x)∇u(ω,x) · n = gN(ω,x) x ∈ ΓN

u(ω,x) = uD(ω,x) x ∈ ΓD

where the permeability κ : Ω×D → R, the source term f : Ω×D → R, the Dirichlet boundary data uD : Ω×
ΓD → R and the Neumann boundary data gN : Ω×ΓN → R are represented by random fields. The subsurface

flux can be computed afterwards via q(ω,x) = −κ(ω,x)∇u(ω,x).

Common models for the random permeability are log-normal fields with exponential covariance (confer

section 3.1.2). Typical QoIs are the L2- or the H1-norm of the solution or measures of the outflow of the

domain which might be of more practical interest. Over the last ten years, this problem has received much

attention which led to a rapid development of methods and further specifications of the problem. We refer to

table 1.1 for an overview.

Other than the standard Monte Carlo (MC) method to estimate the expectation value E[Q] (e.g. as

explained in [268] for this particular problem), many new UQ methods have been developed in recent years

for elliptic PDEs in order to improve on the convergence rate of O(M−1/2), M being the amount of samples.
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In [118] Graham, Kuo, Scheichl and Sloan propose a QMC method for this elliptic PDE a with log-normally

distributed κ(ω,x). The samples are created with the circulant embedding algorithm, first published in [72],

and the PDE is solved with a mixed FEM (a detailed description of this method can be found in [46]). This

work is then later extended in [120] with a more detailed analysis to the combination of QMC and circulant

embedding methods.

This elliptic model problem has also served as an early application case for SC methods, most famously in

the work by Babuška, Nobile and Tempone in [12]. This work has later been extended in [200, 201, 13] and

exploits the finite dimensional noise assumption (confer assumption 3.15) in order to replace the stochastic

space by a parametric space. This ansatz is under development up until recently, for example in [89] and [224],

where adaptive variants of this method are proposed.

The MLMC method also found very early applications to this problem for example by two research groups

around Scheichl in [58] and Schwab [25]. This work is proceeded in [55, 53] and [246] where a very detailed error

analysis is presented. In [1], the method is combined with multiscale methods, in [153], the problem class

is extended to elliptic variational inequalities. Furthermore, pore-scale rock problems [144], permeabilities

modeled as Besov random trees [222] and problem configurations with uncertain boundaries [56] also have

been considered. Later works propose new ways to parallelize the MLMC algorithm such as [217, 16]. This

will be investigated within this thesis, too, and is based on the work we published in [28]. An algorithmic

modification is presented in [61] via a continuation MLMC (CMLMC) method. This method served as

inspiration for the BMLMC method which we will propose in this thesis.

The multilevel idea has also spread to QMC methods [157] and SC methods [133, 262, 245, 132, 160]

and [145, 231] for other model problems. Furthermore, the idea has been extended to multiple indices as

in [128], where different spatial dimensions get assigned their own level. Lastly, we want to mention [214, 129]

combining this multi-index approach with SC and QMC.

All the presented sources introduce methods to the forward problem. For a collection of literature on other

methods which are not applied for forward UQ, we refer to table 1.2. In practice, the inverse problem might

be of even greater interest. The scenario in this problem is the following: Assume that we have knowledge

about the boundary conditions and source terms of model problem 1.1. Furthermore, we can retrieve parts of

the solution from measurement data. The task is to find a distribution of the permeability. This problem can

be formulated in a Bayesian way, and it is often a rather challenging since it is ill-posed. For an introduction

to the Bayesian perspective to inverse problems, we refer to [147, 236].

Regarding the elliptic inverse model problem, there has also been very active research for example by

Stuart in [68]. Typically, some sort of Markov Chain Monte Carlo (MCMC) methods are involved in solving

these Bayesian inverse problems, which have been combined with the multi-level idea and QMC methods

in [73, 217, 74].

This elliptic model problem has also served in the development of intrusive UQ methods - namely the

stochastic Galerkin (SG) method. Early work goes back again to Babuška, Tempone, Schwab, Xiu and many

co-authors in [14, 93, 266].

Very recent work has considered the elliptic model problem also as an uncertain constraint in optimal

control problems [100, 101, 175]. In these publications, stochastic gradient descent (SGD) algorithms are

proposed and analyzed for this model problem. New algorithmic applications like the SGD method for
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No UQ Intrusive UQ Inverse UQ Optimization under UQ

[149, 9, 81, 42, 42, 134,
242, 70, 46, 152, 38,
173, 84, 232, 24, 163]

[14, 93,
266, 112,
113]

[68, 73,
217, 74,
136]

[101, 175,
124]

Table 1.2: Literature which considers elliptic model problems other than non-intrusive forward UQ.

optimal control problems or MCMC methods for Bayesian inversion require efficient forward UQ. Thereby,

these outer-loop algorithms have motivated us to design our forward method as integrated as possible to

provide an easy and highly performant access to forward model evaluation.

Lastly, neglecting the uncertainty of the model problem, in [9, 134, 70] discontinuous Galerkin (DG)

methods and in [242, 163] enriched Galerkin (EG) methods are analyzed for elliptic problems offering new

approaches to conserve the flux in the discretization scheme besides mixed FEM [38, 46].

Concluded, it is fair to say, that there has been an extensive study on this model problem. Nevertheless,

it almost serves as laboratory for new methods and research questions, such that we used it within the scope

of this thesis as well to investigate and test our own method.

Contaminant Transport

With the subsurface diffusion problem, one can compute randomly distributed subsurface flux fields q(ω,x).

With this random vector field the transport of contaminants through the ground, say nuclear waste or spilled

crude oil, can be investigated. Hence, a QoI is for example the total mass of the contaminant at a given time

in a given spatial domain.

Model Problem 1.2. We search for the particle density u : Ω×D × [0, T ]→ R, such that
∂tu(ω,x, t) + div(q(ω,x)u(ω,x, t)) = f(ω,x, t) x ∈ D, t ∈ (0, T ]

u(ω,x, t) = uin(ω,x, t) x ∈ Γin, t ∈ (0, T ]

u(ω,x, 0) = u0(ω,x) x ∈ D

for some randomly distributed Darcy flux q : Ω×D → Rd, right-hand side f : Ω×D× (0, T ]→ R, initial data

u0 : Ω×D → R and inflow boundary condition uin : Ω× Γin × (0, T ]→ R on Γin = {x ∈ ∂D : q · n < 0}.

This model problem is a hyperbolic PDE and even though this is a very easy and prototypical hyperbolic

equation, in general this problem class imposes big challenges as the solutions are of low regularity. In the

nonlinear case, the solutions can even form shocks, making the analysis and the numerical discretization

extremely challenging [179, 22, 66, 166]. A similar model problem was investigated in [156], where Kumar et

al. also considered a random Darcy flux as source of uncertainty treated with a MLMC method.

Typical approximation schemes to this equation formulate a semi-discrete system, where the PDE is first

discretized over the spatial domain with DG methods [70, 134, 59]. Afterwards the semi-discrete system is

solved with a time integrator, for example with an implicit or explicit Runge-Kutta method [60]. In the

explicit case, this can cause stability issues, if the Courant-Friedrichs-Lewy (CFL) condition is violated. To

make the matter worse, as this PDE is subject to random input data, the CFL condition is random as well

and has to be fulfilled for any sample, potentially in a multi-level framework. In [119], a new approach to this
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No UQ MC SC MLMC CMLMC MCMC

[59, 60, 70,
134, 143,
221, 163]

[195, 196,
162]

[202]
[230, 156,
119, 171]

[208] [138]

Table 1.3: Literature which with related problems to the hyperbolic and parabolic transport model.

is presented where samples are only considered on stable discretizations, but still in a multi-level framework.

The authors have been able to show that the convergence results of the MLMC method asymptotically remain

valid.

If the model problem 1.2 is combined with a diffusion term, the solutions to the problem get smoother,

and we classify the PDE as parabolic. A similar problem was for example investigated in [230]. This parabolic

model problem admits solutions of more regularity than its hyperbolic counterpart. However, especially for a

small diffusion term it is not obvious which discretization is the best since DG [143, 221] or Petrov-Galerkin

methods with artificial diffusion [148, section 9.2] can be employed to discretize the PDE on the spatial

domain. Without the transport term, EG discretizations have also been employed in [163].

To list the further literature on the UQ side for the model, we refer to table 1.3 and remark that a non-

linear parabolic problem is the main model in the book [180]. SC methods have also been applied in [202]

and MLMC methods in [171] for purely diffusive transport. Lastly, MCMC methods have been applied for

the parabolic PDE without transport term for Bayesian inversion with Gaussian priors [138]. Even though

we have conducted experiments on the transport diffusion equation we will omit a detailed analysis of this

parabolic PDE and only note that a lot of the techniques shown in this work can be applied similarly.

Acoustic Wave Equation

We want to consider another hyperbolic model problem, namely the acoustic wave equation. This model

describes the propagation of an acoustic wave over space and time, and thus finds many applications in

physics and engineering. Here we consider the case of subsurface wave-propagation, for example caused by

earthquakes or used for seismic measurements. Wave-type phenomena are observed everywhere in nature,

e.g. in the form of mechanical or electromagnetic waves, where they serve as a carrier for information in

the form of light, sound or radio signals. As part of the collaborative research center (CRC) 1173 Wave

phenomena - analysis and numerics, the goal with the randomized acoustic model problem depicted below is

to combine techniques developed by the UQ community with analytical and numerical achievements on wave

equations.

Model Problem 1.3. We search for the randomly distributed velocity field v : Ω × D × [0, T ] → Rd and

pressure component p : Ω×D × [0, T ]→ R, such that
ρ(ω,x)∂tv(ω,x, t)−∇p(ω,x, t) = f(ω,x, t) x ∈ D, t ∈ (0, T ]

∂tp(ω,x, t)− κ(ω,x) div (v(ω,x, t)) = g(ω,x, t) x ∈ D, t ∈ (0, T ]

v(ω,x, t) · n = 0 x ∈ ∂D, t ∈ [0, T ]

(v, p)(ω,x, 0) = (v0, p0)(ω,x) x ∈ D
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No UQ & FWI QMC SG SC MLMC MLSC Intrusive

[141, 97, 75, 82, 77,
23, 33, 269, 207, 39]

[98] [116, 210]
[243, 190,
191, 172]

[186, 238,
185, 184,
187, 188,
18, 21, 122]

[145, 231]
[116, 158,
92, 103,
182, 87]

Table 1.4: Literature which considers related problems to the acoustic wave model.

where f : Ω×D× (0, T )→ Rd and g : Ω×D× (0, T )→ R are random right-hand sides and where the material

parameters ρ, κ−1 : Ω×D → R are again modeled as random fields. We further allow for randomly distributed

initial data in the velocity component v0 : Ω×D → Rd and the pressure component p0 : Ω×D → R.

As for the transport-type equations, common ways to approximate this system are to discretize first in

space and then in time. This approach is commonly called method of lines and was numerically analyzed

for this model problem in [141] for DG methods and different time integration schemes. However, classical

time integration schemes are, as inherently iterative processes challenging to parallelize [97], and thereby

space-time methods have received attention in recent years [75, 82, 77, 23, 33]. In this way of discretizing the

PDE, we treat the time as an extra spatial dimension resulting in a (d + 1)-dimensional stationary problem.

Consequently, huge linear systems have to be solved in this approach, but with the promise that this system

can be solved in a fully parallelized manner as well as with adaptive equation assembling [269, 207]. It is

highly problem-, application- and hardware-dependent which method is more useful or even applicable and

can hardly be discussed purely analytically.

The model problem 1.3 is of high interest in geophysics. In particular the inverse problem, i.e., the

search for a reconstruction of the material by observations of the solution to the wave equation finds many

applications in seismic imaging. However, this is mathematically a highly challenging problem and small errors

in the measurement can change the reconstruction of heterogeneous material drastically. New methods to

tackle these challenges are for example proposed in [82] using space-time discretizations and in [39] employing

a Newton-CG inverse solver with a DG method and a implicit midpoint rule to solve the forward problem.

Adding uncertainty to this model problem makes the problem even harder to approximate. Nevertheless

Mishra, Schwab and Šukys considered in [238, 185] acoustic wave equations with random coefficients and

solved them with MLMC, finite volume (FV) and explicit time stepping methods. However, the authors

faced the challenge of randomized CFL conditions. Even though these issues can be overcome with estimates

on the maximum wave speed and adjusting the discretization parameters, we propose to use implicit time-

stepping schemes and space-time discretization despite the increased computational effort in order to stabilize

the simulations. Our reason to do so is the fact that the cause for the instability might be very localized

but still has to be considered on the whole domain if no adaptivity is used. Beyond this, the mentioned

group has published further work on hyperbolic conservation laws treated with MLMC methods, e.g. on the

shallow-water equation [186], nonlinear hyperbolic conservation laws [184, 187] and generally conservation

laws with random flux functions [188]. Furthermore, we want to refer to [21] where seismic wave propagation

is considered, too, and [122] where the authors combined MLMC with locally adapted time steps to overcome

the stability issues.

Other than the MLMC method, the QMC method has also been employed to wave equations on heteroge-

neous random media, for example by Ganesh, Kuo, and Sloan in [98] as well as the SC method by Motamed,
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Nobile and Tempone in [190, 191] for random wave speeds. We further note the convergence analysis in [243]

and an application of SC methods to high-frequency wave propagation [172].

Furthermore, early applications of the SG method to wave equations go back to [116]. However, the

stochastic Galerkin method can result in oscillatory solutions and might not preserve hyperbolicity which is

why entropy variables are introduced and approximated [158, 92]. Further applications of intrusive methods

on hyperbolic equations are for example given in [103, 182] and in [87] for Maxwell systems.

Lastly, we want to mention the surveys and books on recent advances for hyperbolic PDEs [193, 2, 3] and

refer again on a table 1.4 collecting the mentioned resources.
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Abbreviation Meaning
FE Finite Element
UQ Uncertainty Quantification
ST Space-time
DP Dynamic Programming
CD Continuous Delivery
CB Continuous Benchmarking
SG Stochastic Galerkin
MC Monte Carlo
SC Stochastic Collocation
KL Karhunen-Loève Expansion
RT Raviart-Thomas
PDE Partial Differential Equation
HPC High Performance Computing
FWI Full Wave Inversion
FFT Fast Fourier Transform
FEM Finite Element Method
CFD Computational Fluid Dynamics
SGD Stochastic Gradient Descent
QMC Quasi-Monte Carlo
MSE Mean Squared Error
MSS Multi-sample System
CDF Cumulative Distribution Function
PDF Probability Density Function
PMF Probability Mass Function
MLMC Multi-level Monte Carlo
MLSC Multi-level Stochastic Collocation
MIMC Multi-index Monte Carlo
MISC Multi-index Stochastic Collocation
FDNA Finite Dimensional Noise Assumption
CMLMC Continuation Multi-level Monte Carlo
BMLMC Budgeted Multi-level Monte Carlo
MLQMC Multi-level quasi-Monte Carlo
MIQMC Multi-index quasi-Monte Carlo

Table 1.5: Apprevations frequently used in this thesis.
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2
Finite Element Methods

The first Finite Element Methods (FEMs) were developed around the 1950s in the aerospace industry. At the

early stage of development in the absence of the massive computing power we enjoy today, these methods only

found very specific applications as well as a narrow theoretical background. Driven by the exponential growth

of computational capacities described by Moore’s Law and fundamental theoretical achievements, they have

found countless applications in physics, engineering and financial simulations and have become a main driving

force for the progression of numerical approximations of partial differential equations (PDEs).

Despite this development, they are still a contemporary topic in applied mathematical research like nu-

merical analysis and scientific computing, as new methods tailored to specific models emerge, leading to a

large variety of FEMs.

This chapter will introduce the different FEMs exploited to approximate the deterministic version of the

model problems 1.1-1.3 in space and potentially in time. As a start, we describe the decomposition of the

computational domain into a set of finite subdomains in section 2.1. In this section, we will further present a

formulation which incorporates sample-wise computations. Even though we consider deterministic problems

here in this chapter, we will describe a multi-sample formulation of the triangulation to later use it for our

parallelization approach. In the second section 2.2 of this chapter, we will construct the finite element spaces,

where we will search for the numerical solution approximating the true solution of the imposed problem.

Depending on the model, some spaces are applicable or more useful than others. Thus, in the third section 2.3,

we will discuss the application of the introduced finite element spaces to the imposed model problems and

introduce their weak formulations and the assembling of the discretized equations. By searching for the

discrete solution, we will admit an approximation error to the true solution, which was in the introduction

17
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denoted by errdisc. The central question in the numerical analysis is how the error behaves with respect to

the cell diameter or the time discretization step size. Therefore, we present results answering this question in

section 2.3, too. To solve the assembled and distributed systems of equations, we also introduce the employed

numerical solvers briefly in 2.4, before we give a deeper insight in our software M++, its architecture and

its core implementation ideas in 2.5. Additionally, we want to note that git-references to the implementation

(as this one to the main page of the repository {2}) are continuously given throughout the chapter to give a

technical perspective of the presented theory.

In the following, we will denote with u ∈ V the true solution to the PDE and use ` ∈ N0 as subscript

for the numerical solution u` ∈ V`, where V` is a finite dimensional function space. Instead of the commonly

used h as index for the numerical solution, we chose this notation as later on in chapter 3, we will introduce

and use multi-level methods. To keep the notation lean and still be able to depict the mesh hierarchies over

several levels, we settled on ` and only use h`, if we explicitly mean the cell diameter.

2.1 Multi-mesh Triangulation

Finite element methods (FEMs) compute an approximation u` to some true solution u ∈ V of a PDE in a

finite dimensional function space V`. As these PDEs are defined on a physical domain D ⊂ Rd and potentially

on a time interval (0, T ], we have to discretize these physical spaces in order to define the finite dimensional

function spaces V`. Therefore, the domain D is decomposed in finitely many subdomains K (e.g. triangles)

which are collected in a set K, such that

D =
⋃
K∈K

K and
◦
K ∩

◦
K ′ = ∅ for K 6= K ′. (2.1)

We will further specify this triangulation in the following paragraph. However, as it turns out in practical

applications, the resulting data structure and the algorithms acting on it require a huge amount of computa-

tional resources as the domain gets decomposed in finer and finer subdomains. The necessary parallelization

over a set of processes P, for which we assume that its cardinality is a power of two, and the corresponding

distribution to cope with the computational load is also based on a domain decomposition. Simply speaking,

we will assign to each process P ∈ P a fraction of the domain D denoted by DP , such that

D =
⋃
P∈P

DP =
⋃
P∈P

⋃
K∈KP

K,

where KP is the collection of subdomains on a single process P . In the second paragraph of this section, we

will follow the notation of [28] and formally explain the parallelization process as well as its implementation.

Moreover, as we want to consider randomized and parametric PDEs later on, we will also present a paral-

lelization over a set of data realizations {y(m)}Mm=1 on distributed memory. We refer for details to section 3.2

and consider {y(m)}Mm=1 simply as a collection of data points. This is motivated by the non-intrusiveness of

the UQ methods. Likewise to shrinking subdomains K, the computational cost increases with the amount

of demanded realizations M . This requires to employ an even more refined approach to the parallelization,

https://git.scc.kit.edu/mpp/mpp/


2.1 Multi-mesh Triangulation 19

namely to distribute the set of processes on {y(m)}Mm=1×D. This is done by choosing for each m = 1, . . . ,M

a subset of processes P(m)
k ∈ P and distribute the domain on this subset. All P(m)

k are disjoint and of size

|P(m)
k | = 2k where k ∈ N0 is chosen such that the inter process communication is minimized. We will moti-

vate this in detail in the last paragraph of this section. The final parallelism is highly integrated and closely

implemented to the hardware, however, the true benefit of this method can only be explained as we have

discussed multi-level estimators in section 3.5. Other approaches to solve a similar problems are given in [16,

79, 237, 240].

2.1.1 Triangulation and Reference Cells

We assume thatD is either a polygonal domain in Rd or space-time domain in Rd+1 such as in the introduction.

A triangulation is a spatial (space-time) decomposition of this domain D into a finite set of polyhedra K
according to (2.1) which further defines a set of vertices V, a set of faces F and a set of edges E . A single

polyhedron K ∈ K is commonly called a cell, defined by the convex hull of the subset VK ⊂ V, where

VK ist the set of vertices of a single cell. The boundary ∂K of each cell consists of finitely many faces

FK = {F ∈ F : VF ⊂ VK} being max {d− 1, 0} dimensional hyper planes. Likewise, the boundary of each

face ∂F consist of finitely many edges EF = {E ∈ E : VE ⊂ VF ⊂ VK}, where VF and EE aber are the sets of

vertices for face F and edge E, respectively. This defines a mesh as a set of vertices, cells, faces and edges as

well as a cell as a set of the corresponding subsets, thus

M = {V,K,F , E} and K 3 K = {VK ,FK , EK} .

Our implementation of a mesh as set of sets is given in {3} . The described triangulation is admissible, if for

every K,K ′ ∈ K the convex hull of the intersection equals the intersection of the convex hulls of the cells, i.e.,

conv(VK ∩ VK′) = conv(VK) ∩ conv(VK′). (2.2)

Therefore, we consider the triangulation to be admissible if on both sides of equation (2.2) the intersection is

either empty, a vertex, a face or an edge. We will depict the unit normal vector on the face F = K∩K ′ pointing

outwards of K by nK . Additionally, we define for each cell the diameter hK := sup {|x− y| : x,y ∈ K} and

with that the maximum hmax := max {hK : K ∈ K} and minimum hmin := min {hK : K ∈ K} mesh widths.

An example triangulation of a two-dimensional domain D with triangular cells and different cell diameters

hK is depicted in figure 2.1.

Furthermore, every cell K ∈ K is associated with a reference cell K̂ and then purely determined by a

bijective and orientation preserving mapping

ϕK : convVK̂ → convVK with ϕK(ẑi) = zK,i i ∈
{

1, . . .
∣∣VK̂∣∣} .

With that we can define a regular triangulation, namely if all ϕK are regular transformations, i.e.,

∃c > 0:
∣∣ϕ−1
K

∣∣ ≤ ch−1
K ∀K ∈ K. (2.3)

https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/mesh/Mesh.hpp
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Figure 2.1: Admissiblae triangulation of a narrowing domain with different cell diameters hK .

If the cells are very pointy this results in poor bounds with respect to the mesh width by (2.3) and thereby,

in high computational costs. However, as we mostly use uniformly refined grids, i.e. hmax = hmin, we omit a

detailed explanation. For a simplified notation, we restrict ourselves to linear affine functions ϕK = zK,1+JKξ

with zK,1 as a corner of K and JK = DϕK with |det(JK)| = |K| /|K̂| (confer [81, chapter 1] for the non-affine

case and further properties). A quick overview on the different cell types in use within this thesis and M++

is given in table 2.1.

Furthermore, to be able to quickly access with O(1) all cells K, faces F and edges E , we assign to each

object a hash of their midpoints zK , zF , zE

K̃ = Hash

(
1

|VK |
∑

z∈VK

z

)
︸ ︷︷ ︸

=zK

, F̃ = Hash

(
1

|VF |
∑

z∈VF

z

)
︸ ︷︷ ︸

=zF

, Ẽ = Hash

(
1

|VE |
∑

z∈VE

z

)
︸ ︷︷ ︸

=zE

and store the sets K, F and E as hashmaps {4} . A detailed description of this concept of distributed point

objects and the exploitation of hashmaps can be found for instance in [257] and [256].

Lastly we remark, by checking the Euler relation [81], e.g. for a two-dimensional mesh without holes, allows

us to verify an implementation of a triangulation with

|K| − |E|+ |V| = 1, |V ∩ ∂D| − |E ∩ ∂D| = 0 and 2 |E| − |E ∩ ∂D| = |VK | · |K| .

Again, we refer to the test-code {5} and to [81] for the Euler relations in three dimensions.

Cell type Dimension Corners |VK | Faces |FK | Edges |EK | Implementation
Interval 1 2 2 2 {6}
Triangle 2 3 3 3 {7}

Quadrilateral 2 4 4 4 {8}
Hexahedron 3 8 6 12 {9}
ST-interval 1 + 1 2 · 2 2 + 2 2 · 1 + 2 {10}

ST-quadrilateral 2 + 1 2 · 4 4 + 2 2 · 1 + 2 {11}

Table 2.1: Overview on different cell-types.

https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/meshparts/MeshPart.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/tests/test2_mesh/mesh/TestMeshesCreator.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/cells/Intval.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/cells/Triangle.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/cells/Quadrilateral.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/cells/Hexahedron.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/cells/TCell.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/cells/TCell.hpp
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2.1.2 Single-mesh Parallelization and Refinement

In order to deal with high memory and computational demands, the domain D is decomposed into disjoint

subdomains DP (which might possess some overlap for the discontinuous Galerkin (dG) discretization) and

the mesh M is distributed on a set of processes P = {0, . . . , |P| − 1}. The distribution is determined by

π : Z → 2P , which maps a collection of points Z to the power set of processes (confer definition A.7 of a

power set in the appendix). For example, if the domain is decomposed on two processors P1 and P2 the power

set is {∅, {P1} , {P2} , {P1, P2}}. For most of the points z ∈ Z the value of the mapping is either {P1} or

{P2}. However, for points on the processor boundary the value is {P1, P2}. This mapping can for example

be constructed by recursive coordinate bisection (RCB), dividing the domain recursively into two parts along

a certain axis. The collection Z consists of all nodal points which will be defined in section 2.2, however for

now it is just the collection of all vertices and midpoints to faces, edges and cells. The resulting local mesh

MP = {VP ,KP ,FP , EP } is the collection of

VP = {z ∈ V : P ∈ π(z)} , FP = {F ∈ F : P ∈ π(zF )} ,

KP = {K ∈ K : P ∈ π(zK)} , EP = {E ∈ E : P ∈ π(zE)} ,

whereas zK , zF , zE are the midpoints of the cells, faces and edges. The parallelized mesh is then given by

MP =
⋃
P∈PMP .

Furthermore, in order to be able to use multi-level algorithms later on in section 3.5, a mesh hierarchy

M`=0,P ⊂ M`=1,P ⊂ · · · ⊂ M`=L,P has to be constructed. This process is guided by cell dependent

refinement rules and happens on the local meshes M`,P only.

2.1.3 Multi-mesh Parallelization

Lastly, we want to introduce our multi-mesh parallelization. As it will turn out in chapter 3, solving the initially

proposed problems will require the evaluation of many realizations, potentially even on different levels. This is

computationally a highly challenging task and requires efficient load balancing. Classical parallelization over

the domain as described in the previous paragraph or solving for the individual realizations with the input

data y(m) in parallel will not be sufficient in order to cope with the heterogeneous computational demand of

different samples, especially in a multi-level framework.

In order to avoid further details about the UQ algorithms, we only want to regard the following problem:

Approximate M` times a PDE on level ` with a fixed amount of processes |P|. As a start, we investigate

two edge cases of this problem. Firstly, we only want to approximate a single sample. Then clearly, the best

parallelization is given by the previously described domain decomposition resulting in a single, parallelized

mesh MP over the whole domain D. An illustration of this case is given in figure 2.2 on the very left for

|P| = 4. Secondly, if the sample amount equals the amount of processes, a minimal communication, and thus

an optimal parallelization, is achieved by assigning each process its very own unparallelized mesh, resulting

in a set of meshes (confer figure 2.2 on the very right)

M` = |P| ⇒ MP =
{
M(m)

P

}M`

m=1
, m = P ∈ P.



22 Finite Element Methods

Figure 2.2: Parallelization approaches for D = (0, 1)2 and |P| = 4 according to (2.4). First, only on spatial domain
D for M` = 1 with k = 2. Second, mixed parallelization for M` = 2 with k = 1. Last, only for M` = 4 with k = 0.

Moving on to the general case, where we want to compute more samples than we have processes at hand

M` ≥ |P|. Then, we simply split the samples in batches of size less or equal to M` (rounding up to |P|, if

possible in UQ algorithm) and then sequentially compute each batch in parallel on the set of multiple meshes

{MP }|P|P=1.

Lastly, we have to consider the case, as depicted in the middle of figure 2.2, where 1 < M` < |P|. Here,

we search for k ∈ N0, satisfying

2k ≤ |P|
M`

< 2k+1 ⇒ MP =
{
M(m)
Pk

}M`

m=1
with P =

M⊔̀
m=1

P(m)
k and |Pk| = 2k (2.4)

determining the distribution of the processes over samples y(m) as well as over the spatial domain D. In

particular, the processes are grouped as in the following scheme:

2P ⊃ { {0} , {1} , {2} , {3} , {4} , {5} , {6} , {7} , . . . , {|P| − 1} , ⇐ k = 0

{0, 1} , {2, 3} , {4, 5} , {6, 7} , . . . , {|P| − 2, |P| − 1} , ⇐ k = 1

{0, 1, 2, 3} , {4, 5, 6, 7} , . . . , {|P| − 4, . . . , |P| − 1} , ⇐ k = 2{
i|P|
2k
, . . . , (i+1)|P|

2k
− 1
}
i=0,...,2k−1

,
...{

0, . . . , |P|4 − 1
}
, . . . ,

{
3|P|

4 , . . . , |P| − 1
}
, ⇐ k = log2 |P| − 2{

0, . . . , |P|2 − 1
}
,
{
|P|
2 , . . . , |P| − 1

}
, ⇐ k = log2 |P| − 1

{0, 1, 2, 3, 4, 5, 6, 7, . . . , |P| − 1} }. ⇐ k = log2 |P|

In the actual implementation {12} the index k in the scheme counts from the bottom up instead from the

top down. The reason for this is that we split the MPI communicators successively starting from the world

communicator. The world communicator contains all processes and is usually associated with the index zero.

We refer to the sections 2.5 and 3.6 for a short explanation on MPI.

As a result, we can expand the definition of the distribution mapping π by the sample id m

π : {1, . . . ,M`} × Z → 2P (2.5)

https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib0_basic/parallel/Parallel.hpp
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and thereby assign to each sample and each geometric object a set of processes. In the next section, we

will describe how we define the finite element space on top of this distributed data structure of geometric

objects. Further properties of this parallelization approach will be described in chapter 3, as we will explore

the different UQ algorithms. As a central piece of the method development presented in this thesis, we will

also conduct several numerical experiments proving its applicability, its adaptivity and its scalability on HPC

clusters in chapter 4.

2.2 Finite Element Spaces

We briefly present the construction of the used finite element spaces within this thesis. The notation fol-

lows [28], however the theory is mostly restated from [44] and [81]. At the end of the section, we will exploit

the multi-mesh parallelization and define finite element spaces spanning over the domain of the input data.

The deterministic model problems 1.1-1.3 can be expressed in a weak formulation (we refer to section 2.3

for details) with solutions lying in infinite dimensional function spaces V . To find an approximation, we need

a way to construct finite dimensional subspaces V`. Following Ciarlet [57], we restate the definition of a finite

element.

Definition 2.1. A finite element is a triplet (K,VK , V
′
K), which is characterized by

a) a cell K ∈ K,

b) a vector space of local shape functions VK defined on the cell K,

c) a set of nodal variables or local degrees of freedom (dofs) being a dual basis to VK .

In order to define the basis for VK , we consider to the reference cell K̂ and introduce a set of reference

nodal points ẑ ∈ Ẑ, which can for example be vertices, cell, face or edge midpoints or some other points placed

in the reference cell K̂. Then, we associate each nodal point with an ansatz function ψ̂ẑ and a nodal variable

ψ̂′ẑ. With that we can construct a finite element on an arbitrary cell K ∈ K by

VK = span
{
ψK,z : ψK,z = ψ̂ẑ ◦ ϕ−1

K , ψ̂ẑ ∈ V̂K̂
}

with VK 3 v =
∑

z∈ZK

〈
ψ′K,z, v

〉
ψK,z,

where the nodal points z ∈ ZK are given by the transformed reference nodal points ẑ ∈ Ẑ. The ansatz

functions and nodal variables are chosen such that they satisfy a Kronecker property

〈
ψ̂′ẑi , ψ̂ẑj

〉
= δij =

1, i = j

0, i 6= j
, i, j = 1, . . . , |Ẑ| ⇒

〈
ψ′zi , ψzj

〉
= δij . (2.6)

The coefficients in the linear combination (the dofs) are determined by an interpolation operator. Examples
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are given by:

Point evaluations: 〈ψ′z, v〉 = v(z), z ∈ ZK

Element integrals: 〈ψ′z, v〉 =

∫
K

v(x) dx, K ∈ K

Face averages of normal component: 〈ψ′z, v〉 =

∫
F

v(x) · nF da, F ∈ FK

By collecting all local nodal points ZK in a global set Z, we can move from the local space of shape functions

VK to the global finite element space

V` = span {ψ`,z : ψ`,z|K = ψK,z ∈ VK for all K ∈ K` and all z ∈ Z} .

Concluded, by defining the geometric shape of the reference cell K̂, selecting the nodal points ẑ ∈ Ẑ, the

shape functions ψ̂ẑ and the nodal variables ψ̂′ẑ, we can define a large class of FEM for which we will depict

some instances in further detail.

In the following, Pp(K,R) is the polynomial space of degree at most p ∈ N0 on the local cell K ⊂ Rd

taking values in R, and Qp(K,R) depicts the tensor product space of local Lagrange polynomials. Hence

Pp(K,R) and Qp(K,R) are given by

Pp(K,R) =


∑

0≤p1,...,pd≤p
p1+···+pd≤p

cp1...pd · x
p1

1 · . . . · x
pd
d : cp1...pd ∈ R


Qp(K,R) =

 ∑
0≤p1,...,pd≤p

cp1...pd · x
p1

1 · . . . · x
pd
d : cp1...pd ∈ R


with

dimPp =


p + 1 on intervals

1
2 (p + 1)(p + 2) on triangles

1
6 (p + 1)(p + 2)(p + 3) on tetrahedrons

dimQp =


(p + 1)2 on quadrilaterals

(p + 1)3 on hexahedrons

(p + 1)3 on ST-quadrilaterals

For many discretizations the following definition will be useful.

Definition 2.2. For F = K ∩K ′, we define for vector valued functions v` and scalar valued functions v`

Jv`KF = v`|K′ − v`|K ∈ Rd, Jv`KF = (v`|K′ − v`|K)nKF ∈ Rd {{v`}}F = 1
2 (v`|K + v`|K′) ∈ R (2.7)

the jump and the face average at the face F ∈ F .
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2.2.1 Lagrange Finite Elements

The standard finite element space is given through continuous (Jv`KF = 0 for all F ∈ F \ ∂D), local Lagrange

polynomials of degree p ≥ 1

V Lag
`,p≥1 =


{
v` ∈ C0(D) : v`|K ∈ Pp≥1, ∀K ∈ K

}
, for intervals, triangles and tetrahedrons{

v` ∈ C0(D) : v`|K ∈ Qp≥1, ∀K ∈ K
}
, for quadrilaterals, hexahedrons and ST-cells

where the polynomial basis to this space is such that the Kronecker property is satisfied and where the (local)

degrees of freedom are point evaluations with the (local) interpolation operator

ΠLag
K,p≥1 : C0(K) 3 v 7−→

∑
z∈ZK

v(z)ψK,z ∈ V Lag
K,p≥1 ⇒

ΠLag
`,p≥1 : C0(D) 3 v 7−→

∑
z∈Z

v(z)ψ`,z ∈ V Lag
`,p≥1.

The interpolation ΠLag
`,p≥1 v is unique and interpolates v ∈ V in the nodal points, whereas functions v` ∈ V Lag

`,p≥1

are invariant under this interpolation ΠLag
`,p v` = v`. Since v` ∈ V Lag

`,p≥1 is in L2(D) and continuous, this implies

the following lemma (cf. for further details [81, Propostion 1.74]).

Lemma 2.3. For the FE-space with Lagrangian ansatz functions we have V Lag
`,p≥1 ⊂ H1(D).

