22,962 research outputs found

    CERN Storage Systems for Large-Scale Wireless

    Get PDF
    The project aims at evaluating the use of CERN computing infrastructure for next generation sensor networks data analysis. The proposed system allows the simulation of a large-scale sensor array for traffic analysis, streaming data to CERN storage systems in an efficient way. The data are made available for offline and quasi-online analysis, enabling both long term planning and fast reaction on the environment

    The composite load spectra project

    Get PDF
    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    The NIF LinkOut Broker: A Web Resource to Facilitate Federated Data Integration using NCBI Identifiers

    Get PDF
    This paper describes the NIF LinkOut Broker (NLB) that has been built as part of the Neuroscience Information Framework (NIF) project. The NLB is designed to coordinate the assembly of links to neuroscience information items (e.g., experimental data, knowledge bases, and software tools) that are (1) accessible via the Web, and (2) related to entries in the National Center for Biotechnology Information’s (NCBI’s) Entrez system. The NLB collects these links from each resource and passes them to the NCBI which incorporates them into its Entrez LinkOut service. In this way, an Entrez user looking at a specific Entrez entry can LinkOut directly to related neuroscience information. The information stored in the NLB can also be utilized in other ways. A second approach, which is operational on a pilot basis, is for the NLB Web server to create dynamically its own Web page of LinkOut links for each NCBI identifier in the NLB database. This approach can allow other resources (in addition to the NCBI Entrez) to LinkOut to related neuroscience information. The paper describes the current NLB system and discusses certain design issues that arose during its implementation

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • …
    corecore