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Abstract 

The project aims at evaluating the use of CERN computing infrastructure for next 

generation sensor networks data analysis. The proposed system allows the simulation of a 

large-scale sensor array for traffic analysis, streaming data to CERN storage systems in 

an efficient way. The data are made available for offline and quasi-online analysis, 

enabling both long term planning and fast reaction on the environment. 
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1 Introduction 

1.1 Large Scale Wireless Sensor Networks 

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous devices 

which cooperate, by means of wireless communication, in order to fulfil their tasks, 

which are generally based on the monitoring of physical or environmental conditions, or 

most recently in acquiring and processing multimedia information. The sensor network is 

a network consisting of spatially distributed devices equipped with sensors which are 

used to collect physical data and monitor environmental condition at different locations. 

In a typical sensor network, nodes cooperate to complete the task of collecting raw data 

and return to the application back-end. In essence, the nodes within such a network have 

at least computation, wireless communication, and sensing functionality, all 

characteristics which candidate WSNs to become the key technology for pervasive 

sensing and computing. 

1.1.1  Network protocols for WSN 

Over the past few years the research community has focused on designing protocols to 

enable the integration of WSN nodes into the Internet world, following the Internet of 

Things (IoT) concept. Indeed, protocols for the traditional Internet are often unsuited for 

embedded devices that are usually constrained in terms of computing power, memory, 

and network interfaces. The main outcome of this research effort is an adaptation layer 

for IPv6 allowing to transmit IPv6 packets over IEEE 802.15.4 networks. 6LoWPAN, 

i.e., an adaptation of IPv6 for low-power devices, have proven to be a valid alternative to 

traditional WSNs employing proprietary protocols[1]. Another important step towards the 

IoT is the on-going drafting of the Constrained Application Protocol (CoAP), an HTTP-

like protocol especially designed for constrained devices. CoAP permits to create 

embedded web services running on IoT nodes[2], thus extending the successful web 

architecture, based on the REST paradigm, to the IoT. The basic idea is that IoT nodes 

are responsible for one or more resources that may represent sensors, actuators, 

combinations of values or other information. Internet devices can send messages to 

change and query resources on IoT nodes. IoT nodes can also send notifications about 

changed resource values to devices that have subscribed to receive notification about 

changes.  

1.2 Motivation 

Wireless Sensor Networks are increasingly used in various application domains like 

home-automation, agriculture, industries and infrastructure monitoring. Potential 

worldwide deployment of WSNs for, e.g., environmental monitoring purposes could 

yield data in amounts of petabytes each year. Deployments of Large-scale WSNs (LS-

WSNs) have potential to shed light on a number of environmental phenomena, such as 

progression of climate change, pollution levels, effects of urbanization, water 

management, and so on. Large Scale WSN deployment require development of solutions 

for storing and reasoning about the potentially huge amounts of data they would generate.  
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Different application may have different demands on data sources and data processing, 

and different requirements in terms of timeliness. We Consider the case study of a large 

scale Intelligent Transportation System (ITS) in which a large number of small sensor are 

deployed as road side units all over the road network. There are many possible 

applications for such network, with different timeliness requirements:  

1. Vehicle tracking; Vehicle can be tracked in different ways, using smart camera 

sensors, RFID. Vehicle tracking is a hard real-time application. 

2. Traffic dispatching; Traffic dispatching need real-time data of traffic flow, 

weather data and so on. Traffic scheduling is a soft real-time application, as 

several minutes lag will not cause suffering result. If all the traffic related data are 

sent to the data centres of the cloud, the inflowing data may cause network 

congestion. If the scheduling algorithm is only based on the real-data, there is no 

need to store the collected data in the cloud, but if it is a prediction algorithm 

based on historical data, the collected data must be stored in the cloud. 

3. Expressway planning. Unlike in the scenario of traffic dispatching, expressway 

planning does not need real-time data, but need huge historical data. The cloud 

data centres can collect statistical data from local servers, and complete the 

computation using the cloud computing resources. 

From the analysis of these case studies it is clear that a common requirement is to run 

complex analysis on large data coming from distributed sensors, and possibly use the 

output of the computation to inject a feedback to the environment. In this project we 

consider the problem of interconnecting a large-scale WSN infrastructure to a “cloud” of 

storage and computing systems. In particular the project has the goal to provide a 

preliminary evaluation of the requirements and issues of a control loop between the 

sensor system and the computing infrastructure, in order to provide a feedback on the 

environment. Both “real-time” and “long-term” analysis use cases has been considered, 

with different pattern of data analysis: data-intensive (map-reduce) and CPU-intensive 

(batch processing). 
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2 Related Work 

In recent years the research community started to consider the problem of interconnecting 

large-scale WSN to storage and computing infrastructures. In [3] the adoption of the 

Map-reduce programming model for the processing of sensor data is evaluated. The high 

costs of deploying WSNs in harsh environments providing no infrastructure result into a 

non-uniform geographical distribution of sensor nodes. The spatial interpolation of a 

phenomenon in such regions is highly important. In the proposed solution data from VLS 

WSN are collected in tables HBase, then statistical geospatial algorithms (dealing with 

missing measurements) are applied. Spatial-temporal analysis is based on data 

windowing, i.e. selecting a geographical region and applying the analyses on the 

window-contained nodes alone. The Map-Reduce model is then applied on tables 

representing large matrices.  