Example 2.4. a) On a one-dimensional domain, the basis for V Lag
`,p=1 is spanned by hat functions which are

associated with each nodal point in the domain.

b) On the reference triangle, we span the space of linear functions with ψ̂ẑ1
(x) = 1 − x1 − x2, ψ̂ẑ2

(x) = x1

and ψ̂ẑ3
(x) = x2.

c) On the reference tetrahedron, we span the space of linear functions with ψ̂ẑ1
(x) = 1 − x1 − x2 − x3,

ψ̂ẑ2
(x) = x1, ψ̂ẑ3

(x) = x2 and ψ̂ẑ4
(x) = x3.

d) On the reference quadrilateral, we span the space of bilinear functions with ψ̂ẑ1
(x) = (1 − x1)(1 − x2),

ψ̂ẑ2
(x) = x1(1− x2), ψ̂ẑ3

(x) = x1x2 and ψ̂ẑ4
= (1− x1)x2.

e) On the reference hexahedron, we span the space of tri-polynomial functions with a tensor product of

Lagrange polynomials in one dimension

{
ψ̂ẑi

}p

i=0
with ψ̂ẑi(x̂) =

∏
0≤p≤p
p 6=i

x̂− ẑp
ẑi − ẑp

⇒ ψ̂ẑj (x̂) =

3⊗
d=1

ψ̂ẑj (x̂d).

We refer to figure 2.3 for a visualization of the nodal points. It can be easily checked that all examples

above satisfy the Kronecker property. At this point, we want to emphasize that everything above also holds

for vector valued functions by replacing Pp(K) with Pp(K,RJ) and Qp(K) with Qp(K,RJ), respectively.

Investigating the properties of the interpolation operator on Sobolev spaces is a crucial part in the error

analysis in FEM. Thereby, we state the following theorem.
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Figure 2.3: Triangular, quadrilateral, tetrahedral and hexahedral reference cells with nodal points for Lagrange
ansatz function of degree p = 1 and degree p = 2. Figures rearranged from [81].

Theorem 2.5. Consider the interpolation operator ΠLag
`,p≥1 : Hs+1(D)→ V Lag

`,p≥1 and let 0 ≤ k ≤ min {s,p}+1.

The interpolation estimate is given by∥∥∥v −ΠLag
`,p≥1v

∥∥∥
Hk(D)

. hmin{s,p}+1−k |v|Hmin{s,p}+1(D) .

For sufficiently smooth functions, i.e., s ≥ p, the estimate can be simplified for example in the H1- and the

L2-norm by ∥∥∥v −ΠLag
`,p≥1v

∥∥∥
L2(D)

. hp+1 |v|Hp+1(D) and
∥∥∥v −ΠLag

`,p≥1v
∥∥∥

H1(D)
. hp |v|Hp+1(D) .

Proof. This result can be found in any book about FEM. For example, in [81, section 1.5] this interpolation

result is first developed locally (theorem 1.103) and then extended globally on an affine mesh in corollary

1.109 and 1.110.

The interpolation result can be expanded with the trace theorem [42, Chapter 3] to obtain interpolation

estimates in the L2(∂D)-norm.

Theorem 2.6. Consider the interpolation operator ΠLag
`,p≥1 : Hp+1(D) → V Lag

`,p≥1 and let u ∈ Hp+1(D). The

interpolation estimate on the boundary in the L2(∂D)-norm is given by∥∥∥v −ΠLag
`,p≥1v

∥∥∥
L2(∂D)

. hp+1/2 |v|Hp+1(D) .

2.2.2 Raviart-Thomas Elements

Raviart-Thomas (RT) elements are often in use to approximate functions which represent velocities and thus,

they often find applications in fluid mechanics. Thereby, a natural choice for the degrees of freedom are the
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averages of the normal component across the faces of a cell. This defines the interpolation operator as

ΠRT
K : V (K) 3 v 7−→

∑
F∈FK

(∫
F

v · nFda

)
ψK,z ∈ V RT

K ⇒

ΠRT
` : V 3 v 7−→

∑
F∈F

(∫
F

v · nFda

)
ψ`,z ∈ V RT

` .

The domain of the (local) interpolation operator is taken as H(div,K) and H(div, D) (confer definition A.3

c)), respectively, which assures that the face integral is meaningful and that the face normal components are

continuous (Jv`KF = 0 for all F ∈ F \ ∂D). Here, we will only consider the case d = 2, three-dimensional

elements can for example be found in [46]. Furthermore, we only consider ansatz functions of the form

ψFi(x) =
1

d |K|
(x− zi), 0 ≤ i ≤ d,

i.e., of order one, which can also be generalized to a higher order. With these ansatz functions, we construct

the local finite element Raviart-Thomas space with

V RT(K) =
{
vK ∈ P1(K,Rd) : vK(x) = a + bx : (a, b) ∈ Rd × R

}
and the global finite element space then by V RT

` =
{
v` ∈ H(div, D) : vK ∈ V RT(K)

}
(cf. for further de-

tails [81, Propostion 1.85]). The interpolation estimate for Raviart-Thomas element is stated in the following

theorem.

Theorem 2.7. Consider the interpolation operator ΠRT
` : V → V RT

` . For v ∈ V the interpolation estimate is

given by

∥∥v −ΠRT
` v

∥∥
L2(D)

+
∥∥div(v −ΠRT

` v)
∥∥

L2(D)
. h

(
‖v‖H1(D) + ‖div v‖H1(D)

)
,

where V =
{
v ∈ H1(D,Rd) : div v ∈ H1(D)

}
.

Proof. Theorem 1.114 and corollary 1.115 in [81].

2.2.3 Discontinuous Galerkin Elements

The construction of the discontinuous Galerkin (dG) finite element space follows the same idea as of the

Lagrange finite element space. Namely, the local basis functions are Lagrange polynomials and the dofs

are given by point evaluations. However, the regularity requirement is much weaker, i.e., we only demand

integrability of the solution over the domain and allow for discontinuities on the faces:

V dG
`,p≥0 =


{
v` ∈ L2(D) : v`|K ∈ Pp≥0, ∀K ∈ K

}
, for interval, triangle, tetrahedron{

v` ∈ L2(D) : v`|K ∈ Qp≥0, ∀K ∈ K
}
, for quadrilateral, hexahedron, st-cell
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Discontinuous Galerkin methods have been getting popular for problems where the solution might form

discontinuities, but they have also been applied to problems with rather smooth solutions [9]. We refer to [70,

134, 59] for a more detailed description of the theory and its applications. DG finite elements are closely

related to finite volume methods, as they also require little regularity of the solution. For degree p = 0, the

methods coincide and the interpolation operator is given by

ΠdG
K,p=0 : V (K) 3 v 7−→

(
1

|K|

∫
K

vdx

)
1K ∈ V dG

K,p=0 ⇒

ΠdG
`,p=0 : V 3 v 7−→

∑
K∈K

(
1

|K|

∫
K

vdx

)
1K ∈ V dG

`,p=0 with 1K(x) =

1, x ∈ K

0, x /∈ K
.

For higher degrees we take the local interpolation operator of Lagrange finite elements. The global interpo-

lation operator on the other hand is given by

ΠdG
`,p≥1 : V 3 v 7−→

∑
K∈K

∑
z∈ZK

v(z)ψK,z ∈ V dG
`,p≥1,

where the global set of nodal points is the non-overlapping union of the local nodal points. This usually

leads to a significantly larger ansatz space compared to normal Lagrange finite elements, i.e., dim(V dG
`,p≥1) ≥

dim(V Lag
`,p≥1). However, for some applications, especially for problems with dominant first order spatial deriva-

tives like in electrodynamics, fluid mechanics, plasma physics and wave phenomena, the burden of the larger

ansatz space has to be taken in order to cope with the low regularity. Additionally, the implementation

of dG elements requires more communication across the processes since the distributed domains have to be

overlapping. This is due to the fact that neighbouring cells have to be able to exchange information for this

discretization.

Nevertheless, especially dG methods of high polynomial degree are popular to resolve for example vortices

in aerodynamic flow simulations and to avoid strong damping (dissipation) of the discrete solution. Further-

more, dG methods provide a very easy way to develop hp-adaptivity, since the degree pK and the mesh width

hK of each cell can be adapted independently and based on local error estimators [134].

Lemma 2.8. For the dG-space we have V dG
`,p≥1 ⊂ H1(D), if and only if JvKF = 0. Generally, this is a

non-conforming (confer definition 2.15) space V dG
`,p≥1 6⊂ H1(D).

Proof. Confer [83, Lemma 1.75].

The previous lemma states that, if the jumps on the inner faces are non-zero, the ansatz space is non-

conforming. To this end, the following definition is useful (confer [134, 9] or [81][section 3.2.4]):

Definition 2.9. We call Hk(K`) =
{
v ∈ L2(D) : v|K ∈ Hk(K), ∀K ∈ K`

}
a broken Sobolev space on the

triangulation. Let further V (h`) = V dG
`,p≥0 + (H2(D) ∩ H1

0(D)) ⊂ H2(K`) and define the following semi-norm

and norm for v` ∈ V (h`)

‖v`‖L2(K`) =
∑
K∈K`

‖v`‖2L2(K) , |v`|2H1(K`) =
∑
K∈K`

|v`|2H1(K) =
∑
K∈K`

‖∇v`‖2L2(K)
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Lastly, we want to remark that the local interpolation results of the Lagrange finite elements are still valid

on this broken Sobolev space. However, since we have a globally non-conforming space, the final discretization

scheme has to be carefully designed and the error estimation is significantly more technical.

2.2.4 Enriched Galerkin Elements

In [242, 163] another locally flux conservative finite element method as dG and RT elements is proposed.

It is based on cell-wise constant enrichment of continuous Lagrange finite elements. The space is simply

constructed by

V eG
`,p≥1 = V Lag

`,p≥1 + V dG
`,p=0.

This space is locally and globally conservative such as the dG method, however, it requires significantly fewer

degrees of freedom compared to the dG method which makes it very attractive for elliptic and parabolic

problems. In [163] it also shown that it can be applied to cell-wise random permeabilities which makes this

discretization especially interesting for the investigations in this thesis.

2.2.5 Space-Time Discontinuous Galerkin Elements

Lastly, we want to introduce space-time discontinuous Galerkin (ST-dG) elements. Basically, ST-dG elements

are nothing else than dG elements defined on a space-time cylinder Q := D × (0, T ), i.e.,

V ST-dG
`,pK ,pI =

{
v` ∈ L2((0, T ),L2(D;RJ)) : v`|K,I ∈ QpK (K;RJ)⊗ PpI (I;RJ), ∀K ∈ K`,∀I ∈ I`

}
,

where [0, T ] is decomposed in disjoint time intervals I ∈ I of size τI with [0, T ] =
⋃
I∈I I. The space is

discontinuous in space and time and suited for hyperbolic systems of conservation laws. For a more detailed

description of the construction of the space-time cells, the resulting sceleton and the construction of the finite

element space we refer to [62, section 3.1]. Furthermore, it does provide a natural p-adaptivity in space

and time guided by local error estimates [62, section 6]. There are also spaces which use a discontinuous

Galerkin scheme in space and a Petrov-Galerkin scheme in time [75, 83] which saves degrees of freedom

for the time discretization. These methods have been popularized, due to the fact that they are capable

to parallelize in space and time. Thereby, they can unfold their potential on large computers with parallel

multigrid preconditioning [77, 269]. Further details will follow in the next section, or can be found in [76, 23,

207] among many other sources.

2.2.6 Multi-sample Finite Elements

We recall the developed parallelization of the triangulation in section 2.1 and motivate with that the definition

of finite element spaces, parallelized over the input data {y(m)}M`
m=1.

Definition 2.10. We call the space V`,P = V
(1)
` × · · · × V (M`)

` =
∏M`

m=1 V
(m)
` a multi-sample finite element



30 Finite Element Methods

space, where

V
(m)
` :=

{
v` ∈ V`(D;RJ) : v`|K ∈ V`(K;RJ), ∀K ∈ K(m)

`,P(m)
k

, P(m)
k ⊂ P

}
is an arbitrary finite element space for a single sample, parallelized in space on a subdomain of processes

Pk ⊂ P where k is chosen according to (2.4).

Remark 2.11. a) The space V`,P will later in section 2.4 be used to search the approximative solution to

multiple samples. By considering the available processes P in the ansatz space, this enables to construct an

adaptive parallelization scheme and a data structure spanning over the spatial and the parametric domain.

b) This idea is applicable to arbitrary FE-spaces, thus to all spaces which were introduced here in section 2.2,

as well as other finite elements e.g. as listed in section 2.5.

2.3 Finite Element Approximation of Weak Solutions

As we will see later in this section, we can derive weak formulations for the model problems. To this end, we

introduce the following abstract problem.

Model Problem 2.12. Let (V, ‖·‖V ) and (Ṽ , ‖·‖Ṽ ) be Banach spaces with Ṽ being reflexive. The abstract

problem reads as: Seek u ∈ V , such that

a(u, v) = f(v) for all v ∈ Ṽ . (2.8)

Here, a : V × Ṽ → R is a continuous bilinear form and f : Ṽ → R is a continuous linear form. Often problems

in this form are called variational or weak formulations.

A bilinear form as stated in the above problem can be derived for the problems 1.1-1.3. The linearity in

the first argument is a result of the linearity of the here considered model problems, whereas the linearity in

the second argument follows from the construction of weak formulations. For existence theory on this abstract

problem and thereby, existence theory of solutions to the deterministic PDEs, we refer to the appendix A.1.

Definition 2.13. The problem (2.8) is called well-posed, if it admits a unique solution u ∈ V and if the

solution is controlled by the right-hand side, i.e., ‖uf‖V . ‖f‖Ṽ ′ for any fixed f ∈ Ṽ ′ with Ṽ ′ being the dual

space to Ṽ .

Now, we replace the infinite dimensional function spaces V and Ṽ by finite dimensional finite element

spaces as introduced in the previous section. The problem then reads as:

Model Problem 2.14. Let V` and Ṽ` be finite element spaces. The discrete template problem reads as, seek

u` ∈ V`, such that

a`(u`, v`) = f`(v`) for all v` ∈ Ṽ`. (2.9)

Here, a` : V × Ṽ → R is a continuous bilinear form and f` : Ṽ → R is a continuous linear form. Often problems

in this form are called Galerkin approximations, if V` = Ṽ` and Petrov-Galerkin approximations, if V` 6= Ṽ`.
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To validate the (Petrov)-Galerkin approximations introduced in this section, we recall the properties of a

discretization method.

Definition 2.15. a) A discretization method is called conform, if V` ⊂ V and Ṽ` ⊂ Ṽ .

b) A discretization method is called consistent, if the true solution u ∈ V to (2.8) solves the discrete sys-

tem (2.9), i.e. a`(u, v) = f`(v) for all v ∈ Ṽ .

c) The discretization error u− u` satisfies the Galerkin orthogonality, if it is orthogonal to the test space Ṽ`

with respect to the induced inner product by the bilinear form, i.e., a`(u− u`, v`) = 0 for all v` ∈ Ṽ`. This

is equivalent to consistency by subtracting (2.9) from (2.8).

d) A discretization is called coercive, if there exists a constant, such that a`(v`, v`) & ‖v`‖2V for all v` ∈ V` ⊂ V
(confer definition A.4 b)).

e) If the discretization method is coercive and the right-hand side of (2.9), i.e., the linear form f : Ṽ → R, is

bounded, the discretization is stable, since for the solution u` ∈ V` to (2.9), we have

‖u`‖2V . a`(u`, u`) = f`(u`) . ‖u`‖V ,

which gives control over the discrete solution by ‖u`‖V . 1.

f) Given the true solution to (2.8) by u ∈ V , the approximation u` ∈ V from (2.9) and an appropriate norm

‖·‖V to measure the error, a discretization method is called convergent of order α, if

errdisc := ‖u− u`‖V . hα` ⇒ lim
h`→0

‖u− u`‖V = 0,

where the hidden constant is dependent on the regularity of the true solution.

g) Given a bounded quantity of interest (QoI) Q: V → R of the solution, convergence w.r.t. this quantity is

expressed by (1.2) and 2.15 f) via

|Q(u)−Q(u`)| . hα` ‖u‖V .

h) An error estimate is called a priori, if it depends on measures of the true solution. Hence, a priori estimates

can not be used to quantify the size of the error. They are used to predict the order of convergence of a

method applied to a problem prior to the actual computation.

i) An error estimates is called a posteriori, if it only depends on quantifiable values, hence they can be used

as an error estimate after a computation has been performed to validate the result.

In the following, we will revisit the introduced model problems from section 1.3, neglecting the dependency

on the uncertainty for now. We will follow [81, 134] and state the setting of Galerkin methods. The goal is

to derive for every model problem the (deterministic) discrete weak formulation of the system. We mostly

remained by the notation used in [28].



32 Finite Element Methods

The Galerkin Approximation

We consider again the abstract problem 2.12 and its discretized version 2.14. For this problem, we can state

the following.

Theorem 2.16. Let V` ⊂ V with dimV` < ∞. Let a : V × V → R be a symmetric and positive definite

bilinear form and let f : V → R be a linear form. Then model problem 2.14 has a unique solution.

Proof. Let {ψ1, . . . , ψN} be the basis of V` with dimV` = N . Plugging u` =
∑N
n=1 µnψn ∈ V` and v` =∑N

n=1 νnψn ∈ V` into 2.14 and reformulating it as an algebraic system gives

ν>Aµ = ν>b ∀ν ∈ RN ⇒ Aµ = b,

with A = (a(ψi, ψj))
N
i,j=1, b = [f(ψ1), . . . , f(ϕN )]> and µ,ν ∈ RN . Since a : V × V → R is symmetric and

positive definite, the matrix A is symmetric and positive definite and thereby invertible, giving access to a

unique solution u` =
∑N
n=1 µnψn ∈ V`.

Remark 2.17. a) The proof of theorem 2.16 already demonstrates the assembling of the finite element

system. We choose a finite dimensional function space with known basis functions and plug the linear

combinations of u` and v` into the weak discrete formulation, leading to a linear system. By solving this

linear system, we have the coefficients representing the finite element solution.

b) Since these methods arose from mechanical engineering applications, the matrix A is traditionally called

stiffness matrix and the vector b is called load vector. Further details on this linear equation system, how

to assemble it and how to solve it is provided in the section 2.4.

To quantify how good the Galerkin approximation is, we state the following essential lemma. It can be

found in any book about FEM such as [42, 44, 125].

Lemma 2.18 (Céa’s Lemma). Let a : V × V → R be a continuous, symmetric and coercive bilinear form.

If u ∈ V is a solution of (2.8) and u` ∈ V` is the solution of (2.9) with V` ⊂ V , then, with the norm

‖v‖2a = a(v, v), it holds

‖u` − u‖a ≤ inf
v`∈V`

‖v` − u‖a .

Proof. Since V` ⊂ V and (2.8) holds for any v ∈ V , it is a(u, v`) = f(v`) for all v` ∈ V`. Subtracting this

from (2.9) gives a(u` − u, v`) = 0 for all v` ∈ V`. By choosing v` as u` − v` ∈ V`, we get a(u` − u, u` − v`) = 0

for all v` ∈ V`. Furthermore, inserting −u + u into the second argument and rearranging the equation, i.e.,

a(u` − u, u` − u) = a(u` − u, v` − u), gives with the Cauchy-Schwarz inequality

‖u` − u‖2a = a(u` − u, u` − u) = a(u` − u, v` − u) ≤ ‖u` − u‖a ‖v` − u‖a , ∀v` ∈ V`.

The result follows by division of ‖u` − u‖a and taking the infimum over all v` ∈ V`.

Remark 2.19. Céa’s lemma states that the Galerkin approximation u` ∈ V` is the optimal approximation of

the solution u ∈ V with respect to the energy norm. Thus, if we want to approximate the solution u better,
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we have to approximate the space V by V` better which motivates us to revisit the spaces of section 2.2 within

the scope of the model problems 1.1-1.3.

2.3.1 Elliptic Subsurface Diffusion Problem

Starting with the deterministic version of model problem 1.1 by neglecting the dependency on ω ∈ Ω with

f ∈ L2(D), uD ∈ L2(ΓD) and gN ∈ L2(ΓN ) as input data, we derive the weak formulation by multiplying

with a test function v ∈ H1
0(D), integrating over the whole domain D and applying integration by parts.

This yields a weak formulation in the form (2.12) with a symmetric, continuous and coercive bilinear form.

By the Lax-Milgram theorem A.5, this problem with homogeneous boundary data admits a unique solution

u ∈ H1
0(D) and thereby is well-posed by definition 2.13. Additional regularity can be achieved with sufficient

input data and with the trace theorem [42, chapter 3] non-homogeneous boundary data can be incorporated.

We omit details and refer to [42] or [134, section 2.1].

Main intent of this paragraph is to introduce four different discretization methods to model problem 1.1,

starting with a conforming Galerkin approximation with Lagrange finite elements.

Model Problem 2.20. We search for an approximative solution u` ∈ V Lag
`,p≥1(uD) using Lagrange elements

solving ∫
D

κ∇u` · ∇v` dx︸ ︷︷ ︸
=:aLag

` (u`,v`)

=

∫
D

f`v` dx +

∫
ΓN

gNv` da︸ ︷︷ ︸
=:bLag

` (v`)

, ∀v` ∈ V Lag
`,p≥1(0)

with V Lag
`,p≥1(uD) =

{
u` ∈ V Lag

`,p≥1 : u`(z) = uD(z), z ∈ Z ∩ ΓD

}
to satisfy the Dirichlet boundary conditions

which are called essential, since they are considered directly in the ansatz space.

Proposition 2.21. a) The Lagrange discretization is conform since V Lag
`,p≥1 ⊂ Hmin{s,p}+1(D).

b) The Lagrange discretization is consistent since aLag
` (·, ·) ≡ a(·, ·) and bLag

` (·) ≡ b(·).

c) The Lagrange discretization is coercive w.r.t. to the induced norm of the bilinear form ‖·‖a and w.r.t. ‖·‖H1(D).

d) A solution to the problem exists and is unique.

e) The Lagrange discretization is convergent for u ∈ Hmin{s,p}+1(D) and u` ∈ V Lag
`,p≥1

‖u` − u‖H1(D) . h
min{s,p}
` |u|Hmin{s,p}+1(D) and ‖u` − u‖L2(D) . h

min{s,p}+1
` |u|Hmin{s,p}+1(D) .

Proof. These results are derived by combining Céa’s lemma 2.18 and the interpolation estimate 2.5, using

theorem 2.16 and applying the Aubin-Nitsche trick. We refer to standard literature e.g. [44, 81] for details.

Often enough we are interested in the flux q = −κ∇u which is also assumed to be divergence free div q = 0.

To this end, div q = 0 and q = −κ∇u are both tested with sufficiently smooth functions v ∈ C∞0 (D) and

ψ ∈ C∞0 (D,Rd) whereby a mixed weak formulation can be derived. To enforce physically correct flux fields
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(flux preserving discretizations), mixed FEM are popular, where we discretize the pressure head u and the

flux q in separated spaces [46].

Model Problem 2.22. Using mixed finite elements, we search for the approximative solution (q`, u`) ∈
V RT
` (−gN )× V dG

`,p=0, such that∫
D

κ−1q` ·ψ` dx−
∫
D

u` divψ` dx = −
∫

ΓD

uDψ` · n da∫
D

div q`v` dx = 0, ∀(ψ`, v`) ∈ V RT
` (0)× V dG

`,p=0,

where the Neumann data is imposed as the essential boundary conditions by

V RT
` (−gN ) =

{
v` ∈ V RT

` :

∫
F

v` · n da = −
∫
F

gN da for F ∈ F , zF ∈ ΓN

}
.

The above formulation is a saddle point problem which often appear in optimization problems under a

constraint. This motivates an equivalent formulation which can be derived by introducing an additional space

defined on the element boundaries corresponding to a Lagrange multiplier. This technique is commonly known

as hybridization and allows to reduce the global problem to a symmetric positive definite system (confer [46,

chapter V] or [38]). This system can be solved independently for each cell and thereby can be parallelized very

well. The actual solution (q`, u`) is reconstructed by a post-processing step. The downside of this approach

is that the system is also significantly larger than for the pure mixed formulation. We shortly discuss this

again in the numerical results in section 4.1.

Model Problem 2.23. Introducing a Lagrange multiplier space G` =
∏
F∈F P0(F ) for the element bound-

ary flux and the discontinuous space VK =
∏
K∈K V

RT
` (K), the mixed approximation can be computed by

(q`, u`, λ`) ∈ VK × V dG
`,p=0 ×G`(−uD) solving the extended saddle point problem∫

K

κ−1q` ·ψ` dx−
∫
K

u` divψ` dx =

∫
∂K

λ`ψK · n da , ψK ∈ V RT
` (K) ,∫

K

div q`v` dx = 0 , v` ∈ V dG
`,p=0(K),∑

K∈K

∫
∂K

q` · nµ` da = −
∫

ΓN

gN µ` da , µ` ∈ G`(0)

with G`(−uD) =
{
µ` ∈ G` :

∫
F
µ` da = −

∫
F
uD da , F ∈ F ∩ ΓD

}
. Therefore, the Dirichlet boundary condi-

tions are essential again and included in the Lagrange multiplier space.

Since model 2.22 and model 2.23 are equivalent, the following proposition holds for both discretization

approaches. We follow [38] and state the following proposition.

Proposition 2.24. a) Let (q, u) ∈ HΓN
(div, D) × L2(D) be the solution to the exact saddle point problem

(confer [38, problem 7.1.17]) and let (q`, u`) ∈ V RT
` (−gN ) × V dG

`,p=0 be the solution to model 2.22. Then
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the error can be estimated for s ≤ 1 with

‖q− q`‖L2(D) . hs+1
` ‖q‖Hs+1(D) and ‖u− u`‖L2(D) . hs+1

` (‖u‖Hs+1(D) + ‖q‖Hs+1(D))

if u and q provide the sufficient regularity.

Proof. Can be found in [38, proposition 7.1.2].

Lastly, we consider the elliptic problem discretized with discontinuous Galerkin finite elements. The

resulting discretization has more degrees of freedom than the standard Lagrange discretization but offers flux

preservation as well. Furthermore, diffusion terms such as in elliptic model problem 3.23 also appear in other

PDEs which might be discretized with dG methods. Hence, developing a dG discretization for this particular

term can be employed in other PDEs as well.

Model Problem 2.25. Using the discontinuous Galerkin (dG) method with the penalty parameter γ =

O(p2), we search for a solution u` ∈ V dG
`,p≥0 satisfying

adG
` (u`, v`) = bdG

` (v`), ∀v` ∈ V dG
`,p≥0,

where for u`, v` ∈ V dG
`,p the bilinear form and the linear form are given by

adG
` (u`, v`) =

∑
K∈K

∫
K

κ∇u` · ∇v` dx +
∑

F∈F\ΓN

γ

hF

∫
F

Ju`KF · Jv`KF da

−
∑

F∈F\ΓN

∫
F

({{κ∇u`}}F · Jv`KF + Ju`KF · {{κ∇v`}}F ) da,

bdG
` (v`) =

∫
D

fv`dx +

∫
ΓN

gNv` da+
∑

F∈F∩ΓD

γ

hF

∫
F

uDv` da

−
∑

F∈F∩ΓD

∫
F

uDκ∇v` · n da,

with J·K as face jump and {{·}} as face average (confer (2.7)). We refer to [9] for more details.

Proposition 2.26. a) The dG discretization is non-conforming since V dG
`,p≥0 6⊂ H1(D).

b) The bilinear form is symmetric, i.e., adG
` (u`, v`) = adG

` (v`, u`).

c) The dG discretization is consistent, i.e., the error to the solution u ∈ H2(D)∩H1
0(D) satisfies the Galerkin

orthogonality adG
` (u− u`, v`) = 0 for all v` ∈ V dG

`,p≥0.

d) The dG discretization is coercive, i.e., a`(u`, u`) & |||u`|||2 with respect to the norm

|||u`|||2 := ‖∇u`‖2L2(K`) +
∑

F∈F\ΓN

1
hF
‖Ju`KF ‖2L2(F ) .
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e) The dG bilinear form is bounded, i.e., for u` ∈ V (h`) (confer definition 2.9)

adG
` (u`, v`) . ||||u`|||| · |||v`|||

where ||||u`||||2 = |||u`|||2 +
∑
F∈F\ΓN

hF ‖∇u` · nF ‖2L2(F ).

f) It is |||u− u`||| . infv`∈V ||||u− v`||||.

g) For u ∈ Hs+1(D) the error can be estimated with |||u− u`||| . hs` ‖u‖Hs+1(D).

h) For u ∈ Hs+1(D) the error can be estimated with ‖u− u`‖L2(D) . hs+1
` ‖u‖Hs+1(D).

Proof. a) Follows by lemma 2.8, b) follows by the construction of the bilinear form with symmetric inner

penalty and c) is given since for u ∈ H2(D) the jump JuKF and the face average {{∇u}}F ·nK vanish for faces

F ∈ F ⊂ ΓN . The coercivety in d) and the boundedness in e) of the bilinear form can be found in [9, section

4.1 and 4.2] or [134, section 5.4] and the convergence f), g) and h) in [9, section 5] or in [134, section 5.5].

Remark 2.27. The usage of enriched Galerkin (eG) elements can be done with the same discrete weak

formulation as in model 2.25 to get again cell-wise flux preservation. We omit the details and refer to [163,

163]. However, the ansatz space for eG elements has fewer degrees of freedom. Thus, the method is cheaper

than conventional dG methods. We will investigate this in section 4.1 in further detail.

2.3.2 Linear Hyperbolic Conservation Laws

Before we move to the next model problem, we shortly review the structure of linear hyperbolic conservation

laws of first-order. These problems often arise in continuum physics and solutions to these problems are

space and time dependent, informally described as wave-like. We refer to standard literature [84, chapter 7.3]

and [166, 115] on the topic, but will mostly follow [141] and [76] because our particular application cases are

covered in these sources and a similar notation to the one presented here is used. Generally, these systems

are of the form: search for a collection of quantities u(t) ∈ V ⊂ L2(D,RJ), such that

M∂tu(t) +Au(t) = b(t) for t ∈ (0, T ] and u(0) = u0, (2.10)

subject to some boundary conditions, e.g., sufficient homogeneous Dirichlet boundary conditions. For the

solution space V we consider a Hilbert space with weighted inner product 〈v,φ〉V = 〈Mv,φ〉L2(D), where

M ∈ L∞(D,RJ×Jsym ) is an uniformly positive mass operator, i.e., 〈Mv,v〉L2(D) & ‖v‖
2
L2(D) > 0 for all 0 6= v ∈

L2(D,RJ).

The operator A is a first order differential operator in space and linear on V and we assume that we can

express it with the symmetric matrices Bd ∈ RJ×Jsym as

L2(D,RJ) 3 Au =

d∑
d=1

∂d(Bdu) =

d∑
d=1

Bd(∂du), u ∈ D(A) ⊂ L2(D,RJ),
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where we denote with D(A) ⊂ V the domain of A. With integration by parts, sufficiently smooth test functions

vanishing at the boundary and by exploiting the symmetry of Bd, we see

〈Au,φ〉L2(D) =

d∑
d=1

∫
D

Bd∂du · φ dx = −
d∑
d=1

∫
D

u ·Bd∂dφ dx = −〈u, Aφ〉L2(D) .

Hence, the operator is skew-symmetric A∗ = −A. To incorporate boundary conditions, we additionally define

with An =
∑d
d=1 ndB

n
d for n ∈ Rd and Bn

d ∈ RJ×Jsym the boundary flux operator. Furthermore, if b ≡ 0, the

energy E(v) := 1
2 〈v,v〉V is conserved, i.e., for u(t) ∈ D(A)

∂tE(u(t)) = 〈M∂tu(t),u(t)〉L2(D) = −〈Au(t),u(t)〉L2(D) = 0

is satisfied. With the matrices B1, . . . , Bd ∈ RJ×Jsym we can rewrite (2.10) with

div F(u) :=

d∑
d=1

Bd(∂du) = Au.

Definition 2.28. We call a problem: seek u(t) ∈ V ⊂ L2(D) such that

M∂tu(t) + div F(u(t)) = b(t) for t ∈ (0, T ] and u(0) = u0, (2.11)

subject to some boundary conditions a conservation law if b ≡ 0 or a balance law if b 6≡ 0.

Definition 2.29. A system of the form (2.11) is called hyperbolic, if for any direction n = (n1, . . . , nd)> ∈ Rd,

|n| = 1 the matrix

B =

d∑
d=1

ndBd, Bd ∈ RJ×Jsym (2.12)

has J real eigenvalues λ1(n) ≤ λ2(n) ≤ · · · ≤ λJ(n) with a complete family of eigenvectors, i.e., the system is

diagonalizable.

Definition 2.30. We call a function u ∈ L2((0, T )×D,RJ) a weak solution to (2.11), if∫
D

M(x)u0(x)·φ(x, 0) dx +

∫
(0,T )×D

(M(x)u(x, t) · ∂tφ(x, t) + F(u(x, t)) · ∇φ(x, t)) dtdx

=

∫
(0,T )×D

b(x, t)φ(x, t)dtdx

for all test functions φ ∈
{
v ∈ C1((0, T )×D,RJ) : v|∂D = 0 and v(·, T ) = 0

}
.

All solutions to (2.11) are also weak solutions, however, the opposite can not be implied. For further

details on well-posedness of the problem we refer to [141]. Based upon the formulation (2.11) the numerical

methods are constructed.
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Semi-Discretization of Hyperbolic Conservation Laws. Following [75, 141], we will now outline the

semi-discretization of an arbitrary hyperbolic conservation law with a discontinuous Galerkin approximation.

After that we present the particular expression of the discretization for the transport model and the acoustic

wave equation. We consider (2.11) and develop a system which is discretized in space but not in time yet,

i.e., we search for u` ∈ V dG
`,p≥0 using dG elements, such that

M `∂tu`(t) +A`u`(t) = b`(t), t ∈ (0, T ) (2.13)

with b` ∈ L2((0, T ), V dG
`,p≥0) and with the discrete operator M ` ∈ L(V dG

`,p≥0, V
dG
`,p≥0) as a block diagonal and

positive definite matrix (restricted to cell-wise constant material parameters). This operator is determined

by a Galerkin approximation, i.e.,

〈M `u`,φ`〉L2(D) = 〈Mu`,φ`〉L2(D) and 〈b`,φ`〉L2(D) = 〈b,φ`〉L2(D) , u`,φ` ∈ V dG
`,p≥0.

To construct the operator A` ∈ L(V dG
`,p≥0, V

dG
`,p≥0) we consider once again (2.11). Then, with sufficiently

smooth test functions restricted to a single cell K ∈ K and with integration by parts we get

〈Au,φK〉L2(K) = 〈div F(u),φK〉L2(K) = −〈F(u),∇φK〉L2(K) +
∑
F∈FK

〈nK,F · F(u),φK〉L2(F ) .

For u` ∈ V dG
`,p≥0 and φ` ∈ V dG

K,p≥0, we then define A` ∈ L(V dG
`,p≥0, V

dG
`,p≥0) cell-wisely, i.e.,

〈
A`u`,φ`,K

〉
L2(K)

= −
〈
F(u`,K),∇φ`,K

〉
L2(K)

+
∑
F∈FK

〈
nK,F · F∗K,F (u`),φ`,K

〉
L2(F )

where nK,F · F∗K,F (u`) is the upwind flux obtained from local solutions of Riemann problems (confer [141,

section 2]). Using integration by parts again, we have

〈
A`u`,φ`,K

〉
L2(K)

=
〈
div F(u`,K),φ`,K

〉
L2(K)

+
∑
F∈FK

〈nK,F ·
(
F∗K,F (u`)− F(u`,K)

)︸ ︷︷ ︸
=:∆FK,F (u`)

,φ`,K〉L2(F ) (2.14)

For the inner faces F = ∂K ∩ ∂K ′ it is a consistency requirement that the term in the sum over the faces

nK,F ·∆FK,F (u`) only depends on the jump Ju`,KKF = u`,K′−u`,K . This is simply the case since for u ∈ D(A)

it is nK,F · ∆FK,F (u) = 0 on all faces. Therefore, we see also for u ∈ D(A) ∩ H1(D,RJ), u` ∈ V dG
`,p≥0 and

φ` ∈ V dG
`,p≥0 that

〈Au,φ`〉L2(D) − 〈A`u,φ`〉L2(D) = 0 and
∑
K∈K

〈
nK,F · F∗K,F (u`),u

〉
L2(∂K)

= 0.

Another consequence of the upwind flux is that it guarantees that the discrete operator is non-negative, i.e.,

〈A`φ`,φ`〉L2(D) ≥ 0 for all φ` ∈ V dG
`,p≥0. Having all that, we can conclude the semi-discrete convergence in

the following theorem.

Theorem 2.31. Suppose u ∈ C1((0, T ),D(A)) is a solution to (2.11) and u` ∈ C1((0, T ), V dG
`,p≥0) is a solution
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to (2.13), and further, that the solution has the regularity u ∈ L2((0, T ),Hs(D,RJ)) with some 1 ≤ s ≤ p + 1

as well as that there exists a constant CA > 0, such that∑
K∈K

∑
F∈FK

‖nK,F ·∆FK,F (φ`)‖
2
L2(F ) ≤ CA 〈A`φ`,φ`〉L2(D) , ∀φ` ∈ V dG

`,p≥0.

Then, the following a priori semi-discrete error estimate holds

‖u− u`‖2L2([0,T ],V ) . TCAh
2s−1‖u‖2L2([0,T ],Hs(D,RJ )) + T ‖u(0)− u`(0)‖2V . (2.15)

Proof. The proof can be found in [141, theorem 2].

2.3.3 Hyperbolic Contaminant Transport

The goal of this paragraph is to explain the discretization of the deterministic version of model problem 1.2

by neglecting the dependency on ω ∈ Ω. To this end, we realize that the transport model is a scalar (J = 1)

hyperbolic conservation law for a given vector field q ∈ W1,∞(D,Rd) with div q = 0. This can be seen

by considering (2.11) with F(u) := u(x, t)q(x), i.e., Au = div(qu) with the operator A on the domain

D(A) =
{
u ∈ H1(D) : u = 0 on Γin

}
mapping to L2(D). Furthermore, we consider f(x, t) ≡ 0 for the rest of

the paragraph but allow for an inflow on Γin. Thereby, we are in the setting we have been exploring in [28]

and search for u ∈ C1((0, T ), V ), such that

∂tu+ div(qu) = 0 on D × (0, T ), u = uin on Γin × (0, T ), u(0) = u0 on D (2.16)

describing the transport of a contaminating particle density in groundwater. We see by integrating over the

time interval [0, T ] and the domain D that this is indeed a conservation law for the mass∫
D

u(x, T ) dx =

∫
D

u0(x) dx−
∫

Γin

∫ T

0

uin(t)q · n dtda−
∫

Γout

∫ T

0

u(t)q · n dtda,

where Γout = {x ∈ ∂D : q · n > 0} and the energy∫
D

|u(x, T )|2 dx =

∫
D

|u0(x)|2 dx +

∫
Γin

∫ T

0

|uin(x, t)|2 |q · n| dtda−
∫

Γout

∫ T

0

|u(t)|2 |q · n| dtda.

Further, multiplying with a sufficiently smooth test function φ and integrating over the domain gives∫
D

∂tuφ dx︸ ︷︷ ︸
=:〈M∂tu,φ〉L2(D)

+

∫
D

div(F(u))φ dx−
∫

Γin

Ψ(u) · nφ da︸ ︷︷ ︸
=:〈Au,φ〉L2(D)

= −
∫

Γin

F(uin) · nφ da︸ ︷︷ ︸
=:〈b,φ〉L2(Γin)

. (2.17)

The goal is to present a dG discretization based on the above integral formulation and the abstract setting

introduced in the previous paragraph 2.3.2. After this first step, a system of coupled ordinary differential

equations (ODEs) has to be solved with time stepping methods which will be explained in section 2.4.
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Model Problem 2.32. We search for an approximative solution u` ∈ V dG
`,p≥0 using dG elements, such that

〈M `∂tu`, φ`〉L2(D) + 〈A`u`, φ`〉L2(D) = 〈b`, φ`〉L2(Γin)

is satisfied. The discrete operators are in particular determined by

〈M `u`, φ`〉L2(D) = 〈u`, φ`〉L2(D) and 〈b`, φ`〉L2(Γin) = −〈n · F(uin), φ`〉L2(Γin)

and

〈A`u`, φ`〉L2(D) = 〈div F(u`), φ`〉L2(D) +
∑

F⊂F\Γin

〈nK,F ·∆FK,F (u`), φ`〉L2(F ) + 〈n · F(u`), φ`〉L2(Γin)

for φ` ∈ V dG
`,p≥0 and with ∆FK,F (u`) := F∗K,F (u`)− F(u`,K). The numerical flux is given by

F∗K,F (u`) =


F(uK) q · nK > 0 ∧ F ∈ F \ ∂D

F(uK′) q · nK < 0 ∧ F ∈ F \ ∂D

0 F ∈ F ∩ ∂D \ Γin

,

which is obtained from local solutions of Riemann problems.

Proposition 2.33. By construction of the numerical flux, the assumption of theorem 2.31 is satisfied. Hence,

the semi-discrete solution satisfies the a priori error estimate (2.15).

Proof. The arguments can for example be found in [141, section 4.3].

Remark 2.34. a) In [81, section 5.6] and [70, chapter 2] a detailed analysis of the steady advection-reaction

and in [70, chapter 3] the unsteady advection-reaction equation discretized with dG elements is presented.

In particular, the equation

∂tu+ q · ∇u+ µu = f

is considered with the assumptions

div q(x) = 0, q ∈ Lip(D,Rd) and div q ∈ L∞(D)

Lip(D) =
{
v ∈ C0(D) : |v(x1)− v(x2)| ≤ Lv |x1 − x2|

}
.

on flux field. Even though this theory is well-developed, we did not consider it in depth as the model is

slightly different. However, by [44, section 1.3] we know if q ∈ Lip(D,Rd) holds, that q ∈ W1,∞(D,Rd)

with ‖∇qd‖ ≤ Lqd for all d ∈ {1, . . . ,d} under certain conditions on the domain. Henceforth, if we neglect

the reaction part we are back in the initial setting.

b) It can be shown, e.g. in [134], that standard Lagrange finite elements applied to this model problem can not

provide the necessary coercivity in an appropriate norm which leads to an unstable discretization method.
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Remark 2.35. At this point, we discuss shortly what could be done to solve a parabolic transport-diffusion

PDE as for example in [28]. We will omit the details on the particular procedure and only present two remarks

on how to possibly do it.

a) To discretize a transport-diffusion equation we can combine the dG discretization with symmetric interior

penalty of model 2.25 for the diffusion term, and the dG discretization with upwind flux for the transport

term. This gives a stable discretization and is particularly interesting for a small diffusion term.

b) An alternative approach to discretize a parabolic transport-diffusion PDE with standard Lagrange finite

elements is described in [148, Section 9.2]. However, for small diffusion terms this approach is not stable

anymore (this is for example analyzed in [134, section 3]). To overcome this issue, in [47] the streamline

diffusion method is proposed. Shortly speaking, a Petrov-Galerkin ansatz is chosen which introduces an

artificial diffusion along the streamline. The advantage of this approach over the dG discretization is that

the discrete system consists of less degrees of freedom while remaining stable.

2.3.4 The Acoustic Wave Equation

Next, we explain the discretization of the deterministic acoustic wave equation 1.3, i.e., for some initial value

and boundary data, we consider the first order system

ρ∂tv −∇p = f

κ−1∂tp− div v = g

to find the velocity v and the pressure component p of the solution u = (v, p)>. We refer to [76, section

1.1.3-1.1.6] for a derivation of the acoustic wave equation out of elastic waves in isotropic media, as well

as for the reformulation of the second order system into the first order system presented here. We further

remark that this model can also be derived from compression waves in fluids or gases, but with another sign

convention.

We can rewrite the acoustic wave equation in a compact operator form as done in [39, 141], i.e., depending

on the material parameters ρ and κ, we define the operators

M :=

(
ρ 0

0 κ−1

)
⇒ Mu =

(
ρv

κ−1p

)
, A := −

(
0 ∇

div 0

)
⇒ Au = −

(
∇p

div v

)
, Anu =

(
−pn
−n · v

)
(2.18)

We assume ρ ∈ L∞(D) with ρ(x) ≥ ρ0 > 0 almost everywhere in D and κ(x) ≡ 1. Henceforth, the system to

model problem 1.3 can be formulated as linear hyperbolic first order system again which can be approximated

with a Galerkin ansatz by multiplying with a test function φ := (ϕ, ψ) ∈ V and integrating over the domain

D. Then, we can search for the solution in a finite dimensional dG space as in the following semi-discrete and

deterministic model problem.

Model Problem 2.36. We search for an approximative solution u` ∈ V dG
`,p≥0 using dG elements such that
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we satisfy

〈M `∂tu`,φ`〉L2(D) + 〈A`u`,φ`〉L2(D) = 〈b`,φ`〉L2(D) − 〈g`,φ`〉L2(∂D)

where the discrete operator M ` ∈ L(V dG
`,p≥0, V

dG
`,p≥0) is a block diagonal positive definite matrix. We restrict

ourselves to cell-wise constant material parameters, hence, we assume that we have cell-wise constant wave

speeds cK =
√
κK/ρK . The right-hand side b` ∈ L2((0, T ), V dG

`,p≥0) and the matrix M ` are determined by

Galerkin approximations, i.e., by

〈M `u`,φ`〉L2(D) = 〈Mu`,φ`〉L2(D) , 〈b`,φ`〉L2(D) = 〈b,φ`〉L2(D) , φ` ∈ V dG
`,p≥0.

Furthermore, for u` = (v`, p`)
> ∈ V dG

K,p≥0 and φ` = (ϕ`, ψ`)
> ∈ V dG

K,p≥0, we define A` =
∑
K∈KA`,K ∈

L(V dG
`,p≥0, V

dG
`,p≥0) with full upwind flux by

〈
A`,Ku`,φ`

〉
L2(K)

=−
〈
∇p`,K ,ϕ`,K

〉
L2(K)

− 〈div v`,K , ψ`,K〉L2(K)

−
∑
F∈FK

1

ZK + ZK′

〈
Jp`,KKF + ZK′Jv`,KKF · nK,F , ψ`,K + ZKϕ`,K · nK,F

〉
L2(F )

where ZK =
√
κKρK is the impedance. Lastly, the boundary conditions g = (gj)

J
j=1 = (Anu)Jj=1, gj ∈ L2(Γj)

are incorporated again with Galerkin approximations 〈g`,φ`〉L2(∂D) = 〈g,φ`〉L2(∂D).

Proposition 2.37. By construction of the numerical flux, the assumption of theorem 2.31 is satisfied. Hence,

the semi-discrete solution satisfies the a priori error estimate (2.15).

Proof. Can be found in [141, section 4.3].

The resulting semi-discrete system can now be discretized in time, e.g. with the implicit mid-point rule,

or be extended to a space-time setting.

Discretization in Time. We follow [39, section 3] and shortly outline the usage of the implicit mid-point

rule with the time step size τ = T/N and the time steps tn = nτ , n = 0, . . . , N , i.e., we construct a sequence

of approximations un` ∈ V dG
`,p≥0 with the initial value of u0

` = u0 by

(
M ` + τ

2A`
)
un` =

(
M ` − τ

2A`
)
un−1
` + τb

n−1/2
` with b

n−1/2
` := b`(nτ − 1/2). (2.19)

By [39, theorem 3.1] the above system is well-posed and therefore the implicit midpoint rule is applicable.

We refer to section 2.4 for a short introduction to the class of implicit time stepping schemes.

Space-Time Discretization. We now describe the a full discretization on the space-time cylinder Q :=

(0, T )×D by using the ST-dG elements stated in section 2.2.5. The idea is to extend the above semi-discrete

formulation with a dG discretization in time (we omit the details on this particular step, refer to [62, section 3]

and remark that another sign convention for the wave equation was used in this particular source) which leads

to a large algebraic system approximating the whole problem. As a start, we define the differential space-time
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operator L := M∂t + A where M and A are defined as previously. The strong solution is characterized with

b ∈ L2(Q,RJ), u0 ∈ L2(Q,RJ) and g = (gj)
J
j=1, gj ∈ L2((0, T )× Γj ,RJ) by

Lu = b, u(0) = u0, (Anu)j = gj for j = 1, . . . J. (2.20)

Since the adjoint satisfies A∗ = −A, we also have L∗ = −L and therefore, we can look for the weak solution

u ∈ L2(Q,RJ) solving

〈u, L∗φ〉L2(Q) = 〈b,v〉L2(Q) + 〈Mu0,φ(0)〉L2(D) − 〈g,φ〉L2((0,T )×∂D) , ∀φ ∈ V ∗ ⊂ C1(Q,RJ)

We now develop the space-time discretization by considering the dG discretization in space from model 2.36

and the dG method in time of [62, section 3] giving a discrete adjoint space-time operator L∗` . We omit the

details on the construction and only remark that the operator accounts for jumps at faces in space and time.

Then, we search for u` ∈ V ST−dG
`,pK ,pI

satisfying

〈u`, L∗`φ`〉L2(Q) = 〈b`,φ`〉L2(Q) + 〈M `u0,φ`(0)〉L2(D) − 〈g,φ`〉L2((0,T )×∂D) , ∀φ` ∈ V ST−dG
`,pK ,pI

.

In [62, section 4] the well-posedness and the stability of the approach is analyzed and furthermore in [62,

section 5] the convergence has been proven in the dG norm ‖·‖`,dG (the definition can be found in [62, section

4] and [70, chapter 2 and 7]).

Theorem 2.38. Assume that the strong solution to (2.20) is sufficiently smooth satisfying u ∈ Hs(Q,RJ) for

some s ≥ 1. Then, the error for the discrete solution u` ∈ V ST−dG
`,pK ,pI

is bounded by

‖u− u`‖`,dG . hs−1/2 ‖Dsu‖L2(Q) + Th−1/2
∥∥∥M−1/2

` (M ` −M)∂tu
∥∥∥

L2(Q)
,

where the hidden constant depends on the mesh regularity, the polynomial degree and the material parameters.

Proof. Can be found in [62, theorem 3].

Remark 2.39. In the main sources of this chapter, i.e., in [141, 76, 39, 62] the same approach is discussed

for visco-acoustic, elastic and electro-magnetic waves. Hence, the presented discretization and the theory

presented in the UQ chapter can be applied equally well for those equations. An indepth analysis and

numerical experiments are left open for further work.

2.4 Numerical Solvers

In the previous section, we have explored how the deterministic PDEs of different kind are discretized. In

order to find the coefficient vector (µ1, . . . , µN )> = µ ∈ RN representing the finite element solutions u` =∑N
n=1 µnψn ∈ V`, we have to solve linear systems or systems of ordinary differential equations (ODEs). In

this section, we discuss three things. First, we very briefly recall how preconditioned linear solvers and time

stepping methods work. Following [28], we then will present a short discussion on the parallel linear algebra

implemented in M++, and lastly we will embed this parallel algebra into the multi-mesh parallelization.
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2.4.1 Linear Solvers and Time Stepping

Popular methods to find the solution µ ∈ RN of sparse linear systems

Aµ = b with A ∈ RN×N and b ∈ RN

arising from FEMs are iterative Krylov subspace methods like the generalized minimal residual (GMRES)

method or the conjugate gradient (CG) method. In particular in combination with an appropriate precondi-

tioner B ≈ A−1 for the problem or multi-grid preconditioning, these methods can solve huge sparse systems

up to an acceptable error in O(N) steps and are thereby the workhorse in high performance computing. Lin-

ear solvers and preconditioners are a central topic in numerical mathematics and even though the theory is

well established, there is still a lot of research being done to increase performance and scalability for example

by developing new multi-grid preconditioners. Advances in this field directly transmit to all other topics

in numerical mathematics since linear systems have to be solved almost everywhere. We refer to standard

literature like [131, 209] on linear solvers and to [152] for multi-grid methods and acknowledge that, even

though this topic is mostly unconsidered in this thesis, it can be very impactful for our investigations.

Time stepping methods (or iterative time integration methods) are used to solve systems of ordinary

differential equations of first order, i.e., problems where we search for u : [0, T )→ RN such that

d

dt
u(t) = F(u(t), t), u(0) = u0 with F : RN × R→ RN . (2.21)

A popular family of methods to solve such systems are explicit and implicit Runge-Kutta methods which

approximate solutions to (2.21) at distinct time points tn with a sequence of un := u(tn) determined by

un+1 = un + τ

S∑
i=1

biki , where ki = F(un + τ

S∑
j=1

aijkj , tn + ciτ) for i = 1, . . . , S. (2.22)

We refer again to standard literature [131, section 76] and omit a detailed discussion on the topic. However,

for stiff problems explicit methods (aij = 0 for i ≥ j in equation (2.22)) are only stable if the step size τ is

sufficiently small, which motivates the usage of A-stable methods. These methods are implicit as all aij can

be non-zero in (2.22). The downside of this approach is that the new iteration un+1 is only implicitly given,

i.e., this requires to solve a system of algebraic equations in each time step which can increase the cost of the

method significantly. In the context of hyperbolic PDEs the stability criteria for explicit methods is expressed

via the Courant–Friedrichs–Lewy (CFL) condition [64]

τ

h`
≤ CCFL, (2.23)

which, translated for wave equations, means that the time step must be smaller than the time the wave needs

to travel from adjacent grid points in the mesh. Hence, if the distance between grid points h` is decreased,

the time step size has to be decreased as well. We refer to the discussion in [141]. Lastly, we mention that

the development and appropriate usage of time integration methods can be as impactful on the work of this
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thesis as improvements on the linear solvers. However, as this is not our main focus, we refer again to [141]

for a more detailed discussion.

2.4.2 Parallel Linear Algebra

The coefficient vector µ ∈ V ` = RN representing the finite element solution u` =
∑N
n=1 µnψn ∈ V` can be

stored in parallel by the embedding V ` → V `,P , where

V `,P =
∏
P∈P

V `,P with V `,P = RNP and NP = |{z ∈ Z : P ∈ π(z)}| ,

i.e., the space V `,P is overlapping at the points z ∈ Z, where |π(z)| > 1. Hence, we search for the parallel

coefficient vector µP ∈ V `,P (implemented in {13}) satisfying the parallelized system determined by AP =

(AP )P∈P and bP = (bP )P∈P with

AP =
(
a`,P (ψi,ψj)

)
i,j
∈ RNP×NP and bP =

(
f`,P (ψj)

)
j
∈ RNP .

Definition 2.40. a) A parallel vector νP = (νP )P∈P ∈ V P is called consistent, if for all P1, P2 ∈ π(z) the

values coincide νP1,z = νP2,z.

b) A parallel vector νP = (νP )P∈P is called additive, if for all P ∈ π(z) except for one the values are νP,z = 0.

c) A parallel vector is called accumulated, if for all P ∈ π(z) the values νP,z contain the sum of the true value

over all processes.

Note that the inner products (APµP) · νP and bP · νP are well-defined for consistent vectors µP and

νP despite the overlapping decomposition of AP and bP . Furthermore, for iterative solvers, we construct

preconditioners BP : V +
`,P → V `,P which map additive to consistent vectors. This construction requires

communication for which we refer to [28, 176, 177, 178] for details. This abstract concept extends to multi-

level preconditioning, however, we omit the details for this as well and refer to [28, 75, 256].

2.4.3 Multi-sample Systems

The following only describes the case M` ≤ |P| of equation (2.4). However, everything applies without loss

of generality for the case M` > |P|, since we then split in i ∈ N sequential computations without further

interprocess communication, such that
∑
i M̃i,` = M` satisfying M̃i,` ≤ |P|.

By extending the finite element mesh on the input data {y(m)}M`
m=1 according to section 2.1, we also

extended the definition of a finite element space in 2.10 and of the processor distribution mapping (2.5).

Therefore, the parallel algebra building upon this has to be adapted as well, i.e., we search for a coefficient

vector (µ1,1, . . . , µ1,N , . . . , µM`,1, . . . , µM`,N )> = µ ∈ V ` = RM`·N representing the multi-sample finite element

solution (u`)
M`
m=1 =

(∑N
n=1 µ

(m)
n ψ(m)

n

)M`

m=1
∈ V`,P . As in the previous paragraph this can be stored on a

https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib4_fem/algebra/Vector.hpp
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parallel computer with the embedding

V ` → V P =

M∏̀
m=1

∏
P∈P(m)

k

V
(m)
P with V

(m)
P = RN

(m)
P and N

(m)
P = |{z ∈ Z : P ∈ π(m, z)}| .

Thereby, the whole computation can be expressed as an algebraic system on fully distributed memory, i.e.,

we search for µ ∈ V `, such that


A

(1)
`,Pk 0 . . . 0

0 A
(2)
`,Pk 0

...
. . .

...

0 . . . 0 A
(M`)
`,Pk


︸ ︷︷ ︸

=A`,P∈RN`·M`×N`·M`

·


µ

(1)
`,Pk
µ

(2)
`,Pk
...

µ
(M`)
`,Pk

 =


b

(1)
`,Pk

b
(2)
`,Pk
...

b
(M`)
`,Pk


︸ ︷︷ ︸

=b`,P∈RN`·M`

, (2.24)

where each A
(m)
`,Pk ∈ RN`×N` is defined as

A
(m)
`,Pk =

((
a

(m)
`,P (ψi,ψj)

)
i,j

)
P∈P(m)

k

and b
(m)
`,Pk =

((
f

(m)
`,P (ψj)

)
j

)
P∈P(m)

k

. (2.25)

This results in the following method which we will later exploit as subroutine of the UQ algorithms.

Method 2.41. Given a PDE and suitable finite element discretization as well as the input data {y`}M`

`=0

parameterizing the PDE, the procedure to solve a multi-sample system (MSS) is given in the function below.

function MSS(M`,P) :
k ← use (2.4) with (M`,P)

A`,P , b`,P ← for m = 1, . . . ,M` : assemble (2.25)

µ`,P ← solve A`,P · µ`,P = b`,P

Remark 2.42. a) Since the parallelization is a function of M` and |P| minimizing the communication, it

assembles the system (2.24), such that it minimizes the coupling, i.e., the system is decoupled for each

sample and mildly coupled on the spatial domain. The system is sparse which is inherited from the sparsity

of each finite element block.

b) The previously discussed linear solvers and time stepping methods build upon this parallelization. This

highly distributed data structure enables us to employ implicit time stepping methods and space-time

discretizations without running into memory issues.

c) As P (and `) are fixed, the structure of the space V`,P is only determined by the amount of samples M`.

Thus, having a purely deterministic problem M` = 1 (on level `) results in a classical finite element matrix.

Likewise, having a problem with highly variant input data, i.e., many samples are needed, the assembling

of the matrix favours many small blocks, each representing a sample.
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d) Since the matrix is decomposable, we can estimate the condition number with respect to the spectral norm

of the whole system with

cond‖·‖2(A`,P) =

∣∣∣∣σmax(A`,P)

σmin(A`,P)

∣∣∣∣ ≤ max
m=1,...,M`

∣∣∣∣∣σmax(A
(m)
`,Pk)

σmin(A
(m)
`,Pk)

∣∣∣∣∣ ,
where σmin(·) is the minimal and σmax(·) the maximal singular value of the matrix.

e) The parallel preconditioner BP potentially used in the last line of method 2.41 is constructed, such that

it adapts to each sample block of the matrix only requiring communication on the subsets P(m)
k .

Lastly, we consider a multi-sample dG-system to present an example of the usage of this data structure

for time stepping methods.

Example 2.43. We search for (u`(t))
M`
m=1 ∈ V dG

`,P , such that

M
(m)
` ∂tu

(m)
` (t) +A

(m)
` u

(m)
` (t) = b

(m)
` (t), t ∈ (0, T ), m = 1, . . . ,M`

where V dG
`,P =

∏M`

m=1 V
dG

`,P(m)
k

. Using (2.19) to discretize in time and [39, lemma 3.1], we can conclude that the

above system is well-posed if we satisfy the assumptions on the input data of model 2.36 sample-wise. We

refer to the upcoming section 3.3.4 for further details.

2.5 The FEM-Library M++

The open-source parallel finite element software M++ [28] has been developed within the last 15 years at the

Karlsruhe Institute of Technology (KIT) by the group of Christian Wieners. As a research code for various

applications like cardio-vascular simulations [94, 102], gas dynamic simulations for carbon capturing [150],

nonlinear solid mechanics [29], dislocation dynamics [220, 254], computer assisted proofs [261] and full wave-

form inversion [39], it has grown a large array of features. This includes the parallelization via distributed

point objects [257], parallel preconditioning [256, 177], space-time discretizations [75, 77] and a tutorial on

scientific computing with examples of porous media model problems [28].

It has been a central piece in the doctoral thesis of Wolfgang Müller [192], Martin Sauter [216], Daniel

Maurer [176], Stefan Findeisen [90], Jiping Xin [263], Andreas Schulz [219], Ekkachai Thawinan [248], Johannes

Ernesti [83], Ramin Shirazi [225], Lydia Wagner [253], Daniel Ziegler [269], Julian Krämer [154], Jonathan

Fröhlich [95] and Jonathan Wunderlich [261].

Motivated by all these applications and the rapid development in UQ, a main goal of this thesis was to

contribute to this large software-project by equipping it with robust UQ algorithms. Surely, the models of the

above applications can be enhanced with uncertainty one way or the other. A detailed technical description

on the UQ extension of M++ will follow in section 3.6.

The development of the software is currently done by being involved in several research projects, namely

on adaptive implicit space-time discretization for wave equations (CRC 1173 - project A3), dynamics of

cardiac electrophysiological depolarization waves (CRC 1173 - project B7), seismic imaging by full waveform
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inversion (CRC 1173 - project C2), coupling methods for electro-mechanic models of the human heart (SPP

2311), nonlinear fracture dynamics (SPP 2256) as well as by faculty members of the mathematics department

at KIT and external contributors to the open source code. Having a tool with such a diverse range of

applications and such a variety of features does require careful software and algorithm engineering. Thereby,

we discuss mainly two things in the remaining part of this section. Firstly, we describe the architecture of

the code and the project structure in more detail and secondly, we explain how the project is maintained and

how the development is pushed forward under continuous delivery (CD) workflows.

2.5.1 Software Architecture and Design

Throughout this document, we have distributed references to the implementation, which we want to give here

once again to the main page of the git repository {14} . The README.md file gives a detailed installation guide

of M++ on Linux systems equipped with Open MPI [96, 121], C++ 20 and CMake 3.5.1 or above. The

software can also be build as docker-image.

By drawing the attention to figure 2.4, we explain the layered structure of the core library Mpp and the

project organisation. We recall that the outline of this thesis is motivated by the code structure. Thereby, the

reader of this document sees the theory behind FEM and UQ in the same order as the C++ compiler does.

lib2 mesh: After some preliminary definitions and essential setups, the second layer in Mpp mostly corre-

sponds to section 2.1. This includes all objects of the finite element mesh like cells, faces, edges as well as

the parallelization in spatial domain and across the data {y(m)}M`
m=1. Furthermore, the domain description

{15} and the refinement rules of the mesh are implemented here as well.

lib3 disc and lib4 fem: The third and forth layer correspond to the sections 2.2 and 2.3, namely to the finite

element spaces, including the shape functions {16} with the corresponding quadrature rules {17} , the dofs

{18} and the coefficient vector {19} with the underlying parallelized data structure. Beyond the selection of

finite elements we presented here, the software supports Argyris elements [44, page 76] implemented in {20} ,

curl elements [81, section 1.2.8] in {21} , Taylor-Hood elements [81, section 4.2.5] in {22} as well as further

space-time {23} , mixed and vector-valued elements.

lib5 solve: The section 2.4 briefly discusses the application of linear solvers, preconditioners and time

integrators. These methods are implemented in lib5 solve which currently offers parallel- (symmetric /

block) Gauss-Seidel {24} , (damped / block) Jacobi {25} , incomplete LU decomposition {26} and multi-grid

preconditioning {27} , iterative linear solvers like CG {28} , GMRES {29} , MINRES {30} and BiCGStab

{31} . Furthermore, explicit and diagonal implicit Runge-Kutta methods are implemented in {32} alongside

with exponential time integrators [140] in {33} . Lastly, we mention the implementation of eigen solvers in

{34} .

tests: Testing, quality assurance and reliability are central concerns in software engineering. The tests

library admits the same structure as the rest of the library, i.e., there is a test layer test2 mesh where

most objects of lib2 mesh are tested in, a layer test3 disc which tests the objects in lib3 disc and so

on. Test and behavior driven development (TDD/BDD) are known to be the fastest approaches to software

https://git.scc.kit.edu/mpp/mpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib2_mesh/mesh/CoarseGeometry.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib3_disc/shapes
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib3_disc/quadrature
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib3_disc/dof
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib4_fem/algebra/Vector.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib4_fem/elements/ArgyrisElement.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib4_fem/elements/CurlElement.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib4_fem/elements/TaylorHoodElement.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/spacetime/src/elements
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/preconditioner/GaussSeidel.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/preconditioner/Jacobi.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/preconditioner/SuperLU.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/preconditioner/Multigrid.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/linearsolver/CG.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/linearsolver/GMRES.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/linearsolver/MINRES.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/solver/linearsolver/BiCGStab.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/timeintegrator/linear/RungeKutta.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/timeintegrator/linear/ExponentialIntegrator.hpp
https://git.scc.kit.edu/mpp/mpp/-/blob/3.1.3/src/lib5_solve/spectrum
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Figure 2.4: Project and library overview of M++.

development yielding the best quality of code [88]. Software solving pure mathematical problems are no

exception to that, actually, in this domain it might have to be done even more rigorously.

tutorial and spacetime: The discrete and deterministic versions of the model problems from the introduc-

tion 1.3 and from section 2.3 are taken from the tutorial and spacetime libraries. We emphasize that the

developed UQ methods can be applied easily to any other model implemented in M++.

Navier-Stokes, FWI, CardMech, DGWave and others: As mentioned in the introduction of this section, M++

has been part of many projects. Here, we only list the ones under current development. Navier-Stokes is

a project concerned with the development of existence proofs for the Navier-Stokes equation using rigorous

interval arithmetic, FWI provides methods for full waveform inversion in seismic imaging, in CardMech cardio-

vascular simulations are developed and executed, and in the project DGWave phase-field fracture resulting

from elastic waves are investigated.

MLUQ: The whole chapter 3 and a detailed technical description in section 3.6 is dedicated to this part of the

code.

Remark 2.44. Software architecture is traditionally associated with the fundamental structure and design

choices of the system that are costly and time intense to change or to implement [26]. In some cases, this leads

to much up front design and slow adaption to new requirements. Especially in research code development, the

demands towards the software system might change rapidly from project to project and from PhD student to

PhD student. Lengthy up front design and a slow pace of adaption are simply not suitable for research projects.

By personal judgement, agile methods like DevOps, Kanban and continuous delivery (CD) (confer [88, 40, 205,
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164] for the terminology) are the only way research software can be maintained and developed in a sustainable

and long-lasting way. As suggested in the agile manifesto [30], by doing just enough architectural design up

front and designing the system such that it should enable fast changes over anything, the system becomes a true

asset to research or the research product in itself. The discussions in [6] and the software projects Ginkgo [7]

and OpenCarp [15] have served as a great blue-print and inspiration to adapt our workflows towards software

development under conscious good scientific practice. Concluded, the here presented structure of the project

is nothing but a snap shot of M++, in fact, we encourage an ever evolving architecture, highly adaptive to

the research requirement, making the above description on the libraries obsolete as soon as necessary.

We want to close this paragraph by giving an (incomplete) list of other open-source FEM software packages,

each with its individual strengths and features. Many concepts such as the parallelized linear algebra, the

interchangeability of finite element spaces, as well as the layered and modular architecture can all be found in

some way or the other in these tools. They have served as a main inspiration for our own software development.

Example 2.45. a) The open source finite element library deal.II (Differential Equations Analysis Library)

is a C++ library with similar applications as M++. Its most recent version is documented in [8]. It enjoys

a long list of contributors (over 200 only on its GitHub main page) and applications.

b) DUNE (Distributed and Unified Numerics Environment) is an open source finite element library [27],

following similar concepts as deal.II and M++. It is written to execute large scale finite element simulations

on distributed memory.

c) The FEniCSx project enjoys much popularity because of its clean python front-end, mimicking weak

formulations of the PDEs. An extensive description of the tool is given in [161].

d) NGSolve is another multi-physics finite element software. It provides a python front-end with similar ideas

as FEniCSx. We refer to the documentation web site [197] for details.

e) We also mention UG4, developed at the Goethe Center for Scientific Computing at the University of

Frankfurt [213]. The software UG has been a predecessor tool for UG4, DUNE and M++.

f) PetsC (Portable, Extensible Toolkit for Scientific Computation) provides a large array of preconditioners,

linear solvers and time stepping methods. deal.II, DUNE, FEniCSx, OpenCarp and NGSolve all provide

interfaces to PetsC. We refer to the user manual [20] and the webpage [19].

g) Ginkgo is a tool to solve sparse large-scale linear systems on a wide selection of hardware configurations,

e.g. on GPU clusters [7]. In that sense, it is not a finite element library, but a solver library for finite

element systems. Other tools like deal.II already provide interfaces to Ginko as subroutine to solve the

arising linear systems. For us, their development of a continuous delivery pipeline including continuous

benchmarking (CB) was a key motivation to enhance our development in that direction.

2.5.2 Continuous Delivery Workflow

Arguably the most important question arising in software development is: Does my software (change) solve

the problem it was meant for? Say the task is to guide the user easier through an online store. How do we
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justify that a change of the system actually solved this imposed issue?

Luckily, the problems under consideration here are well-defined and provide lots of ways to quantify the

improvements by a change. Especially since M++ is written to solve purely mathematical problems in HPC

applications, we have to justify a change by answering these questions:

• Is it consistent with mathematical theory?

• Does it add a new application or method?

• Does it speed up the software?

• Does it fix flaws or errors?

• Does it improve the readability of the code?

At best, all questions are answered with yes when implementing a change. Most often though, these questions

impose restrictions in a sense that previously achieved results have to be maintained. This means that a

change has to lead to at least to the same speed of execution, at least the same readability of the code, at

least the same number of executable applications and methods, and at least the same amount of consistent

coverage of mathematical theory.

The continuous delivery (CD) workflow in software development is arguably the best way to justify each

change to the system within the scope of the above questions. The idea is to keep the software always in a

releasable state by automated testing, such that new features can be continuously delivered and the system

can incrementally grow. Dave Farley’s book [88] and the GitLab CI/CD documentation [111] have served as

hands-on guides to realize a continuous delivery (CD) workflow and an associated CD pipeline with GitLab

CI/CD. The CD pipeline is central to the workflow. It is a computer program running on a server which

overtakes the automated testing and verification of the system, e.g. by executing the tests contained in the

tests library. This goes beyond the verification of the core library by shipping it to other projects having

dependencies on the library. Furthermore, the CD pipeline enables an automated deployment of the code on

arbitrary hardware architectures and a (semi-)automated model building and validation by actually executing

of the code on the hardware. We recall the goal of the method development from chapter 1 demanding

robustness, repeatability and fast feedback, and emphasize that the CD pipeline is a key piece in achieving

this goal. The CD pipeline will serve as our laboratory in the final investigations in chapter 4, allowing us to

challenge a large array of hypotheses in a fully automated manner, and adjusting the method and the model

incrementally to our findings.

In the following, we will explain the two tasks of verification and validation in a CD workflow (confer

figure 2.5), leave a few remarks on the used hardware.

Verification. For the verification of the code we used techniques described in [151, 80, 215]. This includes

checking the consistency of problems with exact solutions, verifying convergence results w.r.t. to certain dis-

cretization parameters, checking mathematical properties of a certain configuration, testing conserved quan-

tities if they are actually conserved, testing for asymptotic behavior e.g. by Richardson extrapolation, testing

for robustness and stability of a method by applying it to different problems, and continuously benchmarking
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Figure 2.5: Semi-automated model-data cycle - workflow inspired by [6, 15].

the mathematically predicted performance of an algorithm. The verification task is henceforth important to

demonstrate that the code solves the imposed mathematical problem as predicted by the theory. By trans-

lating properties of the mathematical system into tests on the behavior of the software system, verification is

a task within the interface of computer science and mathematics [180]. Even better than verification of the

code once is doing it continuously and throughout every stage of development in our CD workflow.

Validation. Model validation is essentially the question if the imposed mathematical model and the methods

are appropriate for the system of interest [180]. A typical validation process involves the comparison of

measured and simulated data. The better the match, the better is the representation by the computer model.