In [4] a data processing model based on Cloud computing for very large scale sensor 

network is proposed. Specifically the authors deal with the problems of how to store the 

data and where to process it; if all the data are send to the data centres of the cloud at the 

sampling time, the inflow of massive data to the wide-area networks may cause network 

congestion. Moreover If all the data of the sensors are processing at the cloud, the 

communication latency may make the applications requiring for real-time demand 

intolerable. The authors propose a multilevel data processing model based on cloud 

computing. The architecture of the system is shown in Figure 1. In this model the 

massive sensor data and node information are stored in multilevel data storage including 

local data bases of different devices and distributed data bases of cloud; Different kinds 

of computations are decomposed and distributed on different nodes mainly considering 

their differences on computation ability and power supply.  

 

 

Figure 1 Multilevel data storing architecture 
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3 Scalable WSN Emulation 

It is rather complex, or even unfeasible, to model analytically a WSN and it usually leads 

to oversimplified analysis with limited confidence. Besides, deploying test-beds supposes 

a huge effort. Therefore, simulation is essential to study WSN. However, it requires a 

suitable model based on solid assumptions and an appropriate framework to ease 

implementation. In addition, simulation results rely on the particular scenario under study 

(environment), hardware and physical layer assumptions, which are not usually accurate 

enough to capture the real behaviour of a WSN, thus, jeopardizing the credibility of 

results. However, detailed models yields to scalability and performance issues, due to the 

large number of nodes, that depending on application, have to be simulated. Therefore, 

the trade-off between scalability and accuracy becomes a major issue when simulating 

WSN.  

In this project a mechanism to support large-scale WSN emulation has been developed. 

With WSN Network emulation the virtual simulation environment is integrated with a 

small number of real hardware devices to facilitate performance evaluation of real-life 

devices in a large-scale but well-controlled environment. Network emulation is an 

inexpensive approach to testing, validating, and evaluating protocols and techniques in a 

realistic but well controlled network environment[5]. 

The first part of the project consisted in the development of an infrastructure supporting 

large-scale WSN emulation. In the proposed system the WSNs are executed in the well-

controlled virtual environment while the other components of the system run on the real 

environment. The next section will describe the system’s architecture and modules. 

3.1 Modules and Architecture 

In this section the main the architecture of the system will be described starting from an 

overview of the its sub modules. 

3.1.1 Cooja 

Cooja is the Contiki
1
 network simulator. Contiki is an open source operating system for 

the Internet of Things connecting tiny, low-cost, battery-operated and low-power systems 

to the Internet. Cooja allows large and small networks of Contiki motes to be simulated. 

Motes can be emulated at the hardware level, which is slower but allows precise 

inspection of the system behaviour, or at a less detailed level, which is faster and allows 

simulation of larger networks. Figure 2 shows a TMote Sky, the mote selected for 

emulation in Cooja. TMote Sky is a platform for extremely low power, high data-rate, 

sensor network applications. TMote Sky is equipped with a MSP430 MCU with 10Kb of 

on-chip RAM and a IEEE 802.15.4 radio transceiver. 

                                                 
1
 www.contiki-os.org 
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Figure 2 TMote Sky 

3.1.2 PyoT 

PyoT
2
 is a system for macro-programming and managing IoT-based WSNs. PyoT 

abstracts the WSN as a set of resources (i.e., sensors and actuators) that can be 

manipulated and combined in order to perform complex tasks. Specifically, PyoT allows 

the user to discover available resources, monitor sensor data, handle its storage, control 

actuators, define events and the actions to be performed when they are detected, and 

interact with resources using a scripting language (macro-programming). The high-level 

abstraction provided by PyoT completely hides the nodes and the network, letting users 

and application developers focus on the sensing and actuation capability of the system. 

PyoT provides two ways for interacting with resources: a convenient web-based user 

interface (WUI) and a powerful macro-programming mechanism. The WUI is designed 

as a virtual control room that allows for easy execution of basic operations such as 

resource listing, sensor monitoring, actuator control, event detection and reaction, and 

access to historical data. The macro-programming mechanism allows the use of a high-

level language, specifically Python, for defining more complex operations (e.g., 

operations involving group of sensors or having an elaborate logic). Indeed, PyoT 

provides a set of Python APIs for interacting with resources, which are abstracted as 

Python objects. Using the macro-programming mechanism, the user can 

programmatically access all the basic operations provided by PyoT’s WUI and combine 

them to build IoT applications. PyoT also includes a shell interface that allows 

experienced users to use the macro-programming mechanism interactively.  