We call our approach to the model validation semi-automated, because the match with experimental data and

the following model refinement is missing. However, the CD pipeline allows us to generate fully automated

large-scale simulation data from a broad selection of applications on demand, while the verification is executed

as soon as the system changes. By doing so, we maximize the feedback on the development and hope to gain

control over epistemic errors and improve incrementally by continuous (still hands-on) model refinement.

Publication. Subsequent to the verification and the validation is the publication task. The CD pipeline

takes care of this last step by publishing verified and validated results accessing the RADAR4KIT service [212],

creating a streamlined and well-defined process from development to research data and software publication

with persistent identifiers, documented authorship and meta-data, as well as repeatable numerical results.

This idea was taken from the OpenCarp [15] workflow and motivated by the good scientific practice guidelines

described in [123].
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Hardware. As pointed out in the introduction, we want a holistic method development including aspects

from FEM, UQ, software engineering and hardware architectures. In that sense, we try to achieve a vertical

integration of the hardware in the overall method development. After all, these are highly specialized algo-

rithms requiring highly specialized hardware. We want to hide this complexity, such that whoever uses these

methods should not be concerned about where and how the computation is actually executed. Already in

1968, a NATO software engineering conference took place. The complexity of computer programs at that

time were the main matter of concern of this conference and the term the software crisis was coined. Edsger

Dijkstra later described it by:

The major cause [of the software crisis] is that the machines have become several orders of magnitude more

powerful! To put it quite bluntly: as long as there were no machines, programming was no problem at all;

when we had a few weak computers, programming became a mild problem, and now we have gigantic

computers, programming has become an equally gigantic problem. In this sense the electronic industry has

not solved a single problem, it has only created them, it has created the problem of using its products. -

Edsger W. Dijkstra, 1972

Since then, the problem as described by Dijkstra has grown exponentially by Moore’s law. Fortunately,

we have been granted access to three different computing clusters for which we have developed automated

access, deployment and execution of the code. These computing clusters are:

PDE-Cluster : The PDE-Cluster is operated by the faculty for mathematics, KIT. It serves as the main

machine for the code verification which includes the automated deployment of the library in the projects

and the subsequent testing of them.

BwUniCluster 2.0 : The Steinbuch Centre for Computing (SCC) at KIT operates the BwUniCluster 2.0. It is

a massive parallel computer with a total of 848 nodes with a theoretical peak performance of 1.4 PetaFlops

and a memory expansion of approximately 117 TB [49]. Nightly benchmarks are run on this machine.

HoReKa: The HoreKa (Hochleistungsrechner Karlsruhe) is operated by the NHR (Nationales Hochleis-

tungszentrum) at SCC, KIT. Universities and research institutes from Germany can request access to this

machine. It has a peak performance of 17 PetaFlops and a main memory of 220 TB [249].

By automating the workflow, we hide all the complexity associated with the hardware, the software and the

mathematical difficulty to enable model building experts to focus on their concern. Thereby, we hide the

software crisis associated with big computers and continuously deploy new methods to overcome these issues.

Clean Code. The term clean code (cleanliness of code) describes source code, documents, infrastructure

setups and methods which are developed such that they are intuitively understandable and knowledge about

the system can be acquired by simply reading the code, rather than an extensive documentation. It is

characterized by being easy to read, easy to change and easy to extend. Common practices to achieve

something as clean code are: keeping changes as small and as frequent as possible, versioning anything which

is related to the software, automation and CD, using object names associated with the domain language (in
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Figure 2.6: Hochleistungsrechner Karlsruhe (HoReKa) [249].

our case: mathematical terminology), practicing TDD and BDD (in our case: Implementing the verification

of mathematical theory first), and sticking to popular software design principles.

However, clean code is a highly subjective and a non-quantifiable evaluation of the code (even though

there are commercial and non-commercial tools like softwipe [267] which create a score for the code quality).

Thereby, what is defined as clean and what isn’t should be judged by all the people reading and using it.



3
Uncertainty Quantification

Uncertainty is everywhere. It enters every system as soon as measurements are involved, and it has to be

appropriately taken into consideration. As Ryan McClarren describes in [180], forward UQ can be separated

in several steps:

1. Identify a quantity of interest (QoI)

2. Identify the uncertain input data

3. Shrink the selection of uncertain inputs

4. Propagate the uncertainty through system

5. Determine how the uncertainty affects predictions

We want to structure this chapter in the same order as these steps indicate. In the introduction 1.3, we have

determined what the QoIs within this thesis are, namely the expected value of some functional to a solution of

a PDE. Thus, we want to start the chapter by further defining the uncertainty entering the system. In order

to do so, we give a short review to stochastic processes, random fields and Bochner spaces in section 3.1. We

remark that we take a probabilistic approach to UQ, but alternative tools like worst case analysis, interval

arithmetic or fuzzy logic are employed for certain applications, too. Next, we will focus on the input data,

introduce Karhunen-Loève (KL) expansions, sampling algorithms and sparse grids in section 3.2. Within the

scope of this thesis, we will barely touch on the third step of UQ as described by Ryan McClarren. However,

shrinking the dimension of the uncertain input data is crucial for efficient UQ and of great importance - it is

55
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just not the main matter of concern here. Section 3.3 will continue by stating the uncertainty entering the

model problems 1.1-1.3 and outline their well-posedness with respect to these inputs. The remaining sections

of this chapter are all concerned with the fifth step of UQ, discussing methods wich are capable to propagate

uncertainty from input to output.

We further want to mention one more time the books on UQ by Sullivan [241] and Soize [229], but also the

books in German by Fahrmeir, Künstler, Pigeot and Tutz [86] with a comprehensive overview on statistics

and the book by León and Kiencke [165] on measuring techniques covering some sections of this chapter.

3.1 Random Fields and Bochner Spaces

In this section we introduce the definition of stochastic processes, random fields, Bochner spaces and a few

essential properties. The theory is collected from [4, 218, 104] and [65]. For an overview on the probabilistic

notation we refer to appendix A.2.

3.1.1 Introduction to Random Fields

Definition 3.1. a) Let (Ω,F ,P) be a probability space, and let D ⊂ Rd be a domain. A random field is a

real valued (vector valued) mapping Y : Ω × D → Ξ ⊂ R (Y : Ω × D → Ξ ⊂ RJ) which, for every fixed

x ∈ D, is a measurable function of ω ∈ Ω. If d = 1, the random field is also called stochastic process.

b) For a fixed ω(m) ∈ Ω we call y(ω(m), ·) ∈ Ξ a realization or a sample, which then is a deterministic function

only depending on the location x ∈ D. We will often denote a sample simply with y(m).

Lemma 3.2. For a collection of random fields {Ym : Ω×D → R}Mm=1 and a measurable function f : RM →
RJ , the component functions of f(Y1(ω,x), . . . , YM (ω,x)) are random fields, too. Thus, we can conclude that

a) For {αm}Mm=1 ⊂ R the sum
∑M
m=1 αmYm(ω,x) is a random field.

b) The product
∏M
m=1 Ym(ω,x) is a random field.

Proof. Confer [4, theorem 1.1 and corollary 1.1.1].

Definition 3.3. a) The expectation field of a random field Y : Ω×D → Ξ is given by

µY (x) := E[Y (ω,x)] :=

∫
Ω

Y (ω,x)dP.

If µY (x) = 0 for all x ∈ D, the random field has mean-zero.

b) The auto-covariance of a random field Y : Ω × D → Ξ with E[(Y (ω,x))2] < ∞ for all x ∈ D gives the

covariance of the process with itself at all pairs of points x1,x2 ∈ D

Cov(x1,x2) = E[(Y (ω,x1)− µY (x1)) · (Y (ω,x2)− µY (x2))].

c) The covariance is closely related to the variance field σ2
Y (x) = Cov(x,x).
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d) The auto-correlation function ρ(x1,x2) = Cov(x1,x2)
σY (x1)σY (x2) is a normalization of the covariance.

Definition 3.4. For any N ∈ N and n = 1, . . . , N , let xn ∈ D be arbitrary points in the domain and

cn, c̃n ∈ R. Then the covariance function on D ×D is said to be positive (semi-) definite if

N∑
n=1

N∑
ñ=1

cncñ Cov(xn,xñ) ≥ 0.

Theorem 3.5. Auto-covariance functions of random fields are positive semi-definite.

Proof. Confer [4, theorem 1.2]

For some covariance functions, the positive semi-definiteness might be hard to verify. In this case, sym-

metry properties are helpful.

Definition 3.6. a) A random field Y : Ω×D → Ξ is called strictly stationary if for any choice of {x1, . . . ,xK},
the finite-dimensional cumulative distribution function (CDF) is invariant under arbitrary translations

x̃k ∈ D with x̃k + xk ∈ D, i.e.,

Fx1,...,xK (y1, . . . , yK) = Fx1+x̃1,...,xK+x̃K (y1, . . . , yK).

b) A random field Y : Ω ×D → Ξ is called stationary (in a wide sense) if its mean field is constant and its

covariance function only depends on the separation vector x̃ = x1 − x2.

c) A stationary random field Y : Ω × D → Ξ is called isotropic, if the covariance function only depends on

the norm of the separation vector ‖x̃‖ = ‖x1 − x2‖.

d) A stationary random field Y : Ω×D → Ξ is called anisotropic if the covariance function only depends on

the norm ‖x̃‖K =
√

x̃>Kx̃ with K being positive semi-definite and not the identity.

The covariance function of isotropic and anisotropic random fields is positive definite. A strictly stationary

random field is also stationary in a wide sense, the opposite is not necessarily true (cf. [4] for details). However,

for Gaussian random fields the implication in the other direction is true, too.

3.1.2 Gaussian and Log-Normal Fields

The most prominent random fields are Gaussian random fields. They play an important role as their speci-

fication of the finite-dimensional distributions is very simple, they are a reasonable model for many natural

phenomenas, e.g. as white noise, and the models are simply specified by the expectation field and the auto-

covariance function.

Definition 3.7. A random field, where for any choice of {1, . . . , N} the finite-dimensional CDF FY1,...,YN is

that of a multivariate normal distribution, is called Gaussian random field. Thereby, for any choice of N and

{x1, . . . ,xN} ∈ D, we have

Y = (Y (ω, x1), . . . , Y (ω, xN )) = (Y1, . . . , YN )> ∼ N (µY, C)
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for some expectation field µY (x) and some symmetric positive semi-definite covariance matrix C ∈ RN×N .

The existence of such a field is assured by Kolmogorov’s extension theorem; the argument can be found

in [4, Section 1.4]. The covariance function must be positive definite to ensure the existence of all finite-

dimensional distributions. To sample from such a field, we introduce the following naive method.

Method 3.8. We want to sample from Y ∼ N (0, C) with an invertible covariance matrix. With the standard

multivariate normal distribution Z ∼ N (0,diag(1, . . . , 1)) and the decomposed covariance matrix C = RR>

(e.g. with Cholesky), we can sample from the distribution by Y = RZ.

Indeed, the vector Y has the required properties since E[YY>] = E[RZZ>R>] = RE[ZZ>]R> =

R diag(1. . . . , 1)R> = C and E[Y] = E[RZ] = RE[Z] = 0. However, decomposing the covariance matrix

stemming from a two-dimensional random field discretized e.g. on Ñ × Ñ grid points results in a dramatic

computational effort. In particular, the Cholesky decomposition for the matrix of size Ñ2 × Ñ2 results in

the cost of O(Ñ6) which is beyond the scope of what is computable for problems of practical interest. Better

methods will be introduced in section 3.2.

Definition 3.9. A continuous random variable Y : Ω → Ξ ⊂ R≥0 is called log-normally distributed, if

log(Y ) ∼ N (µY , σ
2
Y ) is normally distributed. A random field Y : Ω × D → Ξ is called a log-normal field, if

log(Y (ω,x)) = g(ω,x), where g : Ω×D → R is a Gaussian random field.

The multiplicative mean of many independent, positive random variables is log-normally distributed. This

is a result of the central limit theorem [86, section 7.1.2] in the log-domain. In the literature this is called

Gilbert’s law. A log-normal field satisfies Y (ω,x) > 0 almost surely in Ω and its values may vary over many

orders of magnitude. This property is typical for the subsurface permeabilities and therefore log-normal fields

will be used for the model problems 1.1-1.3.

Furthermore, we will assume that the Gaussian field is mean-zero, i.e., E[g(ω,x)] = 0 and that its covariance

function can be represented as

Cov(x1,x2) = σ2 exp

(
−

∥∥∥∥∥
(
x1,d − x2,d

λd

)d

d=1

∥∥∥∥∥
ν

2

)
, (3.1)

where σ2 is the variance, λ = (λ1, . . . , λd)> is the correlation length in different spacial directions and ν can

be used to smooth the covariance function. Since the function is not smooth if x1 approaches x2 for ν = 1,

realizations of the field g(ω,x) can be quite irregular. However, Kolmogorov’s theorem (see for example [65])

states that all realizations of g(ω,x) are Hölder continuous for Hölder constants t < 1
2 with respect to x.

Lemma 3.10. Let g(ω,x) be a Gaussian field with the covariance of (3.1). The samples of the log-normal

field κ(ω,x) = exp(g(ω,x)) belong to Ct(D) almost surely for all t < 1
2 and

‖κ(ω)‖Ct(D) ≤ (1 + 2 |g(ω)|Ct(D)))κmax(ω).

Proof. This result can be found in [53].
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Decreasing the correlation length increases the frequency of oscillations of g(ω,x), whereas increasing the

variance increases the amplitude of those oscillations. This roughness in g(ω,x) is directly transmitted into

κ(ω,x).

Remark 3.11. a) Smooth covariance functions, i.e., ν = 2 lead to g(ω) ∈ C1(D).

b) The results can even be extended to log-normal fields for which the underlying Gaussian field does not

have mean-zero, under the assumption that this mean is sufficiently regular. Adding the mean µ(x) gives

κ(ω,x) = exp(µ(x)) exp(g(ω,x)) which still satisfies the assumptions as long as µ(x) ∈ Ct(D) for t being

the same as concluded from the smoothness of the field.

3.1.3 Bochner Spaces

For random variables which have values in Banach spaces, such as random field solutions to PDEs, we define

Bochner spaces. To stay within the notation of the previous paragraph, we give the space of outcomes Ξ more

structure by restricting it to Banach spaces. To this end, we use the following lemma which states that the

norm of a random field is a random variable [65, proposition 1.2].

Lemma 3.12. Let (V, ‖·‖V ) be a separable Banach space and Y : Ω×D → V be a V -valued random field with

a Borel σ-algebra on V . Then the mapping Ω 3 ω 7→ ‖Y (ω, ·)‖V ∈ R is a random variable.

With that we can define Bochner spaces equipped with an appropriate norm since∫
Ω

‖Y (ω, ·)‖V dP <∞.

Bochner spaces are usually defined on an arbitrary measurable space, however, we will immediately identify

this measurable space with a probability space leading to the following definition.

Definition 3.13. Let (Ω,F ,P) be a probability space and (V, ‖·‖V ) be a separable Banach space. We call

Lq(Ω, V ) =
{
Y : Ω→ V : Y is strongly measurable with ‖Y ‖Lq(Ω,V ) <∞

}
a Bochner space where norm is given by

‖Y ‖Lq(Ω,V ) =


(∫

Ω

‖Y (ω, ·)‖qV dP
)1/q

1 ≤ q <∞

ess sup
ω∈Ω

‖Y (ω, ·)‖V q =∞
.

In particular, we can also write

‖Y ‖L1(Ω,V ) = E[‖Y ‖V ] and ‖Y ‖Lq(Ω,V ) = (E[‖Y ‖qV ])
1/q

, 1 ≤ q <∞.

Remark 3.14. a) Bochner spaces are the right framework for solution and input spaces to the model prob-

lems 1.1-1.3. In particular, we will identify the Banach space V in definition 3.13 with Sobolev, Hölder or

Lebesgue spaces.
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b) If V is a Hilbert space, L2(Ω, V ) is a Hilbert space with 〈Y1, Y2〉L2(Ω,V ) =
∫

Ω
〈Y1, Y2〉V dP.

c) Most of the properties of standard Lq spaces are transmitted on Bochner spaces. For example, the Cauchy-

Schwarz inequality ∣∣∣〈Y1, Y2〉L2(Ω,V )

∣∣∣ ≤ ‖Y1‖L2(Ω,V ) · ‖Y2‖L2(Ω,V )

and for p, q ∈ [1,∞] with 1/p+ 1/q = 1 the Hölder inequality are still valid, i.e.,

‖Y1Y2‖L1(Ω,V ) ≤ ‖Y1‖Lp(Ω,V ) · ‖Y2‖Lq(Ω,V ) ⇔ E[‖Y1Y2‖V ] ≤ (E[‖Y1‖pV ])
1/p · (E[‖Y2‖qV ])

1/q
. (3.2)

3.2 Uncertain Input Data

A crucial part of UQ is the modelling of the input data to the system of interest. As we will explain within this

section, this can be done in various different ways and has a big impact on the computational demand of the

overall method and the total error estimation. A task which is mostly unconsidered here in this thesis is the

reduction of the dimensionality of the input data, which can reduce the computational demand significantly

while keeping the error under control. However, with or without dimension reduction of the input, we need

a way to create realizations y(m) of the input data. In particular, we will briefly describe the generation

of pseudo-random numbers on parallel processes, the representation of random fields by Karhunen-Loève

(KL) expansions, the sampling of Gaussian random fields via circulant embedding, as well as a parametric

representation of the probability spaces.

As a start, we have to ask the question how the uncertain input data is even characterized. Do we know

the PDF or do we at least know basic statistics like the mean value or the covariance function? Where does

the uncertainty enter the system, i.e., does it enter as an uncertain initial state, uncertain flux functions,

uncertain material coefficients or boundary conditions and can it be modeled as a stochastic process or a

random field? Whatever the nature of the uncertainty is, to be able to represent it in a computer we need

the following crucial assumption.

Assumption 3.15. Throughout the thesis, we consider the finite dimensional noise assumption (FDNA),

that is, the space of outcomes Ξ of any random variable Y : Ω→ Ξ or any random field Y : Ω×D → Ξ is of

finite dimension K. Thereby, any sample can be represented by a vector y(m) = (y1, . . . , yK)> ∈ Ξ ⊂ RK .

This assumption is reasonable for most applications since many are actually only subject to finitely many

random variables. However, even applications with an infinite-dimensional random input, a sufficient pertur-

bation analysis can justify this assumption.

3.2.1 Parallel Pseudorandom Number Generation

Generating true random numbers is a non-trivial task. Although hardware random number generators, based

on internal noisy physical states of the device, can be used to generate sequences of truly random numbers,

pseudorandom number generators (PRNG) are widely in use due to their speed, their reproducibility and their
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independence of specialized hardware. PRNGs are algorithms which generate a sequence of numbers, which

is purely determined by the initial state of the method named seed. Even though PRNGs are deterministic

algorithms, a good PRNG produces a sequence such that no statistical test can distinguish between the output

of the generator and a sequence of truly random numbers. However, when the sequence ends up in its seed

again, it starts repeating itself. Thereby, PRNGs can approximate true randomness only up to a certain

length of the sequence called the period. To make the matter worse, some PRNGs even produce shorter-than-

expected periods for some seeds, while other seeds produce the predicted behavior. Especially for applications

of PRNGs in cryptography, it must be impractical to try out all different seeds and to distinguish between

an encrypted message and true randomness. However, well-designed PRNGs are also of key importance in

Monte Carlo simulations since a repeating sequence is not indistinguishable from a sequence of iid samples,

leading to biased solutions. Different fast and long-period PRNGs are discussed in [159]. Especially the

ability to efficiently produce disjoint and uncorrelated streams of numbers with a single seed is essential for

our purposes, since we also have to be sure that the parallel processes use uncorrelated streams of random

numbers.

We use the software SPRNG5 [250] (scalable parallel random number generators library) which is statis-

tically well tested and provides different algorithms. SPRNG5 is capable of producing different uncorrelated

streams of random numbers and direct them on different processes while minimizing the communication in

the MPI protocol. Furthermore, it assures reproducibility by a single global seed.

The parallel number generation is a crucial part to combine the integrated parallelism we explained in

chapter 2 and the UQ methods introduced later in section 3.4 and 3.5. We refer to our wrapper implementation

of SPRNG5 {35} from which we can sample pseudorandomly from a uniform distribution Y ∼ U(0, 1),

and with that from arbitrary uniform distributions Y ∼ U(a,b) as well as arbitrary normal distributions

Y ∼ N (µY, C).

By being able to pseudorandomly sample from these basic probability distributions, we can construct more

complex objects like stochastic processes and random fields. The following section explains this construction

via Karhunen-Loève (KL) expansions.

3.2.2 Karhunen-Loève Expansion

The Karhunen-Loève (KL) expansion is a representation of a stochastic process or a random field Y : Ω×D →
R of second order as an infinite linear combination of orthogonal functions. Explanations of the KL expansions

can for example be found in [241, section 11.1], [180, section 3.5] or [104, section 2.3]. To express the random

field as KL expansion, we need to know the expectation field µY (x), as well as the eigenvalues λk and the

eigenfunctions ψk of the covariance operator f 7→
∫
D

Cov(·,x2)f(x2)dx2. With uncorrelated random variables

Zk with mean-zero and unit variance, the random field can be expressed as a KL expansion by

Y (ω,x) = µY (x) +

∞∑
k=1

√
λkψk(x)Zk(ω), ω ∈ Ω, x ∈ D. (3.3)

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/mluq/src/generators/UniformDistribution.hpp
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In particular, λk and ψk are eigenvalues and eigenfunctions satisfying∫
D

Cov(x1,x2)ψk(x2)dx2 = λkψk(x1) with

∞∑
k=0

λ2
k <∞, λ1 ≥ λ2 ≥ · · · ≥ 0, (3.4)

where the eigenfunctions ψk span an orthonormal basis to L2(D), i.e. 〈ψk, ψk′〉L2(D) = δkk′ for k, k′ = 1, . . . ,K.

Finding the eigenvalues and eigenfunctions in practice is a challenging task as it requires to find the spectrum

of an integral operator. Nevertheless, the KL expansion is greatly useful in many applications, because it is a

closed representation of a random field, a best approximation in L2(Ω) and L2(D) and hence in some cases, it

can be used to sample from the process. For example, if the random field is Gaussian and the eigenfunctions

are known, it can be used to sample from the process with iid standard normally distributed random variables.

We refer to [180, section 3.5] for a short explanation on the procedure in the non-Gaussian case.

In the following, we will focus without loss of generality on the mean-zero case µY (x) ≡ 0 and investigate

the existence of the expansion (3.3). To this end we restate Mercer’s theorem.

Definition 3.16. A function Ker: D × D → R is called Mercer kernel, if it is continuous, symmetric, i.e.

Ker(x1,x2) = Ker(x2,x1) for all x1,x2 ∈ D, and positive semi-definite, i.e., if for any choice of finitely many

points x1, . . . ,xN ∈ D the Gram matrix G := [Ker(xn,xn′)]
N
n,n′=1 is positive semi-definite.

Theorem 3.17 (Mercer). Let Ker: D × D → R be a Mercer kernel. Then there is an orthonormal basis

{ψk}k∈N of L2(D) consisting of eigenfunctions of

f 7→
∫
D

Ker(·,x2)f(x2)dx2 with non-negative eigenvalues {λk}k∈N .

The eigenfunctions corresponding to non-zero eigenvalues are continuous on D and the Mercer kernel has the

representation

Ker(x1,x2) =
∑
k∈N

λkψk(x1)ψk(x2),

where the convergence of the sequence is absolute and uniform.

Proof. See [170, page 144].

With Mercer’s theorem we can finally state the existence of the KL expansion.

Theorem 3.18 (Karhunen-Loève (KL) expansion). Let Y : Ω × D → Ξ be a square-integrable stochastic

process or random field with mean-zero and a continuous and square-integrable covariance function. We have

Y =
∑
k∈N

Zk(ω)ψk(x)

where {ψk}k∈N are orthonormal eigenfunctions of the covariance operator. The corresponding eigenvalues

{λk}k∈N are non-negative and the convergence of the series is in L2(Ω). Furthermore, the random variables
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Zk are determined by

Zk =

∫
D

Y (x)ψk(x) dx and we have E[Zk] = 0, E[ZkZk′ ] = δkk′ .

Proof. Can be found for example in [241, theorem 11.4].

Truncation of the Karhunen-Loève expansion. The truncated KL expansion reads as

Y (ω,x) = µY (x) +

K∑
k=1

√
λkψk(x)Zk(ω), ω ∈ Ω, x ∈ D. (3.5)

Hence, the truncated is KL expansion is a surrogate model of the stochastic process satisfying the FDNA. This

truncation introduces an error by itself. If the sequence of eigenvalues {λk}k∈N0
does not decay fast enough

as k grows, this truncation error becomes too large to be neglected in the total error analysis. An extended

discussion on this is for example given in [118]. Lastly, we point out the similarity of the KL expansion to the

singular value decomposition (SVD). As described in [180], the KL expansion can be interpreted as a SVD for

a stochastic processes. In particular, we can find for both views the orthogonal decomposition and the data

compression via truncation of the series. In many data-driven UQ applications, applying the SVD to find a

representation of the input data in an orthogonal basis is often the first step to take which is similar to the

first step in computational UQ, i.e., decomposing the stochastic process to get a closed representation of the

input data.

3.2.3 Circulant Embedding

Even though the KL expansion is a very useful representation of a random field, in practice the eigenvalues

and the eigenfunctions have to be known to create samples. Unfortunately, approximating them numerically

can be a rather expensive task. Another approach to generate samples of a random field is the ciruclant

embedding method. We refer to [79] for a short discussion on the usage of circulant embedding and KL

expansions. Circulant embedding, firstly published in [72], is a highly efficient algorithm to generate iid

samples from Gaussian random fields (confer 3.1). Roughly speaking, its basic idea is to exploit the special

structure of embedded covariance matrices to perform a quick matrix decomposition by applying the fast

Fourier transformation (FFT).

[The fast Fourier transform is] the most important numerical algorithm of our lifetime.

- Gilbert Strang, 1994, [235]

Example 3.19. As an introduction, suppose we want to sample from a stationary Gaussian random field on

an unit torus T , that is, the unit square [0, 1]× [0, 1] in which points on the opposite sides are identified with

each other. This example was taken from [218, section 12] and gives a good intuition to the algorithm. We

want to generate a stationary Gaussian random field on an equally spaced grid with N × N grid points on
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Figure 3.1: Illustration of a minimal odd circulant embedding (MOCE) of a BSTSTB matrix (left) for a random
field on a 3×3 grid. The block structure in the BSTSTB matrix (left) as well as in the BCCB matrix (right) is indicated
by the white lines. We remark the Toeplitz structure of each block on the left as well as the circulant structure of each
block on the right.

the unit torus. Furthermore, we consider the covariance function

Cov(x,y) = σ2 exp

(
−
‖x− y‖νT

λν

)
with ‖x‖T =

√√√√ d∑
i=1

min(|xi| , 1− |xi|).

The random field is in this case not just stationary but also isotropic since it is invariant under rotations. For

our goal to create a stationary Gaussian random field in a N × N matrix, we have to create the N2 × N2

covariance matrix C by plugging the grid points into the covariance function. This gives a block circulant

matrix1 with circulant blocks (BCCB) (confer the right image of figure 3.1 for an example). Thereby, the

matrix is purely determined by the first row of blocks, where furthermore, each block is purely determined by

its first row. We store this in the matrix Brows. This matrix can be decomposed with the Kronecker product

of Fourier matrices WN ∈ CN×N with the entries wm,n = M−1/2 exp(2πimn/M) for m,n = 0, . . . ,M −1, i.e.

Brows = WN,NΛW ∗N,N with WN,N := WN ⊗WN and Λ = diag(λ1, . . . , λN ),

λn being the eigenvalues of the covariance matrix for n = 1, . . . , N . These eigenvalues can be computed with

(λ1, . . . , λN )> = NWN,NB
rows, where here Brows is a N × N matrix containing the first row of each block.

As demonstrated in method 3.8, we can sample from a Gaussian random field with the matrix CN×N 3 Z =

Z1 + iZ2 with Z1,Z2 ∼ N (0,diag(1, . . . , 1)) by

Y = WN,N

√
ΛZ, where

√
Λ is computed component wise.

Concluded, the sample Y can be computed by applying the fast Fourier transform (FFT) on the product of the

square root of the eigenvalues and Z. Then, the real part Y1 = Re(Y) and the imaginary part Y2 = Im(Y)

are two independent real valued samples.

1A circulant matrix is a matrix where all rows contain the same entries. The entries are moved for each row one step to the
right and wrapped around at the end of the matrix.
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Figure 3.2: Log-normal fields with covariance function (3.6). Random fields are generated with circulant embedding
on an equidistant grid with 128 × 128 cells and the same random seed. Images are smoothed with ν ∈ {1.0, 1.4, 1.8}
from left to right and the correlation length is stretched in x1 direction from top to bottom with λ1 ∈ {0.05, 0.1, 0.15}.

Circulant embedding algorithm. As we have seen in example 3.19, the covariance matrix is easy to

decompose, if the domain D is a unit torus. On a more general two-dimensional domain, the covariance

matrix of stationary fields is not a BCCB matrix, but a block symmetric Toeplitz matrix2 with (possibly

symmetric) Toeplitz blocks (BST(S)TB). These matrices can be embedded in a BCCB matrix, such that

we can decompose and proceed as in the example. We omit the details on the algebraic embedding of the

2A diagonal-constant matrix is also called Toeplitz matrix, i.e. the matrix is determined by a constant value for each diagonal.
As a consequence it can be completely described by its first row and its first column.
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matrices and refer to [244] and the example embedding of figure 3.1. There are two technical difficulties

in this approach. First, the positive definitness of the embedded matrix is not guaranteed and second, the

generated samples correspond to a larger domain. The second issue can be solved by extracting the upper left

subdomain of the fields Y1 and Y2 with the initial domain size. In [72] it is mentioned that if the correlation

between two points on the grid that are sufficiently far apart tends to zero, then a non-negative embedding

exists. If this is not the case, the domain can be further extended by padding the BSTSTB matrix until the

final embedded matrix is positive definite again. The final method can be summarized as follows.

Method 3.20. The circulant embedding method is done in two steps. First, the square roots of the eigenvalues

have to be computed for each discretized domain represented by a mesh M`,P with N ×N cells. This step

only has to be done once. In a second step, arbitrarily many samples can be created for this field by using

these eigenvalues.

function ComputeEV(M`,P) :

RN×N 3 Arows, Acolumns ← Cov(M`,P)

RÑ×Ñ 3 Brows ← MOCE(Arows, Acolumns)

RÑ×Ñ 3 Λ` ← FFT(Brows)

if Λ` > 0: return
√

Λ`

else : return ComputeEV(M̃`,P)

function DrawSamples(M`,P ,
√

Λ`) :

CÑ×Ñ 3 Z← SPRNG5(M`,P)

CÑ×Ñ 3 Y ← FFT(
√

Λ` � Z)

RN×N 3 Y1 ← Re(Y[0 : N, 0 : N ])

RN×N 3 Y2 ← Im(Y[0 : N, 0 : N ])

return Y1 + µY(x), Y2 + µY(x)

Here, M̃`,P is a mesh for an enlarged domain D. The implementation in C++ is given in {36} .

Remark 3.21. a) The operations
√
· and � are component wise and MOCE is the minimal odd circulant

embedding.

b) Only a small fraction of the covariance matrix has to be computed since it is completely determined by

the first row Arows ∈ RN×N and the first column Acolumns ∈ RN×N of each block.

c) Likewise, we only have to store the first row of each block for the embedded BCCB matrix. The new

matrix is of size Ñ × Ñ with Ñ = (2N − 1), if the MOCE was used.

d) In the two-dimensional case the step with the highest computational complexity is applying the FFT with

O(Ñ2 log2 Ñ) (confer [218, section 12]).

e) We emphasize that this method is implemented on a multi-sample meshM`,P using independent streams

of pseudorandomly generated sequences of numbers on each MPI communicator.

f) The method works equally well for one or three dimensions. Further details can be found for example

in [244, section 4.7].

g) The method is applicable to any covariance function as long as the covariance matrix can be embedded,

such that its embedding is positive definite and circular. A selection of possible covariance functions is

provided for example in [72] and [244, section 4.7].

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/mluq/src/generators/CirculantEmbedding.hpp
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h) Circulant embedding or similar methods are for example used in [55, 58, 118, 246, 185, 238] to generate

log-normal fields.

i) The stochastic dimension in the algorithm is the same as the number of cells |K| in the mesh, however

this is not the same as the stochastic dimension K of the KL expansion. In fact, the circulant embedding

method usually uses way more random variables than the KL expansion.

To close this section, we present a few example realizations of a log-normal field in figure 3.2. We used

the covariance function

Cov(x1,x2) = σ2 exp

(
−

∥∥∥∥∥
(
x1,d − x2,d

λd

)d

d=1

∥∥∥∥∥
ν

2

)
, (3.6)

where λ = (λ1, λ2)> is the correlation length in x1 and x2 direction, σ is the process variance, ν is some

smoothing parameter and the division is componentwise.

3.2.4 Sparse Grids

Sparse grids were initially designed by Sergei Smolyak [227] to integrate and interpolate high-dimensional

functions. The underlying idea is to construct a sparse tensor product of a collection of one-dimensional

quadrature (interpolation) points to be able to reduce the computational complexity arising with the approx-

imation of high-dimensional functions. This is commonly known as the curse of dimensionality, coined by

Richard Bellman in the context of dynamic programming problems [31] (we refer to 3.5 since Bellman’s ideas

on dynamic programming will play a key role in thesis). However, the usage of sparse grids in the stochastic

collocation method (confer section 3.4) was developed to approximate high-dimensional integrals (confer [264,

12, 200, 201, 202, 13, 243, 190]).

To this end, we assume that the random variable Y : Ω → Ξ ⊂ RK satisfies the FDNA 3.15 and

admits a PDF fY : Ξ → [0,∞). We then replace the probability space (Ω,F ,P) with a measure space

(Γ,F(Γ), fY(y)dy), where F(Γ) denotes a σ-algebra of Borel sets on Γ. We refer to the appendix A.2 for

a definition of the used terminology. We will now follow [48, 234, 265] and briefly outline the idea of sparse

grids and restrict ourselves to the canonical case Γ = [−1, 1]K . Using one-dimensional intervals Γk = [−1, 1],

we can use the tensor product to create Γ =
⊗K

k=1 Γk. We now assume that we have discretized each one-

dimensional domain Γk with {y(m)}Mk
m=1 points, hence, the total number of points in the tensorized grid is

M =
∏K
k=1Mk. For high dimensions K, the number of points grows rapidly and since these points are used

for quadrature or interpolation rules, the cost of the approximation becomes too high very quickly. Therefore,

instead of considering the full tensor product, we only take a small subset of nodes of the tensor product.

This is illustrated in figure 3.3, where we used the software TASMANIAN [233] to generate the grids.

At this point, we want to omit a detailed discussion on the construction of the grids and rather refer to

standard literature like [241, section 9.4] or [180, section 9.5]. However, figure 3.3 illustrates the dramatic

reduction of points in the grid even though we have just been using a two-dimensional tensor product. We will

pick up the topic of sparse grids again in section 3.4 outlining how these grids are used to provide collocation

points for function interpolation and quadrature. We will denote the collection of K-dimensional collocation

points constructed with sparse or tensor grids with {y(m)}Mm=1.
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Figure 3.3: Sparse grids on refinement level four (left) and refinement level five (middle) as well as the full tensor
grid on level five (right) constructed with Clenshaw-Curtis nodes. Further explanations can for example be found
in [233].

3.3 Model Problems under Uncertainty

In this section, we present a sharper description of the model problems 1.1-1.3, i.e., we commit to the con-

figuration of the input data. In particular, we denote where the uncertainty enters the system and what

assumptions have to be satisfied by the trajectories in order to have well-posed problems. As done in all other

sections, we start by explaining the elliptic case and end with the acoustic wave equation.

3.3.1 Elliptic Subsurface Diffusion Problem under Uncertainty

We start by considering the model problem 1.1. In particular, we will focus on a log-normally modeled

permeability κ : Ω × D → R, which is considered to be an appropriate model [142] for the ground, and

establish an existence and regularity theory as done in [55, 53, 246]. First, let us define for all ω ∈ Ω

κmin(ω) := min
x∈D

κ(ω,x) and κmax(ω) := max
x∈D

κ(ω,x).

Assumption 3.22. We make the following assumptions about the input data, similar to [246].

a) κmin ≥ 0 almost surely and κ−1
min ∈ Lq(Ω), for all q ∈ (0,∞).

b) κ ∈ Lq(Ω, Ct(D)), for some 0 < t ≤ 1 and for all q ∈ (0,∞).

c) f ∈ Lq∗(Ω,Ht−1(D)), uD ∈ Lq∗
(

Ω,Ht+ 1
2 (ΓD)

)
and gN ∈ Lq∗

(
Ω,Ht− 1

2 (ΓN)
)

, for q∗ ∈ (0,∞].

For the sake of a lean representation, we will consider homogeneous Dirichlet and no Neumann boundary

conditions from now on. However, the theory can be extended to non-homogenous and mixed boundary

conditions under consideration of the above assumption and by standard techniques, e.g., as described in [125].

The Hölder continuity of the trajectories of the permeability in the second assumption assures that κmin and

κmax are well-defined with κmax ∈ Lq(Ω) and 0 < κmin as well as κmax <∞ for almost all ω ∈ Ω. The second

assumption can be weakened further to only piecewise Hölder continuous coefficients κ(ω, ·). The weaker

assumptions are discussed in [246, section 5.2].
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Model Problem 3.23. Consider 1.1 in a weak formulation for ΓN = ∅, uD = 0 on ΓD and a fixed ω ∈ Ω,

i.e., seek u ∈ H1
0(D) such that

aω(u(ω, ·), φ) = fω(φ), ∀φ ∈ H1
0(D),

where the parametrized bilinear form aω and the parametrized linear form fω are given by

aω(u, φ) =

∫
D

κ(ω,x)∇u(ω,x) · ∇φ(x) dx and fω(φ) =

∫
D

f(ω,x)φ(x) dx.

Since ω ∈ Ω is fixed in model problem 3.23 but not uniformly bounded, everything stated from now on

applies not uniformly but almost surely. Thus, 0 < κmin(ω) ≤ κ(ω, x) ≤ κmax(ω) < ∞ for all x ∈ D applies

almost surely, too. The following lemma concludes ellipticity for our model problem and applies the lemma

of Lax-Milgram (confer theorem A.5). Similar results can be found in [25, 53, 246].

Lemma 3.24. The bilinear form of problem 3.23 is bounded and coercive with respect to the norm |·|H1(D)

for almost all ω ∈ Ω. Moreover, there exists a unique solution u(ω, ·) ∈ H1
0(D) and

‖u(ω, ·)‖H1(D) .
‖f‖Ht−1(D)

κmin(ω)
.

Proof. Let ω ∈ Ω be fixed. The bilinear form is bounded and coercive by assumption 3.22, i.e.,

|aω(u(ω, ·), φ)| ≤ κmax(ω) |u(ω, ·)|H1(D) |φ|H1(D) and aω(u(ω, ·), u(ω, ·)) ≥ κmin(ω) |u(ω, ·)|2H1(D) .

Furthermore, the linear form fω(φ) is bounded by the Cauchy-Schwarz and the Poincaré inequality∣∣∣∣∫
D

f(ω,x)φ(x) dx

∣∣∣∣ ≤ ‖f(ω, ·)‖Ht−1(D) ‖φ‖H1−t(D) . ‖f(ω, ·)‖Ht−1(D) |φ|H1−t(D) .

Now we have by Lax-Milgram A.5 existence of a unique solution u(ω, ·) ∈ H1
0(D) for almost all ω ∈ Ω to the

variational model problem 3.23. From this and the coercivity, it can be concluded that

|u(ω, ·)|H1(D) .
‖f‖Ht−1(D)

κmin(ω)
.

Theorem 3.25. The weak solution to model problem 1.1 with assumption 3.22 and homogeneous boundary

conditions is unique and belongs to Lq(Ω,H1
0(D)) for all q < q∗.

Proof. Since u(ω, ·) is continuously depending on κ(ω, ·), the mapping u : Ω→ H1
0(D) is measurable. Now we

use the result from lemma 3.24 and extend it on the space Lq(Ω,H1
0(D)) by using the assumptions 3.22 and

Hölder’s inequality (3.2) for 1
q = 1

q∗
+ 1

p , with p = q∗q
q∗−q being used for κ−1

min ∈ Lq(Ω).

It remains to show, that log-normally distributed random fields actually satisfy the assumption 3.22. We

follow again [55, 53] and make use of lemma 3.10.
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Corollary 3.26. Let g(ω,x) be a Gaussian field with the covariance (3.6) and ν = 1. Then the first two

assumptions of 3.22 are satisfied for log-normal fields κ(ω,x) = exp(g(ω,x)).

Proof. First, κmin ≥ 0 is fulfilled by definition. The proof of κ−1
min ∈ Lp(Ω) can be found in [55] which is based

on an application of Fernique’s theorem (confer [65, section 2.2.1]). Furthermore, [55] also concludes that

g ∈ Lp(Ω, Ct(D)) and κmax ∈ Lp(Ω) for all p ∈ (0,∞) and t < 1
2 . With these results and lemma 3.10 the

corollary above can be concluded.

Having existence under the assumptions 3.22 which are satisfied for log-normal fields, we can deduce the

regularity results achieved in [55, 53, 246], which were also used for example in [101]. In section 4.1, we will

combine these regularity results with finite element analysis of section 2.3. The regularity analysis tracks the

influence of the random field κ(ω,x) and is thereby highly useful in the final experiments shown in section 4.1.

We omit the details and restate the result.

Theorem 3.27. Consider problem 3.23 on a polygonal domain D, assumptions 3.22 for some 0 < t ≤ 1 and

homogeneous Dirichlet boundary conditions. Under further assumptions controlling corner singularities of the

domain, it is

‖u(ω, ·)‖Hs+1(D) .
κmax(ω) ‖κ(ω, ·)‖2Ct(D)

κmin(ω)4
‖f(ω, ·)‖Ht−1(D) ,

for almost all ω ∈ Ω and for all 0 < s < t, such that s is also controlled by the corner singularities. Moreover,

u ∈ Lq(Ω,Hs+1(D)), for all q < q∗. If t = 1, then u ∈ Lp(Ω,H2(D)) and the above bound holds with s = 1.

Proof. The idea of the proof is to deduce everything for a fixed ω ∈ Ω and then follow the regularity proof

for elliptic PDEs as in [125, section 9.1]. The details on the procedure can be found in the appendix of [55,

53, 246].

Since we have no access to true realizations of the random field and use circulant embedding, we recite

the work done in [117, 101] where an interpolation result is given for trajectories of log-normal fields. This

fits to the data generated by circulant embedding.

Lemma 3.28. Given the assumptions 3.22, then for almost every ω ∈ Ω it is∥∥∥κ(ω,x)−ΠdG
p∈{0,1}κ(ω,x)

∥∥∥
L∞(D)

. ht`.

Proof. Can be found in [101, lemma 4.4].

3.3.2 Hyperbolic Conservation Laws under Uncertainty

We now extend section 2.3.2 to random fields. This includes the definitions of conservation laws 2.28, hyper-

bolicity 2.29 and weak solutions 2.30. Similar work has been done for example in [239, 185], however, we stick

to the notation of [141, 75, 39, 62, 76]. As a start, we define a conservation law under uncertainty and state
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assumptions on the input data. To this end, we introduce the flux operator under uncertainty acting on the

random field solution by

div F(ω,u(ω)) :=

d∑
d=1

Bd(ω)(∂du(ω)) = A(ω)u(ω).

With that, we can define a conservation law under uncertainty.

Definition 3.29. We call a problem: seek a random field solution u : Ω 3 ω 7→ u(ω,x, t), i.e., a measurable

mapping from (Ω,F) to C1([0, T ], V ) with V ⊂ L2(D) such that

M(ω)∂tu(ω) + div F(ω,u(ω)) = b(ω) and u(ω, 0) = u0(ω), (3.7)

a conservation law under uncertainty if b ≡ 0 or a balance law under uncertainty if b 6≡ 0.

Assumption 3.30. Very similar to [185, theorem 2.5] and [239, theorem 2] we assume:

a) the initial data satisfies u0 ∈ Lq(Ω,L2(D,RJ)),

b) the right-hand side satisfies b ∈ Lq(Ω,L2(Q,RJ)),

c) the mass operator satisfies M ∈ Lq(Ω,L∞(D,RJ×Jsym )),

d) and lastly, we assume that B1(ω), . . . , Bd(ω) are RJ×Jsym valued random fields, i.e.,

Bd ∈ Lq(Ω,L∞(D,RJ×Jsym )) for all d = 1, . . . ,d

and that all Bd are independent of u0, b and M on (Ω,F ,P).

Definition 3.31. A system of the form (3.7) is called hyperbolic, if it is almost surely hyperbolic according

to definition 2.29, i.e., for almost every fixed ω ∈ Ω the matrix B(ω) of equation (2.12) has J real eigenvalues

λ1(n, ω) ≤ λ2(n, ω) ≤ · · · ≤ λJ(n, ω) with a complete family of eigenvectors, i.e., the system is almost surely

diagonalizable.

Definition 3.32. The random field solution u : Ω 3 ω 7→ u(ω,x, t), i.e., the measurable mapping from (Ω,F)

to L2((0, T ) × D,RJ) is called weak solution under uncertainty to (3.7), if u(ω, ·, ·) is almost surely a weak

solution to (2.11). Thus, for almost every fixed ω ∈ Ω the weak solution satisfies∫
D

M(ω,x)u0(ω,x)·φ(x, 0) dx +

∫
(0,T )×D

(M(ω,x)u(ω,x, t) · ∂tφ(x, t) + F(ω,u(ω,x, t)) · ∇φ(x, t)) dtdx

=

∫
(0,T )×D

b(x, t)φ(x, t)dtdx

for all test functions with φ ∈
{
v ∈ C1((0, T )×D,RJ) : v|∂D = 0 and v(·, T ) = 0

}
.
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Theorem 3.33. Suppose assumptions 3.30 are satisfied and the balance law (3.7) is hyperbolic. Then, for

T <∞ equation (3.7) admits a random weak solution denoted with

u : Ω→ L2((0, T )×D,RJ), ω 7→ u(ω, ·, ·)

where u(ω, ·, ·) is the solution to a deterministic realization of (3.7) which is for all t ∈ [0, T ] almost surely

controlled by the input data

‖u(ω, ·, t)‖L2(D) . ‖u0(ω, ·)‖L2(D) + t ‖b(ω, ·, t)‖L2(D) ,

where the hidden constant depends on ω ∈ Ω the flux and the mass operator.

Proof. The theorem was taken from [185, theorem 2.5]. The proof is outlined in [239, theorem 2] following

the steps described in [183].

Semi-Discretization of Hyperbolic Conservation Laws Under Uncertainty. We will omit the de-

tailed description of the semi-discrete formulation under uncertainty and note that we apply everything as in

section 2.3.2 for a fixed ω ∈ Ω.

3.3.3 Hyperbolic Contaminant Transport under Uncertainty

Now we can consider model problem 1.2, where we focus on the particular case of a stochastically modelled

and divergence free flux field q : Ω ×D → Rd. A similar problem was considered in [156]. For the sake of a

simple representation we also consider no source term, no inflow boundary condtion but allow for randomly

distributed, differentiable initial conditions u0 ∈ Lq(Ω, C1(D)). Thereby, (2.16) becomes the following model

problem.

Model Problem 3.34. For a fixed ω ∈ Ω, we consider the formulation based on (2.17), i.e.,

〈M∂tu(ω), φ〉L2(D) + 〈A(ω)u(ω), φ〉L2(D) = 0 for t ∈ (0, T ] and u(ω, 0) = u0(ω). (3.8)

with A(ω)u(ω) = div(q(ω)u(ω)).

We are not tied to this particular configuration and emphasize that uncertain boundary conditions or

right-hand sides are easily realizable under the setting considered in section 2.3.3 and section 3.3.2. The

vector valued random fields q : Ω×D → Rd are generated by solving the elliptic subsurface diffusion problem

with log-normally distributed permeability such as described in section 3.3.1. In particular, it is solved with

mixed finite elements (confer model 2.22 and model 2.23) to ensure that the flux is divergence free and

q(ω) ∈ H(div, D) for almost every ω ∈ Ω. We restrict the uncertain initial condition to an uncertain start

location and maintain the shape of the function over all realizations. We refer to section 4.2 for the particular

configuration and discretization.
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3.3.4 The Acoustic Wave Equation under Uncertainty

Lastly, we recall the model problem 1.3 of an acoustic wave in first-order linear hyperbolic form in hetero-

geneous (unknown, and thereby randomly modeled) media. This model is of particular interest in seismic

imaging and geophysics. Once again, we employ log-normal fields to model the material structure of the

ground, i.e., we consider that the material density ρ in model (1.3) is randomly distributed and all other input

data is deterministically given, particularly κ(x) ≡ 1. Similar to the elliptic case, we define

ρmin(ω) := min
x∈D

ρ(ω,x) and ρmax(ω) := max
x∈D

ρ(ω,x).

By lemma 3.10, we know that a sample for a fixed ω ∈ Ω satisfies ρ(ω, ·) ∈ Ct(D) ⊂ L∞(D). Hence, the

mass operator M(ω) and the flux operator A(ω) as constructed in (2.18) satisfy the assumption 3.30 where

the randomness in Bd(ω) for d = 1, . . . ,d is inherited from material. Furthermore, we can conclude that the

material satisfies c(ω, ·) =
√
κK/ρK <∞ cell-wise which is important for the usage of the discrete model 2.36.

By using the circulant embedding method to generate realizations of ρ(ω, ·) and thus of c(ω, ·) we can bound

the error made by this method again by lemma 3.28. We refer to [185, section 2.3] for further analysis on the

hyperbolicity of the problem. Once again, we omit the particular description of discretization and refer to

section 4.3 where this is done.

3.4 Non-intrusive Estimators

Having outlined the properties of the uncertainty of the model problems in section 3.3 and the discretization

techniques for the deterministic PDEs in chapter 2, we are now able to approximate the quantities of interest

(QoI) with non-intrusive estimators. Non-intrusive estimators are very popular for UQ as they provide a

natural separation of the spatio-temporal discretization and the stochastic simulation, i.e., we can employ

statistical estimators on a set of discretized solutions computed on samples of the input data. We recall that

we denote the approximate solution by u` and the corresponding QoI by Q`. The samples are indexed with

m, i.e., u`(ω
(m)) is the discretized solution computed with the input data corresponding to ω(m). However, by

the FDNA 3.15 we can express samples of the input data by the vector y(m) ∈ RK , such that we occasionally

write u`(y
(m)) and Q`(y

(m)) or simply u
(m)
` and Q

(m)
` .

As mentioned in the introduction (chapter 1.3), the UQ problems considered here boil down to evaluating

statistical moment integrals. In most interesting applications, it is impossible to evaluate these integrals and

in practice they are approximated by a quadrature rule instead, i.e., we use the word quadrature rule and

estimator for the same thing. Within this section, we introduce the three most popular non-intrusive estima-

tors, the Monte Carlo method (MC), the quasi-Monte Carlo method (QMC) and the stochastic collocation

(SC) method. Furthermore, we explain at the end of the section how these methods can be employed on a

parallel computer and with multiple, subsequent rounds of estimation.

We interpret these methods in the following as quadrature rules for the expected value to underline again

the non-intrusive nature of these methods as function evaluations for each quadrature point are computed
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independently.

E[Q] =

∫
Ω

Q(ω)dP ≈



Q̂MC
`,M := M−1

M∑
m=1

Q`(y
(m)), y(m) ∈ Ξ ⊂ RK (pseudo) randomly drawn

Q̂QMC
`,M := M−1

M∑
m=1

Q`(y
(m)), y(m) ∈ Ξ ⊂ RK deterministically selected

Q̂SC
`,M :=

M∑
m=1

wmQ`(y
(m)), y(m) ∈ Ξ ⊂ RK taken from sparse grids

(3.9)

Questions arising with the usage of these formulas are:

1. How does the dimension K of the integration domain influence the behavior of the method?

2. What is the class of integrands for which the method delivers approximations of high quality?

3. How many quadrature points does the method need to achieve an error tolerance of ε?

4. How expensive is the evaluation of a single sample Q`(y
(m)) and what is the error?

5. How are the quadrature weights and points determined?

To tackle the last question first, MC methods draw their samples (pseudo) randomly (confer 3.2.1), QMC

methods select the points deterministically e.g. by lattice rules, and SC methods use sparse or tensor grids

(confer 3.2.4) with appropriate weights as input. By the FDNA 3.15, the points in the quadrature rules

belong to a finite-dimensional space. However, they differ in the way they are constructed and how the

function evaluations are weighted. The upcoming paragraphs will outline their difference.

For the fourth question, we assume throughout the section that we can bound the cost and the error

of evaluating Q`(y
(m)) with respect to `. This evaluation requires solving a PDE with some approximation

scheme like FEM and computing a QoI. The assumption acts as an interface to the previous chapter about

FEM 2. Formally it is expressed as follows:

Assumption 3.35. For any realization of the input data y(m) (any quadrature point), we assume that the

discretization error err
(m)
disc and the cost of the approximation scheme C

(m)
` are bounded w.r.t. the discretization

parameter h`, i.e., that for some α > 0 and γ > 0 it holds∣∣∣Q(y(m))−Q`(y
(m))

∣∣∣ . hα` and C
(m)
` := C`

(
Q`(y

(m))
)
. h−γ` . (3.10)

Definition 3.36. We denote by Cε(Q̂`) the ε-cost of an estimator, which is the computational cost to

achieve a root mean squared error (RMSE) of ε, or a mean squared error (MSE) of ε2, respectively (confer

definition A.12). Measuring this cost can for example be done by:

1. Measuring the amount of floating point operations needed to achieve an error tolerance of ε.

2. Measuring the computing time to achieve an error tolerance of ε.
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3.4.1 Monte Carlo Method

Since the Monte Carlo (MC) method has received enough introduction within this thesis already, we use this

section to work out a few details of the method. The MC method is nothing but a sample mean, i.e., the

weights in (3.9) are simply determined by wm = M−1 for m = 1, . . . ,M . Assuming the QoI Q is approximated

on some level `, the mean squared error (MSE) (confer definition A.12) of this approach can be decomposed

as in the following lemma.

Lemma 3.37. The mean squared error (MSE) of the FEM-MC is given by

errMSE

(
Q̂MC
`,M

)
= E

[(
Q̂MC
`,M − E[Q]

)2
]

= M−1V[Q`]︸ ︷︷ ︸
estimator error

+ E[Q` −Q]2︸ ︷︷ ︸
FEM error / estimator bias

.

Proof. A similar result will be shown in lemma 3.46.

Theorem 3.38 (Bounded ε-cost of the MC method). Suppose assumption 3.35 is fulfilled with some positive

rates α, γ > 0 and some hidden constants independent of h`. Then for any ε > 0, there exists a level ` ∈ N
and a number of samples M , such that

errRMSE

(
Q̂MC
`,M

)
< ε with Cε(Q̂

MC
`,M ) . ε−2− γα (3.11)

Proof. A sufficient condition to achieve a RMSE of accuracy ε > 0 is that the estimator variance and the

estimator bias both are less or equal than ε2/2. By choosing M = O(ε−2) and ` such that |E[Q` −Q]| . hα` =

O(ε) by (3.10), this results with the cost estimate C = O(M · h−γ` ) in

Cε(Q̂
MC
`,M ) . ε−2− γα .

3.4.2 Quasi-Monte Carlo Method

The formula for quasi-Monte Carlo quadrature equals the one of Monte Carlo, but the quadrature points are

chosen deterministically rather than pseudo randomly. For the following explanations we restrict ourselves to

the K-dimensional unit hypercube, i.e., to Ω = [0, 1]K in (3.9). We follow the survey [114] and the book [10,

section 3] but keep the explanation lean as QMC is not the main method of interest in this thesis. We are

interested in the error

ε =

∣∣∣∣∣
∫

[0,1]K
Q(ω)dP− Q̂QMC

`,M

∣∣∣∣∣ with Q̂QMC
`,M defined in (3.9), (3.12)

where the quadrature points are generated with lattice rules (a somewhat regular point distribution in Ω)

or nets (e.g. Sobol points [228]). To derive an estimate for the error we will neglect the discretization with

respect to ` for now. To evaluate how well a point set fills the hypercube Ω, the following two definitions are

useful.
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Definition 3.39. For 0 ≤ ak < bk ≤ 1 with k = 1, . . . ,K and a set of points
{
y(1), . . . ,y(M)

}
, we call

D
(∗)
M = sup

A∈A

∣∣∣∣∣
∣∣{y(1), . . . ,y(M)

}
∩A

∣∣
M

− |A|

∣∣∣∣∣ , |A| =̂ Lebesgue measure of A

ordinary discrepancy DM , if A is the collection of all rectangles in [0, 1)K of the form
∏K
k=1[ak, bk) and star

discrepancy D∗M , if A the collection of
∏K
k=1[0, bk).

By this definition, the discrepancy of
{
y(m)

}M
m=1

is low if the proportion of points in an arbitrary subset

A is close the proportional Lebesgue measure of A. It is well known that D∗M grows for any sequence at least

with (logM)K/M . Sequences with this growth behavior are often called low-discrepancy sequence.

Definition 3.40. Following the definition in [51], if Q is a sufficiently smooth function on [0, 1]K , we define

the Hardy-Krause variation recursively by

V HF(Q) :=

∫
[0,1]K

∣∣∣∣ ∂kQ

∂y1 . . . ∂yK

∣∣∣∣ dy1 . . . dyK +

K∑
k=1

V HF(Qyk=1)

where Qyk=1 is the restriction of the function Q to the boundary yk = 1.

Theorem 3.41 (Koksma-Hlawka). For any sequence
{
y(m)

}M
m=1

and any function Q with a bounded Hardy-

Krause variation, the integration error ε from 3.12 is bounded as

ε ≤ V HF(Q)D∗M .

Proof. Given in [51, section 5.4].

Remark 3.42. We follow the remarks of [51, 10]

a) The computational domain Ω can be easily changed by a suitable transformation Ω→ [0, 1]K .

b) The Koksma-Hlawka bound is a worst-case bound. In practice, the convergence is much faster than

theoretically predicted.

c) Using theorem 3.41 and assuming that V HF is finite, it is clear that the effort to achieve an error of ε is

O((logM)K/M). This also justifies that QMC is considered to converge with O(M−1), simply if M � K.

d) Another aspect of this theorem is that the right-hand side is hard to compute. Finding good approximations

for the star discrepancy is possible with some computational effort. However, determining the Hardy-

Krause variation is very difficult and in the case of Gaussian variables it is even unbounded. Randomized

QMC can for example be employed to recover a finite variation. We refer to [118, 10] for details.

Lattice Rules and Nets. Lastly, we present in figure 3.4 an example of 512 pseudo randomly generated

samples on the left, 512 samples generated with the low-discrepancy Halton sequence in the middle and

512 samples generated with the low-discrepancy Sobol sequence on the right on a two-dimensional domain
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Figure 3.4: Two-dimensional pseudo-random number generation (left), Halton sequence (middle) and Sobol se-
quence (right). Each plot shows 512 data-points generated with scipy.stats.qmc [223]

(we refer to [199] for further details and omit a detailed description on the generation). We note that the

low-discrepancy sequences cover the domain more evenly than the pseudo-random sequence.

3.4.3 Stochastic Collocation Method

Stochastic collocation (SC) is in some sense the most classical quadrature rule presented in this section. Even

though it is used in (3.9) as a sampling based method, it is rather a high-dimensional cubature rule. To

present an introduction on SC methods, we follow [265, 200, 12] and describe the method as an interpolation

but remark that we have only used and implemented it as a quadrature rule for the expected value integral.

For the sake of a compact representation, we restrict ourselves to tensor grids as introduced in 3.2.4 and refer

to [200, 201] for an explanation using sparse grids.

We seek a numerical approximation to a solution of some PDE with uncertain input data in a finite-

dimensional space V`,p based on the tensor product V`,p = Qp(Γ) ⊗ V`. The space V` is some finite element

space as described in section 2.2 and Qp(Γ) is the span of tensor product polynomials with degree at most

p = (p1, . . . , pK), i.e., the space Qp(Γ) =
⊗K

k=1 Ppk(Γk) with

Ppk(Γk) = span {ψmk , mk = 0, . . . , pk} for k = 1, . . . ,K.

Therefore, the dimension of Qp(Γ) is M =
∏K
k=1(pk+1). We construct the discrete solution u`,p ∈ Qp(Γ)⊗V`

by interpolating in the collocation points {y(m)}Mm=1. To this end, we introduce two more things. First, we

consider an auxiliary probability density function f̂Y : Γ → R+ to the true probability density function

fY : Γ→ R+, where

f̂Y(y) =

K∏
k=1

f̂Yk(yk) such that
∥∥∥fY/f̂Y

∥∥∥
L∞(Γ)

<∞.

Second, we introduce for each dimension k = 1, . . . ,K a one-dimensional Lagrange polynomial basis {ψmk}
pk
mk=0

on Ppk(Γk) (confer example 2.4). With that we can define the basis {ψp
m(y)}Mm=1 by a tensor product and
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write

u`,p(y) =

M∑
m=1

u`(y
(m))ψp

m(y).

Finally, for any continuous function Q: Γ→ R, we can approximate the expected value integral with E[Q] ≈∫
Γ

Q(y)f̂Y(y)dy by

E[Q] ≈ Q̂SC
`,M :=

M∑
m=1

wmQ`(y
(m)) with wm =

K∏
k=1

wmk and wmk =

∫
Γk

ψ2
mk

(y)f̂Yk(y)dy.

Remark 3.43. a) Stochastic collocation originates from deterministic numerical methods for ODEs where

the governing equation is interpolated in collocation points.

b) As in standard interpolation, stochastic collocation is more robust, if the collocation points are clustered

at the boundary of the domain. Otherwise, this can lead to the well-known Runge phenomena [131]. A

good set of collocation points can be achieved for example by using Chebyshev nodes.

c) The error analysis for the SC method is highly problem dependent. We therefore only restate shortly the

estimates presented in [92]

∣∣u− utensor
M

∣∣ . V tensor(u)M−α/K , |u− usparse
M | . V sparse(u)(logM)KM−β ,

where α and β depend on the differentiability of u with respect to y. Hence, u has to be in a certain Sobolev

space with mixed higher order derivatives to derive the above error estimate for a particular problem. The

above result also makes clear that the usage of sparse grids over tensorized grids mitigates the curse of

dimensionality.

d) The SC method usually requires for low-dimensional problems significantly less function evaluations than

the MC or even the QMC method if the solution has enough regularity w.r.t. y. Unfortunately, as seen

in the previous remark, it is also very prone to high-dimensional problems since the amount of grid points

grows rapidly with K. Hence, the SC method is applicable in practice if the KL expansion converges fast

enough.

3.4.4 Parallel Non-intrusive Estimators

Last but not least, we introduce formulas which can handle the incremental and the parallel accumulation

of higher-order central moments (confer definition A.11). The four key features these formulas have to

provide are numerical stability, computability by a single pass through the data, parallelizability, and weighted

updatability.

Standard approaches to compute higher-order central moments (including the variance, the skewness and

the kurtosis) require passing through the data twice: first to compute the mean and then to compute the

central moment. To make the matter worse, these computations can also result in numerical instabilities.
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Figure 3.5: Illustration of the triple-layered Welford update on four parallel processes (each color represents one
process) with three estimator rounds as binary-tree: Starting from the top of the illustration, the first layer until the
dashed line is an incremental update by adding single samples to the accumulated statistics on each process. The
second layer is the parallel update across all processes by recursively joining the sample statistics of the first layer. The
last layer is the accumulation of the data over the estimator rounds. We remark that each round can be parallelized
differently depending on the ration of the demanded samples in the round Mi and the total amount of available
processes |P| by (2.4).

Consider the task of estimating the variance of a random variable Y by observing finitely many samples M

Ŷ = M−1
M∑
m=1

y(m) =̂ sample mean, s2
Y = (M − 1)−1

M∑
m=1

(y(m) − Ŷ )2

︸ ︷︷ ︸
=:SY,2

=̂ sample variance.

Here, the computation of y(m) − Ŷ can get unstable if y(m) ≈ Ŷ for many samples, due to the phenomena

of cancellation of floating point numbers, e.g. described in [137]. As we use the sample mean in the sample

variance, we use the usual Bessel’s correction in order to get an unbiased estimator for the variance [86, section

9.2]. With a slight correction proposed in [52] for SY,2 the stability can be improved by

SY,2 =

M∑
m=1

(y(m) − Ŷ )2 −M−1

(
M∑
m=1

(y(m) − Ŷ )

)2

︸ ︷︷ ︸
=0, if exact arithmetic is used

.

However, this method is still based on a two-pass algorithm and does not provide incremental or parallel

updates. In [255] by Welford and later in [52] by Chan et al. methods are proposed in order to compute the

variance incrementally or in parallel. Furthermore, the generalization to an arbitrary central moment with

weighted updates is described in [206], which serves as the main reference for this paragraph. To formalize

this goal, we search for a way to estimate the q-th central moment (confer A.11 f)) with sample statistics

sqY ≈Mq
Y := E[(Y − µY )q] incrementally and in parallel.
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Triple-layered Welford Update. Welford’s online algorithm 3.44, or rather its generalization, inspects

each sample (or collection of samples) once and accumulates the estimates as the simulation runs. Thus, the

method presented below provides all four required features and was taken form [206].

Method 3.44. Given two data sets (Wi, Ŷi, Si,2, Si,3, Si,4)i∈A,B , the accumulation of the sample statistics

Ŷ , s2
Y , s

3
Y , s

4
Y is done with

WAB ←WB +WA

δAB ← ŶWB
− ŶWA

ŶWAB
← ŶWA

+ WB

WAB
δAB

SY,2 ← SA,2 + SB,2 + WAWB

WAB
δ2
AB

SY,3 ← SA,3 + SB,3 +WA

(
−WB

WAB
δAB

)3

+WB

(
WA

WAB
δAB

)3

+ 3δAB

(
SA,2

(
−WB

WAB

)
+ SB,2

(
WA

WAB

))
SY,4 ← SA,4 + SB,4 +WA

(
−WB

WAB
δAB

)4

+WB

(
WA

WAB
δAB

)4

+ 4δAB

(
SA,3

(
−WB

WAB

)
+ SB,3

(
WA

WAB

))
+ 6δ2

AB

(
SA,2

(
−WB

WAB

)2

+ SB,2

(
WA

WAB

)2
)

s2
Y ← (WAB − 1)−1SY,2

s3
Y ←

√
WABSY,3

S
3/2
Y,2

s4
Y ←

WABSY,4
S2
Y,2

This method is used in three different ways. First, it is used to perform an incremental update of the

statistical quantities on each process. In this case, the input to the method simplifies the weights to WA =

WAB − 1, WB = 1, ŶA = Ŷold, ŶB = ynew. Second, the method is used to perform a parallel update across

processes. The method simplifies in this case with WA = WB . And last, the same method is used to update

the statistical quantities over several estimation rounds i. The implementation of all that is given in {37} . We

refer to the upcoming section 3.5.3 where the need of this will become more clear. To give a visual intuition

to the different update procedures we refer to figure 3.5.

3.5 Multi-level Estimators

We will now describe the main methods of this thesis – multi-level estimators. The section starts by recalling

the MLMC method as Giles described it in [109] and [110] in 3.5.1. Considering a sequence of decreasing

mesh widths h` = h02−` for ` = 0, . . . , L, it is well known that the application of this algorithm is beneficial,

if the following three assumptions are satisfied.

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/mluq/src/estimators/datastructure/WelfordAggregate.hpp
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Assumption 3.45. a) The approximation scheme which computes u` and Q` is convergent with the rate

α > 0, i.e.,

|E[Q` −Q]| . hα` . (3.13)

b) Secondly, for some rate β > 0 the variance of Y` := Q` −Q`−1 for ` ≥ 1 decays with

V[Q` −Q`−1] . hβ` . (3.14)

c) Lastly, the cost to compute one evaluation of Y`(y
(m)) is bounded for all realizations of the input data

y(m) by

C
(

Y`(y
(m))

)
. h−γ` , (3.15)

with some γ > 0. In the case of optimal solvers, we have γ ≈ d in the time independent and γ ≈ d + 1 in

the time dependent case under consideration of the CFL condition [141].

For example for the elliptic problems in [58, 25, 245, 53, 55], it was proven that with Lagrange finite

elements the first two assumptions are satisfied and thereby, that the MLMC method is applicable with a

solver satisfying (3.15). However, as the imposed problems get more challenging, proving these assumptions

a priori becomes harder, too. Thus, we want to continue this section in 3.5.2 by picking up on the ideas

summarized in [108], where with an improved implementation of the method, these assumptions can be verified

numerically on-the-fly as the simulation runs. Thereby, this approach is an adaptive algorithm finding its way

to invest computational resources, such that a given RMSE error tolerance of ε > 0 is reached.

A further practical improvement was proposed in [61] by the continuation MLMC (CMLMC) method,

where the authors use a decreasing sequence of tolerances {εi}i∈N0
with εi → εmin > 0 in order to create a

problem hierarchy. The problem hierarchy can then be exploited to get better on-the-fly estimations.

However, as we will describe in further detail, presetting an RMSE error tolerance ε > 0 or a sequence of

tolerances {εi}i∈N0
with εi → εmin > 0 and letting the algorithm run until the tolerance is undercut, has its

disadvantages in the application due to the lack of sharp a priori knowledge about the total computational

cost. Therefore, we propose a budgeted MLMC (BMLMC) method where we impose a computational budget

as a constraint, resulting in a knapsack problem. We will combine ideas from the CMLMC method with

techniques from dynamic programming (DP) to solve the knapsack problem. The key idea is to establish a

subsequent problem structure and to find the overall solution after multiple estimation rounds reusing the

results from previous iterations. We want to close section 3.5.3 by giving an outlook on other multilevel

estimators like MLSC, MLQMC and MIMC and if they can be realized with a cost budget as well. Having

a budgeted version of all these algorithms gives an empirically rigorous way to study their computational

efficiency.

The proposed method is highly adaptive and thereby requires a dynamic load distribution. Hence, we will

discuss the application and the properties of the parallelization approach proposed in chapter 2 on FEM in

combination with the BMLMC method at the end of this section in 3.5.4.
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3.5.1 Introduction to the Multi-level Monte Carlo Method

The underlying idea of the MLMC method is to construct a model hierarchy for the imposed problem. This

is done by a sequence of nested meshes {M`}L`=0 with decreasing mesh widths h` = h02−` for ` = 0, . . . , L.

The goal is to avoid evaluating the model on the finest level as much as possible and to minimize the overall

estimator variance. For a fixed finest level L, the expected value of QL can be written as a telescoping sum

over the levels

E[QL] = E[Q0] +

L∑
`=1

E[Q` −Q`−1] =

L∑
`=0

E[Y`], Y0 := Q0, Y` := Q` −Q`−1. (3.16)

Each expected value of Y` in the telescoping sum is now estimated individually with a MC method (or another

non-intrusive estimator, see section 3.4), resulting in the MLMC estimator

Q̂MLMC
{M`}L`=0

=

L∑
`=0

ŶMC
`,M`

=

L∑
`=0

M−1
`

M∑̀
m=1

Y`(y
(m)) , (3.17)

where {M`}L`=0 denotes a sequence for the number of samples on each level. It is important that every

Y`(y
(m)) = Q`(y

(m)) − Q`−1(y(m)) uses the same sample y(m) ∈ Ω for two different meshes. Since all the

expected values E[Y`] are estimated independently, the variance of the MLMC method can be quantified on

each level individually and with this, we obtain the following result for the mean squared error (MSE).

Lemma 3.46. The mean squared error (MSE) of the FEM-MLMC is given by

errMSE

(
Q̂MLMC
{M`}L`=0

)
=

L∑
`=0

M−1
` V[Y`]︸ ︷︷ ︸

estimator variance

+ (E[QL −Q])2︸ ︷︷ ︸
FEM error / estimator bias

. (3.18)

Proof. Follows directly with V[Q̂MLMC
{M`}L`=0

] =
∑L
`=0M

−1
` V[Y`] and E[Q̂MLMC

{M`}L`=0

] = E[QL]

errMSE

(
Q̂MLMC
{M`}L`=0

)
= E

[(
Q̂MLMC
{M`}L`=0

− E[Q]
)2
]

= E
[(

Q̂MLMC
{M`}L`=0

− E[Q̂MLMC
{M`}L`=0

] + E[Q̂MLMC
{M`}L`=0

]− E[Q]
)2
]

= E
[(

Q̂MLMC
{M`}L`=0

− E[Q̂MLMC
{M`}L`=0

]
)2
]

+
(
E[Q̂MLMC

{M`}L`=0
]− E[Q]

)2

=

L∑
`=0

M−1
` V[Y`]︸ ︷︷ ︸

estimator variance

+ (E[QL −Q])2︸ ︷︷ ︸
FEM error / estimator bias

.

Assuming we want to achieve a MSE of ε2, i.e., an RMSE tolerance of ε, we can reach this accuracy for
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θ ∈ (0, 1), if

(E[QL −Q])2 < (1− θ)ε2 and V[Q̂MLMC
{M`}L`=0

] < θε2.

The parameter θ can thereby be used to tune this variance bias trade-off (confer definition A.12) in order to

favor the minimization of one term over the other. We will investigate this parameter θ in further detail in

the numerical experiments in chapter 4.

Remark 3.47. Comparing this result with the MSE in lemma 3.37, we can qualitatively argue for the cost

reduction because of the following two reasons (confer [58]):

a) Assumption (3.14) and the MSE in (3.18) imply that fewer samples have to be drawn the finer the level `

to achieve a MSE tolerance of ε2.

b) No matter which MSE tolerance ε2 is targeted, the cost to compute a single sample on the coarsest level

does not grow with ε → 0. However, the coarsest useful mesh width h0 depends on the application. In

particular, the coarsest mesh has to be able to resolve features of the solution and the input data sufficiently

enough in order to contribute to the multi-level simulation in a computationally beneficial way. We will

observe this phenomena later in chapter 4.

Quantitatively, the computational cost of the method is given by

C(Q̂MLMC
{M`}L`=0

) =

L∑
`=0

M∑̀
m=1

C`(y
(m)) =

L∑
`=0

M`M
−1
`

M∑̀
m=1

C`(y
(m)) =

L∑
`=0

M`Ĉ`, (3.19)

where Ĉ` is the sample mean of the cost and C`(y
(m)) is the cost of an individual sample on level `. Follow-

ing [108], we now want to find the optimal sequence of samples {M`}L`=0, such that estimator cost is minimized

while achieving an MSE tolerance of ε2. By presetting the MSE tolerance, we can also deduce from (3.13) the

highest level L. Thereby we choose L such that the estimator bias is smaller than (1− θ)ε2. Hence, we know

ε and L and can deduce the optimal choice of samples as shown in the following lemma.

Lemma 3.48. For a given ε and a given L, the optimal number of samples for the MLMC estimator on each

level is given by

Mopt
` =

⌈(√
θε
)−2

√
V[Y`]

Ĉ`

(
L∑

`′=0

√
V[Y`′ ]Ĉ`′

)⌉
for ` = 0, . . . , L (3.20)

with the ceiling function d·e : R→ N.

Proof. We minimize the cost and fix the estimator variance to θε2, i.e., we search for a solution to

min
{M`}L`=0

C(Q̂MLMC
{M`}L`=0

) =

L∑
`=0

M`Ĉ`

s.t.

L∑
`=0

M−1
` V[Y`] = θε2.
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Regarding M` for ` = 0, . . . , L as continuous variables, we have the Lagrange function

L(M0, . . . ,ML, ν) =

L∑
`=0

M`Ĉ` + ν2

(
L∑
`=0

M−1
` V[Y`]− θε2

)

giving the conditions

∂L
∂M`

= Ĉ` − ν2V[Y`]

M2
`

!
= 0 ⇐⇒ M` = ν

√
V[Y`]

Ĉ`

∂L
∂ν

= 2ν

(
L∑
`=0

M−1
` V[Y`]− θε2

)
!
= 0 ⇐⇒

L∑
`=0

M−1
` V[Y`] = θε2.

Hence, by inserting the first into the second condition, we get

ν =
(√

θε
)−2 L∑

`=0

√
V[Y`]Ĉ`,

which gives (3.20) by accounting for the fact that Mopt
` must be an integer.

Remark 3.49. Instead of looking at the RMSE as tolerance, the authors of [61, 208] proposed to look for a

small estimator tolerance (confer definition A.12) with high probability. Hence, with some small probability

δ ∈ (0, 1), we look for

P
(∣∣∣Q̂MLMC

{M`}L`=0
− E[Q]

∣∣∣ > ε
)
≤ δ ⇐⇒ P

(∣∣∣Q̂MLMC
{M`}L`=0

− E[Q]
∣∣∣ ≤ ε) > 1− δ

with the confidence 1− δ. The optimal number of samples (3.20) gets an additional factor determined by δ.

We refer to [208] for further details and stick to the notation where ε is the target RMSE tolerance.

With adapted notation, the initial theorem of [110] is given in [58] and states the following.

Theorem 3.50 (Bounded ε-cost of the MLMC method). Suppose assumption 3.45 is fulfilled with some

positive rates α, β, γ > 0 with α ≥ 1
2 min {β, γ} and some hidden constants independent of h`. Then for any

0 < ε < e−1, there exists a maximum level L ∈ N and a sequence of samples {M`}L`=0, such that

errRMSE

(
Q̂MLMC
{M`}L`=0

)
< ε with Cε(Q̂

MLMC
{M`}L`=0

) .


ε−2 β > γ

ε−2 log(ε)2 β = γ

ε−2−(γ−β)/α β < γ

. (3.21)

Proof. A complete proof can be found in [58] in a notation similar to ours.

Remark 3.51. We present the short discussion of the theorem following [108]. The theorem states that

we have a theoretical bound for the computational cost determined by the target RMSE tolerance ε. By
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combining the assumptions 3.45 and the optimal choice of {M`}L`=0 in (3.20), we get

Mopt
` ∼

√
V[Y`]

Ĉ`
∼

√
hβ`
h−γ`

⇒ Mopt
` ∼ h(β+γ)/2

` (3.22)

with an appropriate choice for the constant and the highest level L, such that the estimator bias is smaller

than (1 − θ)ε2. To get an estimate on the computational cost the proof of the theorem investigates the

following: Does the cost grow faster than the variance decays with an increasing level or vise versa? To

answer this question it is useful to look at the product V[Y`]Ĉ`, since by (3.19) and (3.20), we know that

C(Q̂MLMC
{M`}L`=0

) .
∑L
`=0

√
V[Y`]Ĉ`.

β > γ : In this case the cost is dominated by

√
V[Y0]Ĉ0 and thus largest on the lowest level, where

M0 ∼ ε−2 samples are needed to achieve the MSE tolerance of ε.

β = γ : In this case the cost is spread almost evenly across all levels. We omit the details and refer

to [58] since this case is irrelevant in practice.

β < γ : The dominant cost is on the highest level, (3.13) implies that hαL = O(ε) and with the best

case of β = 2α (since V[Y`] is similar in magnitude to E[Y2
` ] ≥ (E[Y`])

2), it follows for the cost that

CL = O(ε−γ/α). Thereby, the cost of the method is dictated by the computational complexity of solving

one deterministic version of the problem assuming sufficiently smooth noise.

Lastly, we remark that in any case the computational savings compared to simple Monte Carlo Cε(Q̂
MC
`,M ) .

ε−2−γ/α (confer equation (3.11)) are significant.

3.5.2 Implementation of the Multi-level Monte Carlo Method

In the previous paragraph, we have explored the variance reduction and by that, the computational benefits

of the MLMC method. However, the challenge in using the MLMC method is to show that the assumptions

of theorem 3.50 are actually fulfilled. In [108], techniques for the implementation of the algorithm are summa-

rized. This includes a verification of the assumptions as well as a way to find the optimal sequence {M`}L`=0

and the highest level L on-the-fly. As a start, we recognize that equation (3.20) contains the variance V[Y`]

and the sample mean of the cost Ĉ`, which are unknown a priori. The implementation idea is to run the

MLMC method with an initial number of levels and samples
{
M init
`

}Linit

`=0
to get first guesses for the sample

mean of the cost Ĉ` and the variance V[Y`] by the sample variance s2
Y`

. With the initial estimates on Ĉ` and

s2
Y`

, the MLMC method is executed until the target RMSE ε is reached. Since the samples from the initial

round do not have to be computed again, the required sample amount ∆M` is introduced by

∆M` := max
{
M̂opt
` −M`, 0

}
with M̂opt

` =


(√

θε
)−2

√
s2

Y`

Ĉ`

(
L∑

`′=0

√
s2

Y`′
Ĉ`′

) , (3.23)

where M̂opt
` is the optimal sample amount based on the existing data and M` is the amount of previously

computed samples.
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Furthermore, Richardson extrapolation can be used to actually find the highest level L to meet the required

RMSE tolerance of ε (confer [108]). To do so, we see by h` = h02−`, the simplification of assumption 3.13 as

|E[Q−Q`]| = chα` and E[Q−QL] = E[Q−QL−1]− E[QL −QL−1] that

chαL = chαL−1 − E[QL −QL−1] ⇐⇒ chαL =
E[QL −QL−1]

(2α − 1)
.

From that, we can deduce an estimate of the bias by

êrrdisc = max

{
Ŷ`

2α̂ − 1
2−α̂(L−`) : ` = 1, . . . , L

}
, (3.24)

which also incorporates lower levels for robustness of the estimate [108] and uses an estimate α̂ for α by fitting

the data {Ŷ`}L`=0 to assumption 3.45 with

min
(α̂, c)

L∑
`=1

(log2 Ŷ` + α̂`− c)2 (3.25)

giving an the estimate α̂ for the rate. This can be done in a similar fashion for γ and β.

Lastly, the estimator variance is approximated with the sample variance of Y` on each level

êrrinput =

L∑
`=0

M−1
` s2

Y`
. (3.26)

Hence, the MSE can be estimated with êrrMSE = êrrinput + êrr
2
disc. Overall, this results in the following

implementation of the method.

Method 3.52. Choose the initial estimation round
{
M init
`

}L
`=0

, choose a target RMSE tolerance of ε > 0,

a splitting parameter θ ∈ (0, 1) and a set of processing units P. The implementation of the MLMC method

with on-the-fly estimation is then described by (the implementation in C++ is given in {38}):

function MLMC(ε,
{
M init
`

}L
`=0

) :

{∆M`}L`=0 ←
{
M init
`

}L
`=0

while êrrMSE ≥ ε2 :

for ` = L, . . . , 0:

if ∆M` ≥ 0: C`,Q`,Y` ← MC(∆M`)← MSS(∆M`,P) with (2.24)

if êrrdisc(data) ≥
√

1− θε : L← L+ 1 with (3.24)

if êrrinput(data) ≥ θε2 : {∆M`}L`=0 with (3.26) and (3.23)

update α̂, β̂, γ̂ with (3.25)

return Q̂ with (3.17)

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/mluq/src/estimators/MultilevelEstimator.cpp
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Remark 3.53. We remark the inverted level loop which has benefits for the load distribution [16]. This topic

will be explained in further detail at the end of the section. Furthermore, we note that the Monte Carlo MC

method on level ` is just a wrapper for solving a multi-sample system MSS which we explained in section 2.4.3.

This makes it very easy to replace the MC method by QMC or SC without writing too much new code and

without rethinking the parallelization.

The above method is further improved by the continuation MLMC, as proposed in [61]. It was also

applied in [208] for computational fluid dynamics (CFD) and in [167] for electromagnetic field scattering. As

mentioned in the introduction of this section, a central idea is to create a sequence {εi}i∈N0
with εi → εmin.

By doing so, a problem hierarchy is established, where each problem is tempered by its predecessor problems,

resulting in robust on-the-fly estimations. We will incorporate this idea in our final method proposal - the

budgeted MLMC method.

3.5.3 A Budgeted Multi-level Monte Carlo Method

We want to propose a new variant of the MLMC method, namely, the budgeted MLMC (BMLMC) method

which we consider as a key contribution in this thesis. The goal is to replace the imposed target RMSE

tolerance ε by a cost budget B > 0 measured in [B] = #CPU · seconds. This is motivated by two practical

reasons.

• Firstly, it is common in HPC applications that a cost budget has to be reserved in order to queue a job

on the HPC cluster. In our notation this is depicted by

B = |P| · T, |P| =̂ total amount of processing units, T =̂ wall-clock computing time.

It requires a priori knowledge about the problem, the convergence rates, the parallelization and the

computer to actually be able to tell which tolerance ε can be achieved with which budget B. If the

computation exceeds the budget, the cluster will kill the job with unfinished work and potentially

unusable intermediate results. If the method undershoots the budget, it was probably queued longer

than it has to. Thus, replacing the preassigned tolerance ε by a preassigned budget B and letting

the method find the smallest ε, while exhausting the budget, is the more natural requirement in HPC

applications.

• Secondly, having a budgeted algorithm lets us answer the question raised in the introduction, namely,

which algorithm stack should be used, given a certain problem? The answer to this question is: the

one which gives the smallest error, given that all algorithm combinations used the same computational

resources B. Thereby, we can study this question now empirically, simply by trying out different algo-

rithms with an equal budget B and comparing the achieved error estimates. This idea perfectly fits to

the continuous delivery (CD) workflow we explored in section 2.5.2. In particular, the benchmarking

stage finds the best algorithm combination in a fully automated manner under cost restriction.

If the final method is capable of exhausting the computational budget without overshoot, we call a par-

ticular run feasible. Furthermore, to develop the final method, we need to change the point of view on
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theorem 3.50.

Theorem 3.54 (Convergence of the BMLMC method). For a feasible run of the BMLMC method, we have

an error estimate w.r.t. the computational budget

ε .

B−1/2 β > γ

B−α/(2α+(γ−β)) β < γ
. (3.27)

Proof. If the budget is exhausted, i.e., in the case of a feasible run, the final ε-cost equals the budget. Thereby,

the error estimate simply follows by inverting (3.21). Similar results can be found in [185] and [156] where

they used the word work instead of budget.

This result does not tell us how to utilize the budget. Thereby, the new challenge for the algorithm is to

find the best way to invest B, such that we effectively minimize the error. Formally, this is expressed by a

knapsack problem:

Knapsack Problem for MLMC. Find L and {M`}L`=0, such that the MSE is minimized while staying

within the cost budget B, i.e.,

min
(L,{M`}L`=0)

errMSE =

L∑
`=0

M−1
` V[Y`] + (E[QL −Q])2 (3.28)

s.t.

L∑
`=0

M∑̀
m=1

C`(y
(m)) ≤ B. (3.29)

We remark the change of perspective compared to lemma 3.48. The objective now is to minimize the complete

MSE including the bias while the constraint is given by the computational budget.

The typical toy problem of this class reads as follows: Find a collection of items, such that it does

not exceed a weight limit and that it maximizes the value carried by a knapsack. Knapsack problems, in

general, are combinatorial optimization problems and often arise while searching for the optimal allocation of

resources. They have been studied extensively in the last decades as the integer optimization problem is NP-

hard3 requiring efficient algorithms [50], and they appear in a broad range of applications in manufacturing,

computer networks and financial modeling [45].

Clearly in our context, the items are the samples and the cost of each sample represents the weight.

The objective function is the error minimization which is a nonlinear and convex function with respect to B

by (3.27). Hence, we are in the case described in [45, section 4]. A popular way to approximate solutions to

knapsack problems are algorithms designed with the dynamic programming technique [45, 50].

3A decision problem, i.e., a problem that has a binary solution, is of the class of NP problems, if the solution can be verified,
but not necessarily found, in polynomial time. NP stands for nondeterministic polynomial-time.

A problem is of the class NP-hard, if it is at least as hard as the hardest problems in NP, i.e., every problem in NP can be reduced
in polynomial time to the NP-hard problem.
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Dynamic Programming. Dynamic programming (DP) is a design technique for algorithms to solve opti-

mization problems. The key idea is to split up the initial problem into subproblems and solve them recursively,

while memoizing and reusing preexisting results. It was developed in the 1940s and 1950s by Richard Bellman,

who coined the term with the explanation that the word dynamic is associated with the incremental treatment

of the subproblems and programming is another word for optimal planning (we refer to his autobiography [78],

but also to his non-mathematical interpretation of dynamic programming in [32]). Ever since, the field has

gone through much development and finds incredibly many algorithmic applications like finding the shortest

path in route planning, finding the optimal designs in engineering or assembly-line scheduling in manufac-

turing [34]. We refer to [63, section 15.3] which is a well established introduction to this algorithm design

pattern. Here, the intent is to shortly summarize enough material to design the final method with dynamic

programming techniques. Generally speaking, dynamic programming algorithms satisfy the following:

• Algorithms designed with dynamic programming split up the initially imposed problem in overlapping

and acyclic subproblems. This can be done for example by expressing the objective value V in a recursive

function of value-returns or pay-offs.

• Dynamic programming is based on memoization, i.e., the reutilization of preexisting computations. The

idea is to create a data structure with which multiple computations of the same result are avoided and

the solutions to subsequent problems are stored. Thereby, dynamic programming is often characterized

as careful brute-force.

• Based on some optimal policy considering the state s represented by the data structure, a guess of,

or a decision for, the optimal next step is executed subject to some constraint. We denote this with

a ∈ A where A denotes the set of admissible decisions. Therefore, the best decision to make depends on

previous solutions to the subproblems. This makes dynamic programming a multi-stage planning and

a sequential decision-making process.

• The runtime of dynamic programming often follows (quasi)-polynomial time with respect the number

of problems (quasi-polynomial, if the cost of the subproblems grows).

Remark 3.55. Reinforcement learning is closely related to dynamic programming, however, the terminology

is slightly different. In particular, the program is called agent which collects data about its environment

and chooses its actions getting some reward. We further remark that in a stochastic environment dynamic

programming is a Markov decision process and refer to the well-cited survey [146] for an introduction to

reinforcement learning.

Definition 3.56. a) A sequence of decisions satisfies the optimality condition, if based on any initial state

s, the sequence follows an optimal policy with respect to each subsequent state. In the literature, this is

also often called principle of optimality or Bellman principle. As a consequence, dynamic programming

finds a solution to a problem by dividing it into subproblems, where each is solved optimally with respect

to its given state.

b) A Bellman equation is the formalization of the optimality condition and expresses the expected optimal

value V as a recursive function of the current reward depending on the state s and the chosen action a ∈ A,
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and the optimal value of the subsequent state s′ which is chosen by action a, i.e.,

V(s) = max
a∈A
{R(a, s) + γV(s′)} with R(a, s) =̂ reward function,

where γ ∈ (0, 1] is the discount factor which will not be important for our investigations. Depending on the

problem, the Bellman equation might look rather different. However, its defining feature is the expression

of the objective value at a given state as a recursive function. Therefore, the Bellman equation is useful

to evaluate the value of a state by considering the current and subsequent rewards, provided only optimal

actions are taken.

We now turn to the final method development. As a start, we recognize once again that we do not know

the exact quantities in (3.28) and (3.29), but rather we have to consider the approximations (3.26) and (3.24).

The following optimization problem is still NP-hard but at least only contains computable quantities.

Approximated Knapsack Problem for MLMC: Find L and {M`}L`=0, such that the estimated MSE is

minimized, while staying within the cost budget B, i.e.,

min
(L,{M`}L`=0)

êrrMSE =

L∑
`=0

M−1
` s2

Y`
+

(
max

{
Ŷ`

2α̂ − 1
2−α̂(L−`) : ` = 1, . . . , L

})2

(3.30)

s.t.

L∑
`=0

M`Ĉ` ≤ B (3.31)

Remark 3.57. By considering the above approximated knapsack problem we chose to discretize first and

optimize second. The downside of this approach is that if s2
Y`

, Ĉ`, Ŷ` and α̂ are inaccurate, the optimiza-

tion delivers poor results, too. However, by using dynamic programming we will update these quantities

continuously such that this disadvantage becomes less important.

The idea now is to solve the above problem by splitting it up into several estimation rounds with a

decreasing sequence of tolerances {εi}i∈N0
as in the CMLMC method [61] to create subsequent optimization

problems. To this end, we equip all quantities of section 3.5.2 with an index i. In the following, we motivate

the existence of a pay-off/reward function depending on the chosen action εi, and the current state of the

simulation, i.e., the collected data up to i− 1.

Suppose we are in estimation round i and M init
0,` is given. For ` = 0, . . . , Li, we separate

Mi,` = Mi−1,`︸ ︷︷ ︸
available data

+ ∆Mi,`︸ ︷︷ ︸
optimal choice

with ∆M0,` := M init
0,` and M−1,` := 0

such that ∆Mi,` follows (3.23), hence after the estimation round we have Mi,` = M̂opt
i,` . Thereby, we can

express the amount of samples based on the currently available data and some optimal policy, i.e., ∆Mi,` is

chosen such that the cost is minimized and a MSE tolerance of ε2i is reached. With ∆Mi,` and method 3.44,
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we further separate

Ĉi,` = Ĉi−1,` +
∆Mi,`

M̂opt
i,`

(∆Ĉi,` − Ĉi−1,`) with ∆Ĉi,` := 1
∆Mi,`

∑M̂opt
i,`

m=Mi−1,`+1 C
(m)
`

Ŷi,` = Ŷi−1,` +
∆Mi,`

M̂opt
i,`

(∆Ŷi,` − Ŷi−1,`) with ∆Ŷi,` := 1
∆Mi,`

∑M̂opt
i,`

m=Mi−1,`+1 Y
(m)
`

and likewise for

s2
Yi,`

= (M̂opt
i,` − 1)−1

M̂opt
i,`∑

m=1

(Y
(m)
` − Ŷi,`)

2,

we separate with method 3.44

SY2,i,`
= SY2,i−1,`

+ ∆SY2,i,`
+

Mi−1,`∆Mi,`

M̂opt
i,`

(Ŷi−1,` −∆Ŷi,`)
2,

where

∆SY2,i,`
=
∑M̂opt

i,`

m=Mi−1,`+1

(
Y

(m)
` −∆Ŷi,`

)2

.

As α̂i is computed with a fit to the available data (3.25), we can express (3.30) and (3.31) for a particular

estimation round i as a nonlinear function of preexisting data (the state) and the optimal policy (3.23). This

motivates a function for the pay-off purely determined by the state and the optimal policy. We denote this

function by ∆errMSE({∆Mi,`}L`=0 , data[i− 1]) which represents the error reduction in one estimation round,

if {∆Mi,`}L`=0 samples are additionally computed. We further define Bi as the left-over budget in round i and

denote with B0 := B the initially imposed budget. By (3.23) we see that the amount of samples is actually

guided by εi. Thereby, with εi as hyperparameter and with the cost prediction Ĉi =
∑L
`=0 ∆Mi,`Ĉi−1,`, the

Bellman equation for finding the solution to the approximated knapsack problem (3.30) and (3.31) can be

expressed with

V(Bi, εi) = max
{∆Mi,`}

Li
`=0

s.t. Ĉi<Bi

{
∆errMSE

(
{∆Mi,`}Li

`=0 , data[i− 1]
)

+ V

(
Bi −

Li∑
`=0

Ci,`, η · εi

)}
, (3.32)

where the value of the initial round is given by

Vinit(B0,
{
M init
`

}L0

`=0
) = êrrMSE(

{
M init
`

}L0

`=0
)−V

(
B0 −

L∑
`=0

C`, η · êrrMSE(
{
M init
`

}L0

`=0
)

)

and η ∈ (0, 1) is a chosen reduction factor determining how fast the sequence {εi}i∈N0
decays. So far, we have

not discussed the minimization of the bias yet. If in (3.30) the bias becomes larger than
√

1− θεi and if we

have enough budget left, i.e., Ĉi < Bi, we draw additional samples on level L+ 1 and stop the optimization

otherwise.
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Concluded, function (3.32) is the expression of the subsequent minimization of the MSE under considera-

tion of the cost budget. Collecting all of the above in a recursive algorithm we formulate the final BMLMC

method.

Method 3.58. Choose the initial estimation round
{
M init
`

}L0

`=0
, a cost budget B > 0, a splitting parameter

θ ∈ (0, 1), a set of processing units P and the reduction factor η ∈ (0, 1). The implementation of the BMLMC

is then described by:

data =
{
i 7→

{
erri, {Mi,`}Li

`=0, {Ĉi,`}Li

`=0, {Q̂i,`}Li

`=0, {Ŷi,`}Li

`=0, . . .
}}

function BMLMC(B0,
{
M init

0,`

}L0

`=0
) :for ` = L0, . . . , 0: C`,Q`,Y` ← MC(M init

0,` )← MSS(M init
0,` ,P)

Update data[0] return BMLMC(B0 −
∑Li

`=0 C`, η · err0)

function BMLMC(Bi, εi) :

if Bi ≈ 0: return erri−1

if êrrdisc(data) ≥
√

1− θεi : Li ← Li + 1

if êrrinput(data) ≥ θε2i : M̂opt
i,` ←

⌈(√
θεi

)−2
√

s2Yi−1,`

Ĉi−1,`

(∑Li

`′=0

√
s2

Yi−1,`′
Ĉi−1,`′

)⌉
{∆Mi,`}Li

`=0 ← max
{
M̂opt

i,` −Mi−1,`, 0
}

Ĉi ←
∑Li

`=0 ∆Mi,`Ĉi−1,`

if Ĉi = 0: return BMLMC(Bi, η · εi)

if Ĉi > Bi : return BMLMC(Bi, 0.5 · (εi + εi−1))

for ` = Li, . . . , 0: C`,Q`,Y` ← MC(∆Mi,`)← MSS(∆Mi,`,P)

Update data[i] return BMLMC(Bi −
∑Li

`=0 C`, εi)

The implementation in C++ is given in {39} .

In order to better understand the mechanisms of this method, we refer to the discussion at the beginning

of chapter 4 outlining the different paths the algorithm can take.

Remark 3.59. The actual implementation in C++ is not done with a recursive function but in an equivalent

formulation with a while-loop. This is also often called a bottom up implementation which has the advantage

over the recursive implementation (top down) to avoid an increased memory consumption on the stack.

However, the recursive formulation is easier to derive mathematically.

Lemma 3.60. The BMLMC method is MSE-consistent with respect to the computational budget B.

Proof. First we realize that with an infinite budget (3.29) we have an unrestricted optimization problem.

Then we can deduce by (3.13), (3.32) and (3.24) that we will be able to draw infinitely many levels, and

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/mluq/src/estimators/MultilevelEstimator.cpp
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therefore we can conclude for the MLMC estimator realized in a budgeted implementation that

lim
B→∞

E
[
Q̂MLMC
{M`}L`=0

]
= lim

B→∞
E

 L∑
`=0

M−1
i,`

Mi,`∑
m=1

Y`(y
(m))

 = lim
B→∞

L∑
`=0

M−1
i,`

Mi,`∑
m=1

µY`

= lim
B→∞

L∑
`=0

µY` = lim
B→∞

µQL = lim
L→∞

µQL = µQ.

Corollary 3.61. For a fixed amount of processes |P|, the theorem 3.54 and the lemma 3.60 also hold with

respect to computational time T.

Remark 3.62. We lastly discuss the application of this idea to multi-level stochastic collocation (MLSC)

and multi-level quasi-Monte Carlo (MLQMC). As a start, we recognize that a key component of dynamic

programming is the nested problem structure. With nested sparse grids and appropriate lattice rules for

QMC this problem structure can be retained. However, this results in a less flexible choice of ∆Mi,` which

has to be taken into account appropriately. We refer to the discussion in [231, section 3.5] or [245] on

rounding strategies of sparse grids which is related to this problem. Furthermore, the on-the-fly estimation of

all quantities and errors is not as straightforward as it is for simple Monte Carlo. Hence, randomized QMC

and techniques like Romberg quadrature rules for nested sparse grids have to be employed to get suitable

error estimators. As previously discussed in this thesis, realizing these methods in a budgeted framework

would allow to truly find the best method combination for each problem.

3.5.4 Full Parallelization of the BMLMC Method

Here, the goal is to discuss the parallelization introduced in chapter 2 in combination with the BMLMC

method. We present a broader discussion and classification on parallelization and follow the introduction

of [126, 69, 37]. As a start, we have to ask ourselves why we should even parallelize. The simple reason is

to speed up the computation, such that it is done in a reasonable amount of time, say ”over lunch” or ”over

night” [126]. Often enough however, time is not the limiting factor but rather memory. If the problem is

too big to fit on one machine, one has no other choice than to parallelize. The problems discussed in this

thesis are huge and for the most interesting applications one computer is simply not big enough. Generally

speaking, parallelization is a scalability problem such as they appear in manufacturing or traffic and often,

such as in this thesis, parallelization is also a resource allocation problem. Many approaches can be taken to

parallelize. Thereby, developing a parallelization strategy starts by identifying the type of parallelism which

is employable.

• Data Parallelism: If multiple processes can work on different parts of the same data, we refer to this as

single program multiple data (SPMD).

• Functional Parallelism: Big problems can sometimes be split into disparate subtasks working together by

exchanging data and synchronizing. This is also often called multiple program multiple data (MPMD).
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Figure 3.6: Load balancing in a single exemplary estimation round. Light red areas correspond to parallelization
losses, other colors correspond to processes. The black dashed lines represent transitions between levels, the red dashed
lines represent parallelization losses in the FEM system.

The parallelism we explained in section 2.1 is SPMD. This is the first distinguishing aspect of our approach to

most other solutions which use MPMD by separating the UQ and the FEM side. Furthermore, we pick up the

discussion in [79] and [16] to classify the parallelization particularly in the contex of multi-level estimators.

For these methods there are three layers of possible parallel execution:

• Solver parallelism: The PDE solver is parallelized by domain decomposition. Even though this technique

is well established in most advanced finite element tools, it has the significant drawback to require

communication at the interfaces of the subdomains.

• Sample parallelism: The samples
{
y(m)

}M`

m=1
on a fixed level ` are computed in parallel. This parallelism

inherently provides independent computations except for some post-processing after the routine.

• Level parallelism: The estimators on the levels ` = 0, . . . , L are executed in parallel. This parallelism

is also inherently independent but offers less opportunity to distribute the work than in the sample

parallelism. The reason is that the sum over the levels usually contains way less terms than the sum

over the samples.

To classify our implementation from section 2.1, we have a solver and sample parallelism and no level

parallelism. The parallelism can be classified further:

• Homogeneous parallelism: The same number of processes are used for each sample, if they are computed

on the same level.

• Heterogeneous parallelism: Samples on the same level can get assigned a different number of processes.

The proposed BMLMC method is homogeneous in each estimation round using the multi-sample system,

but potentially heterogeneous over multiple estimation rounds (confer 3.5). This is due to the fact that the

distribution is done dynamically for each new estimation. To classify the method as dynamic, we follow

again [16, 79]:
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Solver Sample Level Homo. Hetero. Static Dynamic External Integrated

MSS,
[240,
238,
237, 16,
79]

MSS,
[240,
238,
237, 16,
79]

[240,
238,
237, 16]

[240,
238, 79]

BMLMC,
[237,
238, 79]

[237,
240,
238, 79]

BMLMC,
[16, 79]

[237,
240,
238]

BMLMC,
[16]

Table 3.1: Classification of parallelisms proposed in literature and in this thesis.

• Static parallelism: In a static scheduling of the computational work, the distribution is based on a priori

assumptions about the cost on each level, e.g. this can be based on the size of the discretization scheme,

but also be adapted to properties of the input data known before the sampling starts.

• Dynamic parallelism: In a dynamic scheduling the computational work is distributed on-the-fly and

does not require a priori knowledge about the expected cost of the samples.

Another important aspect of the parallelism is where the synchronization of processes has to happen. Gen-

erally speaking, deciding for the synchronization points is a trade-off between potentially having many idling

processes on the machine waiting for new tasks to be assigned to, and having a less optimal load distribution

and oversampling because of poor statistical estimates on the cost and the variance. Lastly, we also propose

the classification of the parallelism in external and integrated:

• External parallelism: We classify a parallelization as external, if it is based on an external software

distributing multiple instances of PDE solvers on a computing cluster.

• Integrated parallelism: We classify an implementation as integrated, if the same software used to execute

the PDE solver is used to distribute the samples, i.e., only one program instance is started working on

distributed memory instead of multiple instances with different input data.

The last criteria is very technical and requires to look at the actual implementation of the method on the

HPC system. However, the criteria can be seen as technical interpretation of SPMD and MPMD. In table 3.1,

we have collected literature on different scheduling approaches and classified them according to the above

criteria, where for the last one we have tried to consider the actual implementation, if publicly available.

Concluded, there are different techniques to distribute the computational load of multi-level estimators,

each with its advantages but also with its challenges. The method we propose could be classified as a dynamic

and heterogeneous sample and solver parallelism in an integrated framework as SPMD.

Figure 2.2 depicts the load distribution of an exemplary estimation round on three levels with M2 =

1,M1 = 2 and M0 = 16. The sample on level two is processed on all four processes at first. Next, two

samples on level one follow where each one is computed on two processes. Lastly sixteen samples on level

zero are computed, where each processor handles four individual samples. The light red color correspond to

parallelization losses due to either idling processes (red areas) or due to communication losses (dashed red

lines, corresponding to communication across subdomains).

Remark 3.63. a) The best configuration for the parallelization parameters can be found yet again by looking

at the achieved accuracy, given that each configuration has been using the same computational budget.

We refer to chapter 4 on the numerical results for further details.
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b) Within the scope of the above remark, the optimal amount of synchronization points and locations can

be studied empirically. The BMLMC method does allow to tune the amount of synchronization points by

adjusting η.

Performance Measurements

In order to evaluate the parallelization and quantify its scalability, we follow the books [126] and [69] and

restate the following two performance measures.

Strong scaling: When we look for strong scaling in a parallel program, we try to reduce the overall

runtime by adding further processing units. Thereby, when we try to measure the strong scaling of the

parallelization, the problem size, e.g. the number of samples M in a Monte Carlo simulation, remains fixed,

while the number of processing units is increased. Then, we look at the achieved speed up Tmin/Tparallel, where

Tmin is the computing time associated with the execution on |Pmin| processors and Tparallel is the measured

computing time achieved by employing |P| > |Pmin| processing units. Often |Pmin| = 1, however under

certain circumstance, e.g. due to memory restrictions, multiple processors are needed to solve the problem at

least on |Pmin| processors. The optimal speedup factor is then given by |P| / |Pmin|. For a standard Monte

Carlo method this optimal speedup factor can almost be achieved. However, synchronization, communication

overhead, unequal work loads and non-parallelizable parts of the algorithm reduce in almost every complex

application the efficiency. Amdahl’s law accounts for this by splitting the program in a sequential part of

portion (1− λ) and a parallel part of portion λ with λ ∈ (0, 1). By doing so, we can redefine the theoretical

parallel execution time by

TAmdahl
parallel = (1− λ) +

λ

|P|/|Pmin|
, lim

|P|→∞
TAmdahl

parallel = (1− λ). (3.33)

Hence, adding infinitely many processing units does not infinitely speed up the code as the seriell parts of

the program, like synchronization tasks of the algorithm or I/O operations on the hard-drive, simply do not

scale. Concluded, for algorithms that scale strongly in parallel, we can answer the question: how much faster

is the execution, if we use |P| processing units instead of |Pmin|.

Weak scaling: In many practical applications, we look for programs that satisfy weak scaling since strong

scaling, as for simple Monte Carlo, is unachievable. In this case the memory is the limiting resource, i.e.,

the problem size per computing unit has to remain the same, or at least stay below a hardware dependent

maximum, while additional computing units are utilized to solve larger problems. A deterministic PDE solver

distributing its domain on multiple cores is a good example for a weakly scaling parallelism. Strong scaling

can not be expected here since using more cores just leads to a highly fragmented and distributed domain –

in the extrem case, each process is assigned to one cell in the mesh. The communication overhead becomes

dominant and program actually slows down. To utilize more processing units, the problem has to become

bigger. Therefore, to measure weak scaling we try to keep the computational time fixed, i.e, Tmin ≈ Tparallel

while we increase the problem size. The increased problem size is then compensated with additional processes

units.
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We note at this point, that measuring weak scaling of a parallelized standard MLMC method is rather

difficult. The reason is that keeping the computational time fixed while increasing the problem size alongside

with the amount of processes most likely does not result in the optimal error reduction, i.e, weak scaling is

measured, but we solve the wrong problem. For example, we could compute twice the amount of samples

on each level, compensate the larger problem with a doubled amount of processing units and judge by the

ration of the computational times Tmin/Tparallel ≤ 1 how well the program scales weakly. However, simply

adding samples (or levels) to increase the problem size does not necessarily reduce the overall error. Hence,

utilizing the BMLMC method is rather helpful to measure the weak scaling of the parallelization, i.e., we

answer the question: how much is the error reduced, if we add further processing units? Since a smaller error

directly corresponds to a larger problem, this is our way to measure the weak scaling of the parallelization.

In particular, we consider theorem 3.54 in the case that β > γ and conclude

2e
!
=

err2|P|

err|P|
∼ (2 |P| · T)−1/2

(|P| · T)−1/2
= 2−1/2. (3.34)

The closer the exponents, the better is the weak scaling of the parallelization.

3.6 The UQ-Extension to M++

This last section in this chapter is used to reflect on the developed UQ software and prepare the next chapter

on the numerical results. We now have all mathematical tools at hand to actually be able to approximate

solutions of PDEs with uncertain input data. However, we have not yet discussed the software tool which is

capable of executing this task on a HPC cluster.

As the computer is developed, and as new mathematical ideas based upon the ability of the computer to carry

out billions of simple instructions become widely known, we will see an elimination of the mathematical

middleman through out many economic, engineering, and scientific domains. The mathematician will thus

be a typical victim of automation and sophistication. - Richard E. Bellman, 1966 [32],

After over a decade of research on MLMC methods and numerous theoretical investigations, it is likely to

expect that this method and its family will find many more applications, especially when it is utilized in a

commercial and industrial context. Deriving sharp a priori convergence results for all applications which are

about to come might be either impossible or an incredible effort for numerical analysts. Yet the method will

show that it works in many practical applications as long as the assumptions 3.45 are fulfilled. Hence, it is fair

to say that multi-level estimators are established tools for UQ and, to pick up on the above quote of Richard

Bellman, we think it is time to ”eliminate the mathematical middleman” by automating the investigations on

these methods.

Many new challenges in UQ are already under investigation, for example stochastic optimal control prob-

lems [101, 100, 175, 124] or inverse UQ [139, 189, 136, 138, 74, 217, 73]. All of these new investigations will

rely on highly efficient forward UQ in the application. Hence reliable, automated and integrated forward UQ

will be a great help to focus on new theoretically interesting problems and make them useful in the appli-

cation. Thereby, we propose an automated framework to conduct experiments and to falsify hypotheses to
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further establish the science of large-scale forward UQ with multi-level methods. The framework is capable to

reproduce the theoretical achievements of many publications and to further extend the spectrum of possible

investigations.

The remaining part of the section will describe the developed software on a high level and argue for some

technical design choices we made, starting with the programming language and the parallelization technology.

We follow the discussion of [69, section 14] and highlight our decisions.

Parallelization Technology. The technologies to distribute the computation can be divided in two classes.

Shared memory technologies like OpenMP allow to execute parallel computations without worrying about

the data access and exchange. This approach is highly performant yet has the disadvantage that, if the

problem gets too big for one computer, it simply does not work anymore. On the other hand there are

distributed memory technologies like OpenMPI. In this approach a distributed data structure has to be

designed, however, the usage is not restricted to a single machine anymore and the code can be deployed on

large scale computing clusters across several nodes. We chose to use OpenMPI since our problems are simply

too big to fit on one machine. Furthermore, MPI provides the possibility to define subsets of processing units

as communicators. We have made use of this feature extensively in order to realize the multi-sample systems

described in section 2.4.3.

Programming Language. Generally speaking, every programming language has its advantages and its

disadvantages. Hence, the programming language has to fit to the application of the software. Since we have

a scientific HPC application, the choice to be made is between compiled languages like C or C++ offering

highly performant and hardware near implementations, and interpreted languages like Python or Matlab

which come with a large toolbox of numerical and statistical algorithms. The downside of developing C++

code with MPI is that a deep understanding of the parallel data structure, memory management and multicore

processing has to be acquired to develop the system. In some sense, the extremely fast execution of the code

comes with an increased development time. Before starting a HPC project, one should be aware of what is

important, i.e., rapid code and model development or very fast code execution in production. Interpreted

programming languages like Matlab or Python offer much shorter development times by utilizing a lot of

preexisting computing routines and libraries and by providing the user leaner syntax. However, this comes

with the cost of slower execution times due to layers of abstraction interpreted programming languages add, as

well as less flexibility for special tasks like parallelization even though a lot of effort, see e.g. [247], is made to

overcome this problem. Well established software libraries often provide both, fast execution on distributed

memory via compiled languages in the backend plus lightweight wrapping for example written in Python

to be accessible for a broader user base. We started our development with a mixed approach of Python,

C++ and OpenMPI, however, it turned out to be poorly maintainable and extendable without native Python

bindings to the C++ code. In the end, we settled on a pure C++/OpenMPI implementation which offers the

highest performance, scalability and the cleanest extension to M++. We compensated the more approachable

front end in Python by passing configuration files for the methods and problems to the Gitlab CI application

programming interface (API) (confer section 2.5) and exploiting the semi-automated data-model cycle 2.5.
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Hardware Architecture. Lastly, we have to discuss the hardware available on the HoReKa supercomputer

and what was used by us. GPU clusters are gaining popularity since they utilize several thousands of low

frequency cores processing large data arrays in parallel. Thereby, GPUs are popular in data-flow driven

computations like machine learning. However, in computational sciences CPU-based architectures are still

more common and established. We only used CPU-architectures but are planning to integrate the linear

algebra library Ginkgo (confer example 2.45) in order to be able to deploy computations on GPUs as well.

GPU based UQ seems very promising as the strengths of GPU hardware match the requirements of non-

intrusive UQ algorithms.

Software Design of the Extension. Since we have already presented a detailed discussion on the FEM

library in section 2.5, we now only present an overview on the modules for the UQ extension to M++.

lib1 generators: This part of the code corresponds to the theory of section 3.2, i.e., it uses the pseudo

random number generator SPRNG5 and the sparse grid generator TASMANIAN to provide realizations of

random fields and stochastic processes generated by truncated KL expansions or the circulant embedding

method.

lib2 problems: The second library builds upon the sample generators and defines the uncertain model

problems. The corresponding theory is explained in section 3.3.

lib3 pdesolvers: The third layer in the code is basically a wrapper around M++, i.e., at this part of the

software project the UQ and FEM side merge.

lib4 estimators: Last but not least, the estimator library utilizes all of the above. The theory behind this

is explained in section 3.4 and 3.5.

Lastly, we close this software section by presenting a list of other UQ software tools, again without any

claim that this is even remotely a complete list.

Example 3.64. a) UQLab is Matlab-based software framework for uncertainty quantification [174] used by

over 4000 researchers and engineers and has been subject of many publications. We refer to the webseite

for further details [252].

b) ALSVID-UQ [5] is a MLMC finite volume solver for hyperbolic conservation laws and was used in [237,

240, 238] and in one of our main sources [185].

c) In [17, 16] the software FEMPAR [91] was used. FEMPAR is a finite element software written in Fortran

but has recently been extended with MLMC methods.

d) As previously mentioned, we used the sparse grid library TASMANIAN [234]. It provides a Matlab,

Python and C++ interface and a well written user documentation [233].

e) PyMC [211] is a probabilistic programming library for Python that allows users to build Bayesian models

with a simple Python API and fit them using Markov chain Monte Carlo (MCMC) methods.
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Figure 3.7: Software design of the UQ extension to M++.

f) The MIT Uncertainty Quantification Library (MUQ) [203] is a toolbox for solving forward and inverse

uncertainty quantification problems. It is written in C++ but provides a Python interface. We refer to

the website for example applications [194].

g) The software XMC [85] is developed within the ExaQUte project and provides implementations of MC,

MLMC and CMLMC methods.

h) In [99] a generic implementation for Monte Carlo methods is introduced which can be used in combination

with model solving software.

i) To overcome the issue of having to develop model solving software, i.e. FEM tools, as well as UQ software

such as the tools above, UM-Bridge [251] was recently developed which bridges this gap by utilizing

container technologies like Docker.



4
Numerical Results

In this chapter, we discuss the numerical results achieved with the proposed framework of this thesis. In

particular, we demonstrate its capability to treat different PDEs subject to different uncertain input data. This

includes the model problems 1.1-1.3 but is not restricted to them. In order to demonstrate the applicability,

we make use of all presented discretizations of section 2.3 in combination with the BMLMC method of

section 3.5.3. We investigate different problem configurations and algorithm combinations. All experiments

are fully automated and can be repeated with the newest version of the software at any time. The presented

results serve as a baseline which future developments on the method and the software have to verify or improve.

The numerical results of each experiment can be summarized in several plots, each giving a different insight

to the problem or the performance of the algorithm. We explain these plots using the standard elliptic PDE

as in model problem 1.1 solved with Lagrange finite elements and the BMLMC method. We omit the details

by referring to section 4.1 and focus instead on the illustration of the data in the following plots.

Numerical verification of assumptions (3.13) and (3.14). As pointed out in section 3.5, the assump-

tions 3.45 can be verified numerically on-the-fly. To this end, we present the measured asymptotic behavior of

Ŷ` ≈ E[Y`] := E[Q` −Q`−1] and s2
Y`
≈ V[Y`] := V[Q` −Q`−1]. This is represented by the dotted lines in the

plots of figure 4.1 in a logarithmic scale. Furthermore, these plots verify that the development of Q̂` ≈ E[Q`]

and s2
Q`
≈ V[Q`] remains roughly constant over all levels and show the estimated exponents α̂ and β̂ according

to (3.25). These plots justify the application of multi-level estimators a posteriori and should always look

similar to the ones presented here.

101
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Figure 4.1: Numerical verification of assumptions (3.13) (left plot) and (3.14) (right plot).

Estimated optimal number of samples (3.23) and numerical verification of the constraint (3.29).

In figure 4.2 on the left, the bar plot gives the number of samples {M`}L`=0 drawn up until the last estimation

round. This bar plot follows equation (3.22) and is computed via
∑

i ∆Mi,` for each level ` = 0, . . . , L. The

plot on the right illustrates the cost distribution C` over the levels by a bar plot and the total cost of all

levels as blue horizontal line. The total cost represented by the blue horizontal line should stay just below the

red line representing the total cost budget B in #CPU · seconds. These two plots indicate that the BMLMC

method was successfully executed and delivers feasible results.

Figure 4.2: Total number of samples {M`}L`=0 drawn following (3.22) (left plot). Cost distribution over the levels
and verification of the budget restriction (3.29) (right plot).

Numerical verification of (3.27) and evaluation of the quantity of interest by (3.17) along with (3.30)

as error estimation. The left plot of figure 4.3 numerically verifies the convergence given by equation (3.27),

where the x-axis is the relative budget Ci/B0 and the y-axis is the estimated mean squared error êrrMSE (3.30)

over the estimation rounds in logarithmic scales. On the right plot, the estimated quantity of interest Q̂i is

given according to (3.17) over the relative budget Ci/B0 with error bars.
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Figure 4.3: Numerical verification of convergence (3.27) (left plot) and evaluation of the quantity of interest
by (3.17) along with (3.30) as error estimation (right plot).

Error development by (3.24) and (3.26) and verification of the assumption (3.15). Lastly, the

left plot of figure 4.4 gives a more detailed insight into the algorithmic behavior. In particular, it shows

the development of the discretization error estimated with (3.24) and the input error by (3.26) at different

estimation rounds. It also shows the development of εi acting as a frontier defining a target εi-box (dotted

lines) the error minimization tries to reach each estimation round. Samples and levels are drawn until the

total error estimation has crossed the current εi-box. Then, a new target RMSE is chosen. This plot further

depicts the subsequent problem structure where each problem is associated with one εi-box. On the right plot

of figure 4.4, the assumption (3.15) is numerically verified by the dotted line and the estimated γ̂ is shown.

If this line does not follow the predicted cost growth over the levels, it can be a sign of badly parallelized

computations. This usually stems from a poor choice of the initial sequence of samples
{
M init
`

}L
`=0

leading to

an inappropriate distribution of processes by equation (2.4).

Figure 4.4: Development of the numerical error errdisc and the input error errinput alongside with RMSE tolerances
εi over different estimation rounds (left plot). Numerical verification (right plot) of assumption (3.15)

.
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4.1 Experiments on the Elliptic Model Problem

We will now revisit model problem 1.1 and combine its properties described in 3.3.1 with the FEM convergence

theory of 2.3.1 and the BMLMC method. In particular, we aim for convergence statements of the BMLMC

method and verify them numerically. The presented theoretical results are based on [53, 246]. The theoretical

predictions are verified by numerical results performed on the HoReKa supercomputer.

Model Problem 4.1. The weak discrete formulation to the model problem 1.1 considering the randomness

in the input data reads as: Seek u` ∈ V Lag
`,p≥1(uD), such that

aω(u`(ω, ·), φ`) = fω(φ`), ∀φ` ∈ V Lag
`,p≥1(0)

for almost all ω ∈ Ω. We refer to 2.20 for the deterministic and discrete version of the problem and to 3.23

for the weak formulation with log-normal fields.

Theorem 4.2. Let assumptions 3.22 be fulfilled and consider the case described in theorem 3.27 for some

0 < t ≤ 1. Then,

‖(u− u`)(ω, ·)‖H1(D) .

(
κmax(ω)

κmin(ω)

) 1
2

h
min{s,p}
` |u(ω, ·)|Hmin{s,p}+1(D)

for almost all but fixed ω ∈ Ω and for all 0 < s < t, such that corner singularities of the domain are controlled

as well. Hence,

‖u− u`‖Lq(Ω,H1(D)) . Cκ,fh
min{s,p}
` , ‖u− u`‖Lq(Ω,L2(D)) . C̃κ,fh

min{2s,p+1}
`

for all q < q∗ with the constants Cκ,f and C̃κ,f only depending on the input data but not on h`.

Proof. Follows by proposition 2.21 and lemma 3.24. The arguments are given in [53, 246].

We will now combine this result with the assumptions 3.45 to deduce convergence of the BMLMC method.

Proposition 4.3. Suppose that D is a polygonal domain and that assumptions 3.22 hold for some 0 < t < 1

and 1 ≤ q < q∗

2 . For Q(u(ω)) = ‖u‖qH1(D) the assumptions 3.45 a) and b) hold for any α < t and β < 2t. For

t = 1 we get α = 1 and β = 2. Likewise, for Q(u(ω)) = ‖u‖qL2(D) the assumptions 3.45 a) and b) hold for any

α < 2t and β < 4t. For t = 1 we get α = 2 and β = 4.

Proof. Follows by theorem 4.2. We refer to [53, proposition 4.2 and 4.3] for details.

Having the above, we conclude the convergence of RMSE with respect to the computational budget in

table 4.1 for the |·|H1(D)- and ‖·‖L2(D)-norm as QoI. The results in this table consider log-normal fields with

a Gaussian covariance kernel (3.1) (left table ν = 1) and an exponential covariance kernel (right table ν = 2).

Remark 4.4. Other functionals than the L2- or the H1-norm can be considered as well. In [246, section 3]

it is shown that convergence for further linear and nonlinear functionals can be derived by using a duality

argument.
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d |·|H1(D) ‖·‖L2(D)

1 B−1/2 B−1/2

2 B−1/2 B−1/2

3 B−1/3 B−1/2

d |·|H1(D) ‖·‖L2(D)

1 B−1/2 B−1/2

2 B−1/4 B−1/2

3 B−1/6 B−1/3

Table 4.1: The left table is for a covariance kernel with ν = 2. The right table is for a covariance kernel with ν = 1.
The table was taken from [53] and translated to the budgeted method.

Thereby, the first takeaway from this section is that the smoothness of the random field directly transmits

into the convergence of the BMLMC method. In the following, we will separate the experiments in two classes.

The first class consists of model problem experiments where we investigate the influence of the input data on

the convergence and behavior of the method. By doing so, we can numerically study the regularity of the

problem. In the second class of experiments we investigate the methodology, i.e., everything from the parallel

data structure to the finite element discretization and the hyperparameters of the BMLMC method. Unless

stated otherwise, we consider the following problem and model configuration within this section.

Problem Configuration 4.5. We search for the solution u : Ω× [0, 1]2 → R, such that
−div(κ(ω,x)∇u(ω,x)) = 0 x ∈ (0, 1)2

κ(ω,x)∇u(ω,x) · n = −1 x ∈ Γ1
N = {x ∈ ∂D : x2 = 1}

κ(ω,x)∇u(ω,x) · n = 0 x ∈ Γ2
N = {x ∈ ∂D : x1 ∈ {0, 1}}

u(ω,x) = 0 x ∈ ΓD = {x ∈ ∂D : x2 = 0}

,

where the permeability κ : Ω×D → R is log-normally distributed with covariance function (3.6) for which we

choose σ = 1.0, λ = (0.15, 0.15)> and ν = 1.0 as default parameters. The default QoI is the L2-norm over

the whole domain.

Method Configuration 4.6. We search for numerical solutions in V Lag
`,p=1 and initialize the BMLMC method

with {M0,`}L`=0 =
{
M0,3 = 214, M0,4 = 213, M0,5 = 211, M0,6 = 210, M0,7 = 28

}
which consumes less than

two percent of the total computational budget. The computation is deployed on the HoReKa supercomputer

for 10 minutes with |P| = 32 processes on a single node. The hyperparameters of the method are chosen

as θ = 0.5 and η = 0.9 and the arising linear system is solved with the GMRES method and an incomplete

LU -decomposition as preconditioner. We refer to {40} for the complete configuration of all upcoming jobs.

Problem Experiments 4.7. We investigate the role of the covariance function (3.6) as in [28] in further

detail. First, we examine the influence of the correlation lengths λ in figure 4.5. This is of particular

interest since the finite element discretization should resolve the smallest structure of the permeability (confer

remark 3.47). The lowest mesh resolution in this particular experiment is h0 = 0.25, and thus the correlation

lengths λ ∈
{

(0.05, 0.05)>, (0.1, 0.1)>, (0.15, 0.15)>
}

undercut h0. On the bar plot on the left of figure 4.5

we observe the following: the shorter the correlation length, the fewer samples are drawn on the coarse and

the more samples are taken on the finer grids. The opposite behavior can be seen for the longer correlation

lengths. This effect transmits to the cost distribution depicted on the right, i.e., the simulation of the problem

with the longer correlation lengths spend a larger amount of the computational budget on the lower levels and

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/pipeline/mlmc-elliptic-on-horeka.yml
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less amount of the budget on the higher levels. Hence, the algorithm adapts to the problem without a priori

knowledge. By doing so, we also might be able to deduce properties about the problem by the behavioral

quantities of the algorithm like the drawn sample amount on each level.

Next, we discuss the influence of the smoothing parameter ν by choosing ν ∈ {1.0, 1.4, 1.8} for the covari-

ance function. Such as in table 4.1, we consider the L2-norm in figure 4.6 and the H1-norm in figure 4.7. First,

we observe that the multi-level estimator is applicable to this type of problem by the first row of each plot.

Furthermore, as predicted in proposition 4.3 the rates α̂ and β̂ grow as ν grows in the H1-norm. This is due

to the increased Hölder continuity of the samples given by the estimate in theorem 3.27. This also matches

results reported in [246, 53] and stated in table 4.1. We further remark, that we had to increase from |P| = 32

to |P| = 128 processing units for the H1-experiment due to the fact that the convergence rate in the H1 is

lower and thereby more levels are drawn during the ten minutes of computation. The resources are added to

cope with the higher memory demand of the finer grids by distributing the mesh on more processing units.

The last experiment on the random field considers a varying σ ∈ {1.0, 1.5, 2.0} in the covariance func-

tion (3.6). By increasing σ, the amplitudes of the random field get stretched. Hence, the constant in (3.27)

increases with an increasing σ. This can be nicely observed in figure 4.8. For this last experiment on the

random field, we also present the evaluation of the QoI as well as the load distribution over the levels. We see

in figure 4.8 that the cost is spread over all levels and that we stay within the cost budget for all simulations.

We lastly draw the attention to the evaluation of the QoI in the lower right plot, where we clearly see that

we solve different problems with different solutions.

Figure 4.5: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 with varying
correlation length of the covariance function.
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Figure 4.6: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 with varying
smoothness of the covariance function and the L2-norm as QoI.

Figure 4.7: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 with varying
smoothness of the covariance function and the H1-norm as QoI.
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Figure 4.8: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 with varying
variance of the covariance function.

Method Experiments 4.8. We switch the focus from the problem to the discretization. As a start, we

consider the problem in default configuration 4.5 and increase the polynomial degree of the Lagrange dis-

cretization. By theorem 4.2 we do not expect a faster convergence since the default problem simply does

not supply enough regularity to leverage the higher degree. In fact, we can see in figure 4.9 in the lower

right plot, that a larger polynomial degree even yields a larger estimated RMSE. This is explained by the

increased computational cost of the higher degree leading to larger errors, if the same computational budget

was utilized.

In section 2.3, we further explored the application of different discretizations to the elliptic model problem.

The intent of the following experiment is to figure out which discretization for the default problem 4.5 yields

the smallest error estimation. By the propositions 2.21, 2.24, 2.26 and lemma 3.24, we do expect the same

convergence rates for all discretizations. However, the computational demand of these discretizations is

different. Figure 4.10 depicts the expected results of the experiment, i.e., the same convergence rates but
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a larger estimated RMSEs, if the discretization approach is more expensive. A rather surprising result is

that the hybridized mixed discretization performs worse than the standard mixed approach. We suspect that

the reason for this is the sample parallelism and that the advantage of the hybridized model of cell-wise

independent computations can not be exploited anymore. However, searching the solution with respect to

another norm might result in a completely different outcome of the experiment. We leave the investigation of

other quantities of interest open for further experiments.

Figure 4.9: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 with varying
polynomial degree p of the Lagrange finite element space.

Figure 4.10: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 employing
all introduced discretizations of section 2.3.1.
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Method Experiments 4.9. As a central piece of this thesis, we continue our experiments by investigating

the parallelism proposed in section 2.1.3 and 2.4.3. As a start, we compare the multi-mesh parallelization

feature (On) with the naive parallelization only on the domain (Off ) in figure 4.11. The lower left plot verifies

that both methods indeed compute the same QoI. However, the error admitted by the fully parallelized method

is significantly smaller even though both methods were executed with the same computational resources, i.e.,

with |P| = 32 processing units and T = 600 seconds of computing time. The error reduction by utilizing the

resources in a smarter way can also be observed in the lower left plot. By recalling the convergence theorem of

the BMLMC method 3.54, we recognise that the hidden constant is heavily dependent on the parallelization

approach. Lastly, the plots in the top row of figure 4.11 show that the naively parallelized method draws

fewer samples on all levels and that the bottleneck for the cost is the lowest level. This stands in contrast

to the fully parallelized method which distributes the computational load nicely over all levels resulting in

much better overall performance. Similar experiments for other PDEs will follow in the upcoming sections,

however, the discussion remains the same and only significantly more resources will be allocated.

Next, we pick up on the discussion at the end of section 3.5, i.e., we investigate the strong and the weak

scaling of the parallelization. The strong scaling experiment is given in figure 4.12. Here, we have assigned

each experiment the same computational budget of B = |P| · T = 38400 CPU · seconds while compensating

computing time with processing units. In particular, we divided the initial 40 minutes of computing time

three times by two and sequentially doubled the amount of process from |P| = 16 up to |P| = 128. We

recall, if the algorithm does scale strongly and the serial part is very small, the parallelization should deliver

very similar results for all configurations by Amdahl’s law (3.33). Indeed, all methods yield the same QoI,

however, in this figure we can also observe the limits of the parallelization approach. In the case of |P| = 128,

we seem to approach the limits of Amdahl’s law since we are not capable to exhaust the budget completely

and the sequential parts of the algorithm become more dominant. On the other hand, for |P| = 16 we can

not exhaust the budget completely either, because one individual processing unit has a large computational

load on the higher levels. The assigned subdomain to one process becomes huge such that the memory access

of this process becomes a bottleneck or even leads to a memory overflow. By drawing the attention one

more time to the lower left plot, we can also detect the in section 3.5 predicted performance losses due to

communication and idling processes. More workers require more communication which directly transmits to a

worse constant in the convergence theorem 3.54. Thereby, the goal of further optimizations of the parallelism

should be to reduce communication and idling processes. Concluded, we observe strong scaling only in a

window [|P|min , |P|max] of processes which is similar to the parallelism of a standard FEM solver.

In the last parallelization experiment we investigate the weak scaling behavior. As both parts of the total

parallelization approach scale weakly, i.e., the FEM solver scales weakly and the Monte Carlo method scales

weakly, we expect the BMLMC method with the MSS parallelization to scale weakly as well. To this end,

we fix the computing time on ten minutes and sequentially double amount of processing units, starting from

|P| = 16 up to |P| = 128. We then follow the remark to equation (3.34) and measure the error reduction rate

by utilizing more processing units via

err
|P |=128
RMSE

err
|P |=16
RMSE

= 0.5261
!
= 8e ⇔ e = −0.31.
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Figure 4.11: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5. Comparison
of MSS parallelism with naive parallelization.

Figure 4.12: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 while mea-
suring the strong scaling of the parallelism.
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Figure 4.13: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 while mea-
suring the weak scaling of the parallelism.

Method Experiments 4.10. So far, we have not argued for nor against a choice of η and θ. We present two

experiments with varying hyperparameters θ and η to settle on a parameter choice. First, we considered three

different splitting parameters θ ∈ {0.3, 0.5, 0.7} and applied the default method 4.6 to the default problem 4.5.

The results are shown in figure 4.14. We recall that θ is responsible for splitting the MSE, i.e.,

(E[QL −Q])2 < (1− θ)ε2 and V[Q̂MLMC
{M`}L`=0

] < θε2.

This results in solving subproblems of different structure since θ determines the length and the width of the

target εi-boxes. This can be seen in figure 4.14 on the left. In particular, for θ = 0.3 the variance reduction,

and for θ = 0.7 the bias reduction is favored by the method. For this experiment, we conclude that θ = 0.5

is the best choice. However, we further remark that we have tried an adaptive scheme to the relative budget

Ci/B0

θi = 0.7 · (1− Ci/B0) + 0.3 · Ci/B0

in the upcoming model problems. The idea is that the method draws new levels more likely at the beginning

of the simulation to improve the reliability. While this brings the advantage of exploring the levels faster,

the subproblems do not possess a nested structure anymore. Hence, this technique sacrifices the optimality

condition such that we choose θ = 0.5 for all experiments.

Next, we consider the parameter η. The results are shown in figure 4.15 for η ∈ {0.7, 0.8, 0.9}. Prior to the

experiment, we expected that this might have an influence on the load distributions since ∆Mi,` is heavily

dependent on η. However, by figure 4.15 we can conclude that taking larger steps in the minimization via a

smaller η does not bring any benefits for the load distribution and therefore η = 0.9 seems to be a reasonable

value yielding many estimation points without compromising on the load distribution.
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Figure 4.14: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 while using
different splitting parameters θ ∈ {0.3, 0.5, 0.7}.

Figure 4.15: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 while using
different ε-reduction parameters η ∈ {0.7, 0.8, 0.9}.
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Method Experiments 4.11. Lastly for the elliptic model problem, we shortly discuss figure 4.16 where

we applied different preconditioners to the default problem 4.5. In particular, we used a simple Jacobi and

Gauss-Seidel preconditioner which perform worse than the incomplete LU decomposition and also worse than

a multigrid preconditioner. However, by this figure we can deduce that the multigrid preconditioner gives the

best results. In particular, a detailed analysis of the computational data has shown that as soon as higher

levels get involved in the simulation the multigrid approach is the best preconditioner choice. The amount of

pre- and postsmoothing steps had no big influence on the results.

Figure 4.16: BMLMC method with configuration 4.6 applied to the elliptic problem configuration 4.5 while em-
ploying different preconditioners for the multi-sample system.
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4.2 Experiments on the Transport Model Problem

We now move to a computationally more challenging problem, namely model problem 1.2. We approximate

the randomized model problem in 3.3.3 with the methods of section 2.3.3 and conduct very similar experiments

as already presented, however, the computational load is much larger. We used the HoReKa supercomputer

and considered the following weak, semi-discrete and randomized model problem.

Model Problem 4.12. The semi-discrete formulation to the model problem 1.2 considering the randomness

in the input data as described in model 3.34 reads as: Seek for almost all fixed ω ∈ Ω the solution u` ∈ V dG
`,p≥0

such that

〈M `∂tu`(ω), φ`〉L2(D) + 〈A`(ω)u`(ω), φ`〉L2(D) = 0 for t ∈ (0, T ] and u`(ω, 0) = u0(ω)

with φ` ∈ V dG
`,p≥0 and

〈A`(ω)u`(ω), φ`〉L2(D) = 〈div F(ω, u`(ω)), φ`〉L2(D) +
∑

F⊂F\Γin

〈nK,F ·∆FK,F (ω, u`(ω)), φ`〉L2(F )

with ∆FK,F (ω, u`(ω)) := F∗K,F (ω,u`(ω))−F(ω,u`,K((ω))), the flux F(ω, u(ω)) = q(ω)u(ω) and the numerical

flux

F∗K,F (ω, u`(ω)) =


F(ω, uK(ω)) q(ω) · nK > 0 ∧ F ∈ F \ ∂D

F(ω, uK′(ω)) q(ω) · nK < 0 ∧ F ∈ F \ ∂D

0 F ∈ F ∩ ∂D \ Γin

.

We refer to 2.32 for the deterministic and discrete version of the problem.

Assuming that the true solution provides sufficient regularity and that we can bound for a fixed ω ∈ Ω∑
K∈K

∑
F∈FK

‖nK,F ·∆FK,F (ω,φ`)‖
2
L2(F ) ≤ CA(ω) 〈A`(ω)φ`,φ`〉L2(D) , ∀φ` ∈ V dG

`,p≥0

almost surely, we can apply theorem 2.31 to conclude semi-discrete convergence. However, examining the

regularity of the solution with respect to random flux field remains an open challenge for theoretical investi-

gations. Nevertheless, we will conduct experiments investigating the regularity of the problem with respect

to the input data. To this end, we consider the following default configurations.

Problem Configuration 4.13. We consider the strong formulation where we search for the solution u : Ω×
[0, 1]2 × [0, 1]→ R such that

∂tu(ω,x, t) + div q(ω,x)u(ω,x, t) = 0, u(ω,x, 0) = u0(ω,x).

The random initial data is modeled with the points c1, c2, c3 ∈ R2 where the first component of these points

is a uniformly distributed random variable U(0.25, 0.75) and the second component is 0.8. The function of
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the initial data is given by

u0(ω,x) =


max

c∈{c1,c2,c3}
‖x−c‖<1/6

(
cos
(
6π ‖x− c(ω)‖

)
+ 1
)2
,
∨3
i=1 ‖x− ci‖ < 1/6

0, else

.

In some experiments we also neglect the random initial data and only consider a mass concentration at

(0.5, 0.8)> with the same shape as above. Furthermore, the random flux field q is generated by solving the

elliptic configuration 4.5 on log-normal fields, i.e., we considered σ = 1.0, λ = (0.15, 0.15)> and ν = 1.8 and

solved the system with mixed finite elements to ensure flux preservation.

Two samples of the above configuration are presented in figure 4.17. Each column depicts the numerical

solution at times t ∈ {0.0, 0.25, 0.5, 0.75, 1.0} from top to bottom. The first column shows the spatio-temporal

development of the first sample on level ` = 8 where the second column shows the same sample solved on

level ` = 7. Both computations are needed in equation (3.17).

Method Configuration 4.14. We search for numerical solutions in V dG
`,p=2 using the numerical upwind flux

and initialize the BMLMC method with {M0,`}L`=0 =
{
M0,4 = 210, M0,5 = 28, M0,6 = 26, M0,7 = 24

}
. The

computation is deployed on the HoReKa supercomputer for T = 6 hours using |P| = 256 processes. The

hyperparameters of the method are chosen again as θ = 0.5 and η = 0.9. The semi-discrete system is solved

with an implicit midpoint rule where the time-step size is chosen for each sample with τ` = 2−(`+2). We refer

to {41} for the complete configuration of all upcoming jobs. The default quantity of interest is the total mass

at time T , i.e., the L1-norm since the solution is positive.

Problem Experiments 4.15. We start again by tweaking the covariance function of the log-normal field

inserted into the elliptic model problem. Since the flux used in default configuration 4.13 is given by q(ω,x) =

−κ(ω,x)∇uelliptic(ω,x), we examine how the regularity of the random field κ(ω,x) is transmitted to the

random flux field q(ω,x) and thus to the final solution of the transport equation utransport(ω,x, t).

Starting with two experiments of a varying σ ∈ {0.5, 0.75, 1.0} in figure 4.18 and a varying correlation

length λ ∈
{

(0.05, 0.05)>, (0.1, 0.1)>, (0.15, 0.15)>
}

in figure 4.19, we observe that, as in the elliptic case, σ

and λ do not influence the regularity of the solution and thus the convergence rate of the method. However,

they do influence the hidden constant.

Next, we drop the randomness in the initial data and examine the smoothing parameter ν of the covariance

function and how it influences the final solution of the transport problem. The results are given in figure 4.20.

By the convergence plot in the lower right we can clearly see that the regularity of the random field κ(ω,x)

indeed transmits all the way to the solution of the transport equation. A theoretical argument for this can

be sketched by combining the left result of table 4.1 for the |·|H1(D) semi-norm and considering the smooth

initial conditions, i.e., the solution maintains its smoothness up to the end time since no further disturbances

have been added by a rough flux field.

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/pipeline/mlmc-transport-on-horeka.yml
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Figure 4.17: Two samples of configuration 4.13 each with a fine and a coarse mesh and time resolution. The shown
time points are t ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.
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Figure 4.18: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13 for
varying variance of the covariance function.

Figure 4.19: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13 with
varying correlation length of the covariance function.
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Figure 4.20: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13 for
varying smoothness of the covariance function.

Method Experiments 4.16. Next, we investigate the relation between the time step size τ` and the mesh

width h`. As described in [141], finding the right ratio CCLF = τ`/h` is crucial to design a fast overall method.

If the ratio is too small, too many time steps are used. Likewise, if the ratio is too large, the arising system

which is to solve each time step is worse conditioned, leading to a slower overall method. Therefore, we run

the simulation with τ` = CCFL · 2−` for different constants. The results are shown in figure 4.21. As we are

in a budgeted framework, we can deduce by this figure that choosing CCFL = 0.25 leads to smallest errRMSE

and thereby, we fix this ratio for all levels.

Figure 4.21: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13 for
varying time step sizes.
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Method Experiments 4.17. We shortly outline the experiment of figure 4.22 where we used different

polynomial degrees for the ansatz functions of the dG method. We observe that for the given default problem,

even though the smoothing parameter was chosen as ν = 1.8, a higher degree is not worth to consider. As

in the elliptic case, using a more expensive discretization even leads to a worse estimated RMSE due to

the cost restrictions. We suspect that the reason for this is that the solution is very localized and that the

higher polynomial degree adds additional degrees of freedom where they are not necessary. This experiments

motivates to develop p-adaptive dG discretizations in future work to only use the higher polynomial degree

where it is actually beneficial to the computation.

Figure 4.22: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13 for
varying polynomial degree p of the dG ansatz funcitons.

Method Experiments 4.18. Last but not least, we investigate the proposed parallelism for this model

problem. To this end, we compare the naive parallelization again with the multi-sample system parallelization.

The interpretation of the previous section 4.1 is still valid, however, the experiment was conducted with

|P| = 256 processing units and two hours of total computing time. We note again, that the constant in the

convergence result 3.54 is heavily dependent on the parallelism.

Next, we investigate the weak scaling of the parallelization. We conduct the experiment again with the

idea of (3.34), i.e., we investigate the error reduction by adding further processing units. First, we notice by

the plot on the left of figure 4.24 that: the more processing units are added, the more samples are computed

on each level. Choosing comparable data points, we can deduce

err
|P |=512
RMSE

err
|P |=128
RMSE

= 0.6932
!
= 4e ⇔ e = −0.26.
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Figure 4.23: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13. Com-
parison of MSS parallelism with naive parallelization.

Figure 4.24: BMLMC method with configuration 4.14 applied to the transport problem configuration 4.13 while
measuring the weak scaling of the parallelism.
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4.3 Experiments on the Acoustic Wave Equation

We recall the model problem 1.3. In this last section, we discuss the application of implicit time-stepping

methods and space-time discretizations in combination with the BMLMC method and dG discretizations. This

last problem is computationally extremely challenging due to many sources of uncertainty and the complex

discretization procedure. We refer to section 2.3.4 for the discrete model problem and to section 3.3.4 for the

extension on random fields. In particular, we proceed as described in 3.3.4 and employ log-normal fields for ρ

and consider κ to be uniformly constant in the whole domain. Hence, the mass operator M(ω) and the flux

operator A(ω) inherit the randomness and therefore, we consider the following semi-discrete model problem.

Model Problem 4.19. For a fixed ω ∈ Ω, we search for an approximate solution u`(ω) ∈ V dG
`,p≥0 using dG

elements where we assume that the discrete operator satisfies M `(ω) ∈ L(V dG
`,p≥0, V

dG
`,p≥0) almost surely and

that we have cell-wise constant wave speeds cK(ω) =
√
κK/ρK(ω). The right-hand side is deterministically

chosen b` ∈ L2((0, T ), V dG
`,p≥0) such as in 2.3.4. The matrix M `(ω) is determined by a Galerkin approximation,

i.e.,

〈M `(ω)u`(ω),φ`〉L2(D) = 〈M(ω)u`(ω),φ`〉L2(D) , φ` ∈ V dG
`,p≥0.

The random flux operator is again constructed with upwind flux, i.e., for u`(ω) = (v`(ω), p`(ω))> ∈ V dG
K,p≥0

and φ` = (ϕ`, ψ`)
> ∈ V dG

K,p≥0, we define A`(ω) =
∑
K∈KA`,K(ω) ∈ L(V dG

`,p≥0, V
dG
`,p≥0) by

〈
A`,K(ω)u`(ω),φ`

〉
L2(K)

= −
〈
∇p`,K(ω),ϕ`,K

〉
L2(K)

− 〈div v`,K(ω), ψ`,K〉L2(K)

−
∑
F∈FK

1

ZK(ω) + ZK′(ω)

〈
Jp`,K(ω)KF + ZK′(ω)Jv`,K(ω)KF · nK,F , ψ`,K + ZK(ω)ϕ`,K · nK,F

〉
L2(F )

where ZK(ω) =
√
κKρK(ω) is a cell-wise random impedance.

Assuming again that the true solution provides sufficient regularity and that we can bound for a fixed

ω ∈ Ω ∑
K∈K

∑
F∈FK

‖nK,F ·∆FK,F (ω,φ`)‖
2
L2(F ) ≤ CA(ω) 〈A`(ω)φ`,φ`〉L2(D) , ∀φ` ∈ V dG

`,p≥0

almost surely, we can also apply theorem 2.31 to conclude semi-discrete convergence for this problem. Using

theorem 2.38 and under sufficient regularity assumptions, we can deduce convergence for the space-time

discretization, too. However, we emphasize again that for predicting the regularity of the true solution with

respect to the random material parameters more analytical investigations have to be done.

Problem Configuration 4.20. We consider the time interval [0, 1], deterministic and homogeneous initial

conditions (v0, p0) = (0, 0)> and a constant compression module κ(ω,x) ≡ 1 on the domain D = [0, 1]2. The

right-hand sides are given by f ≡ 0 and g(x, t) = 10 g1(t) g2(x). The function g1(t) is a Ricker-wavelet, i.e.,
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with a = π
10 , it is given by

g1(t) =
(

1−
(
t
a

)2) · exp
(
− t2

2a2

)
, t ∈ [0, 1].

The function g2(x) is a nascent delta function of width w = 0.1, i.e., with an appropriate constant ηg2 such

that ‖g2‖L1(D) = 1 and the center c = (0.5, 0.75)>, it is given by

g2(x) =


ηg2

exp

(
− 1

1−
∥∥∥x−c
w

∥∥∥2

)
‖x− c‖ < w

0 ‖x− c‖ ≥ w
.

Furthermore, we have employed log-normal fields as in the previous experiments with σ = 1.0, λ = (0.15, 0.15)>

and ν = 1.8. The default quantity of interest is the L2-norm in the region of interest DRoI = [0.25, 0.75] ×
[0, 0.25] at time T = 1.

Method Configuration 4.21. We search for numerical solutions in V dG
`,p=2 and start the BMLMC method

with θ = 0.5, η = 0.9 and {M0,`}L`=0 =
{
M0,4 = 210, M0,5 = 28, M0,6 = 26, M0,7 = 24

}
. The experiments

are conducted on the HoReKa supercomputer for T = 6 hours using |P| = 1024 processing units. The semi-

discrete system is solved using an implicit midpoint rule with the time step size τ = 2−`+3. The configuration

of the benchmark jobs is given in {42} .

Method Configuration 4.22. We also consider a space-time discretization using the dG ansatz space

V ST−dG
`,pK=1,pI=1 in combination with the BMLMC method on |P| = 512 processing units for two space dimensions

and on |P| = 64 for one space dimension. Furthermore, the computation times are T = 10 minutes and T = 12

hours for one and two dimensions, respectively. The space-time system is solved with the GMRES method

and a point-block Gauss-Seidel preconditioner. The technical configuration is given in {43} .

Figure 4.25: Space-time cube seen from the start t = 0.0 (left) and the end t = 1.0 (right).

https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/pipeline/mlmc-acoustic-time-stepping-on-horeka.yml
https://git.scc.kit.edu/mpp/mluq/-/blob/1.2.0/pipeline/mlmc-acoustic-space-time-on-horeka.yml
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The problem configuration 4.20 is illustrated in figure 4.25 using the space-time discretization of config-

uration 4.22. The figure shows a space-time cube seen from the first and the last time point. Additionally,

the problem configuration 4.20 is given in figure 4.26 using the implicit midpoint rule and configuration 4.21.

This figure illustrates the approximations at the time points t = 0.0625, t = 0.5 and t = 1.0 of two different

realizations m = 1 and m = 2.

(a) m = 1 and t = 0.0625 (b) m = 1 and t = 0.5 (c) m = 1 and t = 1.0

(d) m = 2 and t = 0.0625 (e) m = 2 and t = 0.5 (f) m = 2 and t = 1.0

Figure 4.26: Comparison of the temporal development of two sample solutions m = 1 and m = 2 to the acoustic
wave equation propagating through random media.

Problem Experiments 4.23. As we have seen in section 4.1 and 4.2 the structure of the log-normal field has

a big influence on the constant and the convergence rate of theorem 3.54. We will conduct a last investigation

of the log-normal field by adjusting once again σ in the covariance kernel. The results of this experiment are

given in figure 4.27. We see that we are in the case γ > β for this problem. Hence, the computational cost

is dominated by the highest level (confer the center right plot of figure 4.27). We further remark that the

BMLMC method works very reliably for this model problem and is capable to exhaust the large computational

budget of B = 1024 · 6 CPU hours completely.
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Figure 4.27: BMLMC method with problem and method configuration 4.20 applied to the acoustic problem
configuration for varying variance of the covariance function.

Method Experiments 4.24. First, we search again for the optimal ratio τ`/h`. The experiment is shown

in figure 4.28 from which we can conduct that CCFL = 0.125 yields the best results.

Next, we investigate the polynomial degree in figure 4.29. While we did not find any advantages in using

higher polynomial degrees for the previous model problems, we clearly see it for configuration 4.20. Even

though the method is not able to utilize the complete computational budget for all degrees, we can deduce

that degree p = 2 or p = 3 should be chosen in order solve this model problem.

We also investigate different implicit time-stepping schemes with a global convergence order of O(τ2). In

particular, we consider the Butcher tableaus, i.e., the configuration of aij , bi and ci (confer (2.22))

1/2 1/2

1

0 0 0

1 1/2 1/2

1/2 1/2

1/4 1/4 0

3/4 1/2 1/4

1/2 1/2
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which belong to the implicit midpoint rule (left), the Crank-Nicolson method (middle) and another diagonal

implicit Runge-Kutte method (right). By the lower right plot of figure 4.30, we firstly notice that all methods

give the same quantity of interest as expected. However, we also notice that by using the implicit midpoint

rule, the BMLMC method is able to draw more samples and even an additional level resulting in the smallest

error. We suspect that the reason for this is that the implicit midpoint rule only has one function evaluation

in (2.22) instead of two. Thus, the BMLMC method can utilize this cost savings to draw more samples.

Lastly, we mention that we experimented with explicit Runge-Kutta methods, too. The downside of explicit

Runge-Kutta methods is that we have to decrease the time step size τ drastically in order to stabilize the

computation uniformly over all samples. Locally adaptive schemes as in [122] might overcome this issue but

further investigations have to be conducted.

Figure 4.28: BMLMC method with configuration 4.21 applied to the acoustic problem configuration 4.20 for
varying polynomial degree p of the dG ansatz funcitons.

Figure 4.29: BMLMC method with configuration 4.21 applied to the acoustic problem configuration 4.20 for
varying polynomial degree p of the dG ansatz funcitons.
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Figure 4.30: BMLMC method with configuration 4.21 applied to the acoustic problem configuration 4.20. Com-
parision of the implicit midpoint rule (IMPR), the Crank-Nicolson method (CR) and a diagonal implicit Runge-Kutta
method (DIRK).

Method Experiments 4.25. Once again, we compare the naive parallelization with the multi-sample par-

allelism. The results are given in figure (4.31) from which we can draw the same conclusion as in the previous

sections. Furthermore, we conducted a weak scaling experiment, i.e., increasing the computational ressources

from |P| = 128 to |P| = 2048 while keeping the computational time fixed to T = 6h. Following (3.34), we can

deduce with comparable data points

err
|P |=2048
RMSE

err
|P |=128
RMSE

= 0.3893
!
= 16e ⇔ e = −0.34.

By figure (4.31) on the right, we can observe that the BMLMC method in combination with the multi-sample

systems utilizes the additional computing ressources effectively for error reduction and thereby scales weakly

very well.
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Figure 4.31: BMLMC method with configuration 4.21 applied to the acoustic problem configuration 4.20. Com-
parison of MSS parallelism with naive parallelization.

Figure 4.32: BMLMC method with configuration 4.21 applied to the transport problem configuration 4.20 while
measuring the weak scaling of the parallelism.

Problem Configuration 4.26. We consider a one-dimensional space-time problem on an open spatial

domain D = (0, 1) and a random material density ρ : Ω ×D → R which is in [0.25, 0.75] modeled with one-

dimensional log-normal fields generated with the ciruclant embedding method with the default parameters

of 4.20. For the rest of the domain we choose ρ ≡ 0.5. The quantity of interest is the L2-norm over the whole

space-time square. Furthermore, we consider homogeneous right-hand sides and the initial conditions

p0(x) =

cos2(5πx) |x| < 0.1

0 |x| ≥ 0.1
, v0(x) = −p0(x).

Method Experiments 4.27. We conduct experiments with the space-time discretization in one and two

space dimensions. For the one-dimensional problem we consider the configuration 4.26. The results are

presented in figure 4.33. We first note that γ > β and that the cost is dominated by the highest level. We

further observe again that σ influences the hidden constant and that the method delivers feasible results for
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Figure 4.33: BMLMC method with configuration 4.22 applied to the acoustic problem configuration 4.26.

this configuration.

Moving on to the two-dimensional case given in figure 4.34 solving the problem configuration 4.20, we see by

the lower left plot that the GMRES method with point-block Gauss-Seidel preconditioner still satisfies (3.15)

for the multi-sample space-time system. However, the computational cost is rather high such that level nine

can not be computed with the given configuration. Speeding up the linear solver with sufficient multi-grid

preconditioning as proposed in [77, 62] enables to draw more samples and levels to further improve the

estimates of the exponents. We leave the integration of a more performant preconditioner open for further

investigations.

Outlook 4.28. In [190] the usage of a SC method for wave equations is proposed. We suspect that for

a moderate parametric dimension and sufficient regularity a SC method outperforms the MLMC method.

However, the application of the SC or even the MLSC is more difficult, and it is not obvious for which

problem configuration the stochastic collocation yields better results. We have taken first steps towards

incorporating stochastic collocation methods in our framework by integrating the library TASMANIAN [234]

and distributing the collocation points on the parallel data structure. However, since we have not conducted

an error analysis nor further numerical experiments we only present a proof of concept by figure 4.35. In

this computation, we employed sparse grids to mimic random initial data, a dG discretization in space and

the implicit midpoint rule. The figure illustrates the initial condition and two samples evaluated at the time

points t = 0.0625, t = 0.5 and t = 1.0.
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Figure 4.34: BMLMC method with configuration 4.22 applied to the acoustic problem configuration 4.20.

(a) m = 1 and t = 0.0625 (b) m = 1 and t = 0.5 (c) m = 1 and t = 1.0

(d) m = 2 and t = 0.0625 (e) m = 2 and t = 0.5 (f) m = 2 and t = 1.0

Figure 4.35: Acoustic wave equation with intial data modeled by sparse grids. Comparison of two samples m = 1
and m = 2 assoicated with different collocation points and illustration of the initial condition.
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5
Conclusion and Outlook

Man is a decision-making animal and, above all, conscious of this fact. This self-scrutiny has led to

continuing efforts to find efficient ways of behaving in the face of complexity and uncertainty.

- Richard Bellman, 1966, [32]

Retrospective View

MLMC methods have been very successfully applied to many problems and a rich theory around the multi-level

estimation idea was developed within the last decade. The main reason for this is arguably the simplicity of the

assumptions 3.45 providing an easy and accessible interface to the application of the method. This PhD thesis

started with the goal to develop multi-level Monte Carlo (MLMC) methods combined with suitable spatio-

temporal discretizations for wave equations in random media. However, this turned out to be a challenging

task because modeling highly heterogeneous random media requires a large amount of random variables and

the solutions possess little regularity with respect to the material parameters. Out of these two reasons, the

computational demand to approximate a solution is extremely high.

When we started with our investigations, there was already preliminary work for this particular application

case in [185, 238], but we wanted to go beyond and combine the MLMC method with further spatio-temporal

discretizations to achieve uniform stability over all samples. In particular, we wanted to be able to select from

a collection of time-stepping methods and to employ discontinuous Galerkin and space-time discretizations as

published in [141, 62, 75, 39]. To achieve this, we started to apply the MLMC method to simpler problems first

such as the elliptic model of subsurface flows and the hyperbolic transport model in a randomly distributed
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flux field. The results of this preliminary work are published in [28]. However, we soon realized that moving

from the simpler to the more challenging models requires a comprehensive framework to investigate arbitrary

models with high-dimensional input data. In this thesis, we took first steps towards a unified application of

methods from finite element theory and uncertainty quantification.

The extremely high computational demand resulting from the discretization in space and time as well as

the high-dimensional parameter space motivated us to search for new ways to distribute the work load on a

supercomputer. At this point, software development and high-performance computing became the main focus

in this thesis. Developing the new parallelization following the simple idea of (2.4) required many changes in

the preexisting code base. All parallelization aspects touched in chapter 2 essentially describe where we had

to implement the changes in order to solve multiple samples in a singular distributed data-structure. Even

though there have been approaches [16, 237, 79] to tackle the parallelization issue of MLMC methods, no

solution has emerged to popularity yet. While we experimented with similar techniques at the beginning, an

integrated solution soon proved to be reliable and more open to new features like integrating the SC method,

the BMLMC method or automated benchmarking.

To move towards an integrated solution safely, effectively and efficiently, we also adapted the development

workflow itself, i.e., we have explored continuous delivery and agile working methodologies for research software

inspired by [6, 15, 88]. At the center of this workflow was the development of a continuous delivery pipeline

which enabled us to deploy all computations completely automated on large computing clusters like the

HoReKa supercomputer.

This workflow and the idea to empirically find the best algorithm combination to minimize (1.1) motivated

the knapsack problem. This new point of view enabled the design of the final BMLMC method with dynamic

programming techniques and ideas of the continuation MLMC [61] method. Our new method is theoretically

motivated, numerically well-tested and has proven to perform extremely robust and reliable. We see it as tool

”to find efficient ways of behaving in the face of complexity and uncertainty”.

Conclusion

The main contributions and features of this thesis are:

• We demonstrate the applicability of MLMC methods to a wide selection of PDEs by utilizing various

finite element and time discretization methods. Among these PDE models, we investigate the numer-

ically highly challenging problem of approximating acoustic wave equations in random, heterogeneous

media.

• We motivate, implement and test a new parallelism for the joint effort of UQ and FE methods. The

parallelism is based on a single, massively distributed data-structure representing multiple samples

discretized with finite element methods.

• We introduce a new workflow for developing and verifying high performance research software and

conduct numerical experiments completely automated and repeatable via a continuous delivery pipeline.



137

• We propose a new budgeted variant of the MLMC which proves to be widely applicable. The BMLMC

methods requires little a priori knowledge, shows to be reliable and robust, and delivers results in a

performant and fully parallelized manner.

Outlook

Applications. To pick up on the initial goal of this thesis, i.e., to establish MLMC methods for wave

equations, we still see a lot of potential for further research. In particular, approximating visco-elastic waves

or Maxwell systems with the current framework is computationally achievable. The techniques proposed

in [141, 75, 39, 62, 76] consider these new types of models already. However, solving these systems remains

challenging due to their high computational and analytical complexity in three space-dimensions. We currently

believe it is as a matter of scaling everything up while carefully extending the theory to these new models.

Additionally, the framework can be extended to many other PDEs and answer questions for example arising

in material sciences.

Applications of M++ which might benefit from additional uncertainty quantification are: enhancing

cardio-vascular simulations [94, 102, 95] with probabilistic cell-models, combining the proposed UQ meth-

ods with interval arithmetics [261], developing uncertainty models for carbon capturing [150] or developing

a Bayesian perspective for the preexisting full-wave inversion [39, 83]. All of these applications impose new

theoretical questions but also further challenges for the software development.

Software. Developing software is an endless effort, it is never finished and improvements can always be

implemented. We shortly present ideas on further features for M++: Effective preconditioning, especially for

randomly distributed and high-dimensional systems, is essential for efficient computations. This is particularly

true for space-time systems. Integrating a highly performant multi-grid preconditioner based on [62, 77] into

the UQ application is an open issue but promises to further speed up the computations. Another improvement

of the linear solver performance could be achieved by the integration of Ginkgo [7]. Having a clean interface

to this solver library would allow to solve multi-sample systems on GPU clusters.

We further note that designing accessible interfaces for scientists applying these methods to their problems

is key to the success of the software tool. We think that developing Python bindings wrapping the C++ code

(like [197, 161]) can drastically improve the usability. Alternatively, computational methods including the

hardware ressources could be provided by a software as a service (SaaS) model. This would expose the

developed methods to a broader scientific community.

The development of budgeted MLSC, MLQMC or MIMC methods on the same distributed data-structure

would enable to choose the best non-intrusive UQ method for a particular model by comparing the development

of the estimated errors. This can include multi-level estimators for higher central moments as proposed in [155]

or even conditional expectations and probability distributions [11] to be able to further characterize the output

of highly complex and random systems.

UQ Methods. Gathering certainty comes with a cost. Thereby, we see great potential in linking UQ

problems with problems of optimal ressource allocation. We think that the connection between UQ and
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dynamic programming/reinforcement learning can yield many new algorithms of high practical relevance.

In particular, we suspect that the integrated parallelism and the BMLMC method can be utilized to solve

optimal control problems with an uncertain PDE constraint. In [100, 101, 175] stochastic gradient descent

methods are developed for this problem class. We have already taken first steps to realize these methods

in our framework and plan to employ the BMLMC method to further speed up the optimization inspired

by the batched gradient descent. Lastly, we also take developments towards inverse UQ [217, 73, 74] into

consideration. Solving Bayesian inverse problems requires an efficient evaluation of the forward model and

thus, we suspect that we can contribute to this field with our integrated, budgeted and fully parallelized

framework.
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Appendix

A.1 Sobolev Spaces and Existence Theory

We shortly recall the definition of Sobolev spaces, weak solutions as well as some existence theory. We consider

everything on a bounded and polygonal domain D ⊂ Rd with the boundary ∂D.

Definition A.1. Let α = (α1, . . . , αk)> ∈ Nk0 be a multiindex of order k ∈ N with |α| := α1 + · · ·+ αk and

v, w ∈ L1
loc(D) be locally integrable function. We call w the α-th weak derivative of v, if for all test functions

φ ∈ C∞0 (D) ∫
D

vDαφ dx = (−1)|α|
∫
D

wφdx with Dαφ =
∂|α|φ

∂φ1
α1 . . . ∂φk

αk .

By choosing the test function space to C∞0 (D) the existence of Dαφ is assured and the boundary terms

vanish. The space of all functions with weak derivatives is a Sobolev space.

Definition A.2. Let D ⊂ Rd and p ∈ [1,∞]. The Sobolev space Wk,p(D) is the space of functions v ∈ Lp(D)

for which all weak partial derivatives up to order k are contained in the Lebesgue space Lp(D). For functions
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v ∈Wk,p(D) the Sobolev norm is given by

‖v‖Wk,p(D) =



∫
D

∑
|α|≤k

|Dαv|p dx

 1
p

, p <∞

ess sup
x∈D

sup
|α|≤k

|Dαv| , p =∞

.

Definition A.3. There are some Sobolev spaces of particular interest for this work.

a) If p = 2, we write Hk(D) := Wk,2(D). This is a Hilbert space with the inner product

〈u, v〉Hk(D) =
∑
|α|≤k

〈Dαu,Dαv〉L2(D) ,

and the induced (semi-)norm

‖v‖Hk(D) =

∫
D

∑
|α|≤k

|Dαv|2 dx

 1
2

and |v|Hk(D) =

∫
D

∑
|α|=k

|Dαv|2 dx

 1
2

.

b) The completion of C∞0 (D) with respect to ‖·‖H1(D) is called H1
0(D). The trace theorem [42, Chapter 3]

verifies that this definition is meaningful and equivalent to

H1
0(D) =

{
v ∈ H1(D) : v|∂D = 0

}
.

Hence, C∞0 (D) is dense in H1
0(D).

c) The divergence Sobolev space is given by

H(div, D) :=
{
v ∈ L2(D,Rd) : div v ∈ L2(D)

}
.

d) For any real r ≥ 0 with r 6∈ N and k ∈ N, we set r = k + s with 0 < s < 1. The Sobolev–Slobodeckij norm

is defined by

‖v‖Hr(D) =
(
‖v‖2Hk(D) + |v|2Hr(D)

) 1
2

,

where

|v|Hr(D) =

∫
D×D

∑
|α|=k

[Dαv(x1)−Dαv(x2)]2

‖x1 − x2‖d+2s
dx1dx2

 1
2

.

Then we can define the broken Sobolev space Hr(D) as the space of functions lying in Hk(D) for which

the integral |v|Hr(D) is finite.

Sobolev spaces can be used as solution spaces for the deterministic PDEs. To this end, we recall some

existence theory.
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Definition A.4. Let V be a Hilbert space with the inner product 〈·, ·〉 and let a : V ×V → R be a symmetric

bilinear form, i.e., a(u, v) = a(v, u) for all u, v ∈ V . The bilinear form is called V -elliptic if:

a) a is continuous, i.e., there exists c1 > 0, such that |a(u, v)| ≤ c1 ‖u‖ ‖v‖ for all u, v ∈ V .

b) a is coercive, i.e., there exists c2 > 0, such that a(v, v) ≥ c2 ‖v‖2 for all v ∈ V .

Theorem A.5 (Lax-Milgram). Let V be a Hilbert space and a : V × V → R be a symmetric and V -elliptic

bilinear form. Then, for every fixed and bounded f ∈ V ′ the problem (2.8) has a unique solution uf ∈ V and

we have ‖uf‖V ≤ c
−1
2 ‖f‖V ′

Proof. The argument can for example be found in [84, Chapter 6.2].

Lastly, we give the inf-sup condition under which we can ensure well-posedness of problem 2.12. We follow

the terminology of [81] and call this result Banach-Nečas-Babuška since it was formulated firstly by Nečas on

Banach spaces and then popularized by Babuška in the context of FEM.

Theorem A.6 (Banach-Nečas-Babuška (BNB)). Let exactly the setting of problem 2.12 be given, i.e.,

(V, ‖·‖V ) and (Ṽ , ‖·‖Ṽ ) are Banach spaces with Ṽ being reflexive. The problem is well-posed if and only

if:

∃c > 0: inf
w∈V

sup
v∈Ṽ

a(w, v)

‖w‖V ‖v‖Ṽ
≥ c and

∀v ∈ Ṽ : (∀w ∈ V, a(w, v) = 0)⇒ v = 0

The first condition is equivalent to

∀w ∈ V : c ‖w‖V ≤ sup
v∈Ṽ

a(w, v)

‖v‖Ṽ
.

Moreover, it holds for all f ∈ V ′, that ‖u‖V ≤ c−1 ‖f‖V ′ .

Proof. The proof is given in [81, Chapter 2, Appendix B], the a priori estimate can be directly concluded by

c ‖u‖V ≤ sup
v∈Ṽ

a(u, v)

‖v‖Ṽ
= sup
v∈Ṽ

f(v)

‖v‖Ṽ
= ‖f‖V ′ .

A.2 Probability and Estimator Theory

We recall the majority of results from probability and estimator theory necessary for the investigations in this

thesis. For a detailed introduction we refer to [169, 170] or [86].

Definition A.7. a) Let Ω be a set. The power set 2Ω := {U : U ⊆ Ω} is the set of all subsets of Ω.
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b) Let Ω 6= ∅ be a set and 2Ω be the power set. A system of sets F ⊆ 2Ω is called σ-algebra, if

i) Ω ∈ F , ii) B ∈ F ⇒ (Ω \ B) ∈ F , iii) {Bm}m∈N ⊂ F ⇒
⋃
m∈N Bm ∈ F .

c) Let Ω be a set and F ⊆ 2Ω be a σ-algebra. Let {Bm}m∈N ⊂ F and Bm ∩ Bm′ = ∅ for all m,m′ ∈ N. A

function µ : F → R is called measure, if

i) µ(∅) = 0, ii) ∀B ∈ F : µ(B) ≥ 0, iii) µ (
⋃∞
m=1 Bm) =

∑∞
m=1 µ(Bm).

d) A function P : F → [0, 1] is called probability measure, if P : F → [0, 1] is measure with P(Ω) = 1.

Definition A.8. a) We call (Ω,F ,P) a probability space, if Ω is the space of random elementary events,

F ⊆ 2Ω is a σ-algebra and P : F → [0, 1] is the probability measure.

b) Let (Ω,F ,P) be a probability space and (Ξ,F ′) be a measurable space. Then, a real valued random variable

(random vector) is a measurable function Y : Ω → Ξ ⊂ R (Y : Ω → Ξ ⊂ RK) mapping from the space of

events into the space of possible outcomes.

c) Let (Ω,F ,P) be a probability space and Y : Ω → Ξ ⊂ R be a random variable. Then, we call a fixed

ω(m) ∈ Ω with y(m) = y(ω(m)) ∈ Ξ ⊂ R a realization or a sample. We use m as superscript to distinguish

between samples. Likewise for a random vector Y : Ω → Ξ ⊂ RK , we call for a fixed ω(m) ∈ Ω with

y(m) = y(ω(m)) ∈ Ξ ⊂ RK a sample.

At this point we remark, that most of this recall on probability theory is done for random variables and not

random vectors in order to avoid an increased notational complexity. The intent is to fix on the terminology,

however, everything defined below can be similarly defined for random vectors.

Definition A.9. a) For a given continuous random variable Y : Ω→ Ξ, the cumulative distribution function

(CDF) is given by

FY (y) := P(Y ≤ y) ∈ [0, 1] =̂ probability that the random variable Y is less than or equal to y.

The CDF is a non-decreasing function FY (y) ≤ FY (y+ ỹ) for some ỹ > 0, hence, it can be used to quantify

the probability that the random variable Y is between y1 and y2 by P(y1 < Y ≤ y2) = FY (y2)− FY (y1).

b) If Y is a continuous random variable, the probability density function (PDF) is defined by

fY (y) =
dFY
dy

⇒ P(y1 < Y ≤ y2) =

∫ y2

y1

fY (y)dy.

c) If Y only has countably many discrete outcomes, we define the probability mass function (PMF)

fY (y) = P(Y = y) ⇒ FY (y) =
∑
Y≤y

fY (y).
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d) The joint CDF of two random variables Y1, Y2 is given by FY1,Y2
(y1, y2) := P(Y1 ≤ y1 ∧ Y2 ≤ y2).

e) Let {Ym}Mm=1 be a sequence of random variables. We call these variables identically distributed, if they

possess for all pairs (m, m̃) and all y ∈ Ξ the same CDF FYm(y) = FYm̃(y).

f) Let {Ym}Mm=1 be a sequence of random variables. We call these variables mutually independent, if

FY1,...,YM (y1, . . . , yM ) =
∏M
m=1 FYm(ym).

g) Let {Ym}Mm=1 be a sequence of random variables. If the random variables are independent and identically

distributed, we call it iid.

h) Let Y1 and Y2 be two random variables with discrete outcome. The conditional PMF

P(Y1 = y1|Y2 = y2) =
P(Y1 = y1 ∧ Y2 = y2)

P(Y2 = y2)
, P(Y2 = y2) 6= 0

gives the probability to observe y1 in Y1, given that the outcome of Y2 is y2.

i) Let now Y1 and Y2 be continuous random variables. The conditional PDF is then

fY1|Y2=y2
(y1) =

fY1,Y2
(y1, y2)

fY2(y2)
with fY1,Y2(y1, y2) =

∂2FY1,Y2
(y1, y2)

∂y1∂y2
.

Thereby this gives the PDF of Y1, given that y2 is observed in Y2.

Theorem A.10 (Bayes’ theorem). The conditional probability of a discrete random variable Y1, given that

Y2 takes the value y2 with P(Y2 = y2) 6= 0, can be computed via

P(Y1 = y1|Y2 = y2)︸ ︷︷ ︸
=̂Posterior

=
P(Y1 = y1)P(Y2 = y2|Y1 = y1)

P(Y2 = y2)
h P(Y1 = y1)︸ ︷︷ ︸

=̂Prior

P(Y2 = y2|Y1 = y1)︸ ︷︷ ︸
=̂Likelihood

.

Likewise, for continuous random variables it is

fY1|Y2=y2
(y1)︸ ︷︷ ︸

=̂Posterior

=
fY1

(y1)fY2|Y1=y1
(y2)

fY2
(y2)

h fY1(y1)︸ ︷︷ ︸
=̂Prior

fY2|Y1=y1
(y2)︸ ︷︷ ︸

=̂Likelihood

.

Proof. Simply follows by the definition of the conditional PMF (conditional PDF) in both directions.

Bayes’ theorem is of great importance in applied statistics and generally in the scientific method. It

allows to update a prior believe (a hypothesis) about a random variable based on observed evidence. The

likelihood models the probability of the evidence being true, given the hypothesis. The result of Bayes’

theorem, commonly called posterior, is the probability of the hypothesis, given the observed evidence. If this

probability is too small, we reject the hypothesis.

Definition A.11. For the following definitions, we assume that Y : Ω→ Ξ is sufficiently measurable, i.e., the

integrals in the definitions below are finite.
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a) The median is the point y, where the CDF takes the value FY (y) = 0.5, thereby the median splits all

samples into equally sized halves.

b) The expected value (mean) µY of a random variable Y : Ω→ Ξ is given by

µY := E[Y ] :=

∫
Ω

Y (ω)dP =

∫ ∞
−∞

yfY (y)dy.

c) The variance σ2
Y of a random variable Y : Ω→ Ξ is given by

σ2
Y := V[Y ] := E

[
(Y − µY )2

]
= E[Y 2]− 2µY E[Y ] + E[µ2

Y ] = E[Y 2]− µ2
Y ,

thereby it is the average of the squared distance between a random variable and its mean.

d) The skewness of a random variable Y : Ω→ Ξ is given by

S[Y ] := E

[(
Y − µY
σY

)3
]

=
E
[
(Y − µY )3

]
V[Y ]3/2

,

which measures the symmetry of the distribution around the mean. A positive skewness means that the

distribution leans to the left, where a negative skewness means that it leans to the right.

e) The kurtosis of a random variable, a measure of the tailedness of the PDF, is given by

K[Y ] := E

[(
Y − µY
σY

)4
]
,

where a high kurtosis corresponds to greater outliers.

f) The q-th central moment is given by Mq
Y := E[(Y − µY )q] and we notice its use above.

Estimator theory. Estimators are rules to compute approximative statistical quantities of a random vari-

able Y : Ω → Ξ. An estimator is depicted by equipping the random variable with a hat Ŷ . As estimators

are functions on random variables, they are random variables Ŷ : Ω → Ξ as well. Thereby, we can study

everything from above equally well for estimators, say for example a sample of an estimator is an estimate

which will be indexed with i to not confuse it with the sample (population) size M of the estimator. We recall

a few properties of estimators (confer [86, 165]). Even though estimators can be used for other quantities as

well, we will focus on estimating the expected value µY .

Definition A.12. a) For a given estimate Ŷ (i), the error is defined by err(i) := Ŷ (i) − µY .

b) An error independent of the individual estimate is the (root) mean squared error ((R)MSE)

errMSE(Ŷ ) := E
[(
Ŷ − µY

)2
]
, errRMSE(Ŷ ) :=

(
E
[(
Ŷ − µY

)2
])1/2

.
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It measures the squared distance, on average, of the estimates to the QoI.

c) Since estimators are random variables as well, we can define the estimator variance

V[Ŷ ] := E
[(
Ŷ − E[Ŷ ]

)2
]
.

It measures the squared distance, on average, of the estimates to the expected estimates.

d) The estimator bias is given by E[Ŷ ]− µY . It is called unbiased, if E[Ŷ ] = µY .

e) Let the estimator be guided by the population size M . It is called asymptotically unbiased, if

lim
M→∞

E[ŶM ] = µY .

f) The estimator tolerance ε is given with the confidence 1− δ

P
(∣∣∣Ŷ − µY ∣∣∣ > ε

)
≤ δ ⇐⇒ P

(∣∣∣Ŷ − µY ∣∣∣ ≤ ε) > 1− δ,

where δ ∈ (0, 1) is a small probability.

g) Let the estimator be guided by the population size M . It is called weakly consistent, if for all ε > 0

lim
M→∞

P
(∣∣∣ŶM − µY ∣∣∣ > ε

)
= 0 ⇐⇒ lim

M→∞
P
(∣∣∣ŶM − µY ∣∣∣ ≤ ε) = 1

h) The estimator ŶM is called MSE-consistent, if limM→∞ errMSE = 0. Consistency can thereby be concluded

by a vanishing estimator variance and asymptotic unbiasedness

errMSE(Ŷ ) = E
[(
Ŷ − E[Ŷ ] + E[Ŷ ]− µY

)2
]

= V[Ŷ ] + (E[Ŷ ]− µY )2 = V[Ŷ ] + (E[Ŷ − µY ])2.

i) An estimator is called efficient, if out of all unbiased estimator it has the smallest variance.

In practice, an estimator Ŷ1 can only be called more efficient than another estimator Ŷ2. For biased

estimators the MSE has to be considered to decide for the more efficient estimator instead of the variance.

Furthermore, assuming that we can control the variance of the estimator V[Ŷ ] as well as the bias (E[Ŷ −Y ])2,

we can formulate with θ ∈ (0, 1) the bias-variance trade-off

errMSE(Ŷ ) = θV[Ŷ ] + (1− θ)(E[Ŷ − µY ])2.
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[186] S. Mishra, Ch. Schwab, and J. Šukys. “Multilevel Monte Carlo finite volume methods for shallow water
equations with uncertain topography in multi-dimensions”. In: SIAM J. Sci. Comput. 34.6 (2012),
B761–B784. issn: 1064-8275. doi: 10.1137/110857295. url: https://doi.org/10.1137/110857295.

[187] Siddhartha Mishra, Christoph Schwab, and Jonas Šukys. “Multi-level Monte Carlo finite volume meth-
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