Subcomponents 

Figure 6 presents the architecture of PyoT. PyoT is designed to be a distributed system 

running in an IP network (possibly the Internet) and having at least four main 

components (excluding the WSNs it manages): a Virtual Control Room (VCR), a Shell, a 

Storage Element (SE), and a PyoT Worker Node (PWN). 

 

                                                 

2
 http://github.com/tecip-nes/pyot 
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Figure 3 PyoT Architecture 

 

The PWN is the point of service to the IoT-based WSNs. The PWN keeps track of the 

nodes and resources available in the WSN and updates the related information stored in 

the SE. Moreover, it manages the sensor data collection and the event detection. If the 

user subscribes to some sensor data, the PWN monitors the proper resources for changes 

and adds new sensor values to the SE every time they become available. The basic 

operations that can be performed on resources (e.g., resource retrieval, resource 

monitoring, etc.) are implemented as tasks that can be allocated to different PWNs, each 

one managing a different WSN. PyoT task distribution systems is depicted in Figure 4 

and is based on The Advanced Message Queuing Protocol (AMQP), an open standard 

application layer protocol for message-oriented middleware. 

During the project, PyoT has been extended to support a variable number of WSNs 

providing a scalable solution for the realization of a large-scale WSN infrastructure. 

Every network has been associated to a different IPv6 network address. Tasks performing 

interaction with WSN nodes are dispatched to the right PWN based on the IPv6 address 

of the nodes using AMQP routing mechanism. 

 

Figure 4 PyoT task distribution 

3.1.3 OpenStack 

OpenStack
3
 is an open source infrastructure as a service (IaaS) initiative for creating and 

managing large groups of virtual private servers in a cloud computing environment. The 

                                                 
3
 http://www.openstack.org/ 
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technology consists of a series of interrelated projects that control pools of processing, 

storage, and networking resources throughout a datacentre, all managed through a 

dashboard. OpenStack has a modular architecture that currently has three components: 

compute, storage and image service. 

● OpenStack Compute - a cloud computing fabric controller for provisioning and 

managing large networks of virtual machines (VMs). 

● OpenStack Object Storage - a scalable storage system that provides support for 

both object storage and block storage. 

● Image Service - a delivery service that provides discovery and registration for 

virtual disk images. 

3.1.4 Monitoring 

Monitoring is realized using Celery Flower
4
, a tool allowing real-time monitoring of 

tasks progress and history. Flower is able to show task details (arguments, start time, 

runtime, and more), plotting live graphs and statistics. Moreover Flower allows remote 

control of tasks, shutdown and restart of worker instances, control worker pool size and 

auto-scale settings, apply time and rate limits etc. Figure 5. shows a screenshot of Flower 

interface. 

 

Figure 5 Celery monitoring interface 

                                                 
4
 https://github.com/mher/flower 
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3.1.5 Global Architecture 

 

Figure 6 PyoT Architecture 

The architecture of the system is represented in Figure 6. A number of Virtual Machines 

are instantiated using the OpenStack Virtualization framework. Each VM hosts an 

instance of a WSN simulator (Cooja), connected to the external world through a PyoT 

Worker Node. A messaging layer is implemented to manage the communication between 

the various PyoT Worker nodes. One specific VM (PyoT Control node) hosts the 

applications and servers which are in charge of managing the system. More specifically 

the PyoT Control node runs: 

● an Apache Web Server; 

● a MySQL Database; 

● the RabbitMQ AMQP broker. 

The simulated WSN network is composed by a set of CoAP Server nodes, each one 

hosting virtual sensors and virtual actuators. The PyoT Workers are in charge of 

communicating with the Storage Layer, which is realized by CERN EOS system and by 

the Hadoop File System (HDFS). The storage operation is handled by EOS and HDFS 

clients respectively. The emulator is instantiated when the Cooja simulators are started 

inside each VM. Then a macro-programming script is executed inside the PyoT Shell in 

order to start the interaction with the nodes: specifically the scripts sets up a subscription 

with each node of the WSN using the Observe mechanism of CoAP. The subscription is 

handled by a CoAP client instance running inside a PyoT worker. When the resource 

monitored by the WSN node changes the node sends a notification message to the client, 

containing the current representation of the resource. The client usually stores each 

message in a primary instance of the Storage Element, local to the PWN.  

The experiments have been run using 8 virtual machines, each one simulating a WSN 

composed by 16 nodes, plus one VM executing the PyoT Control Centre. In order to 

demonstrate the data flow, the virtual sensors generate random readings (integers) with a 

fixed frequency of two seconds. More realistic readings may be produced for example 

simulating the tracking of some object inside the network. The number of WSN nodes 

inside a single network is generally limited by a number of factors. In this case the most 

important ones are the limited bandwidth available for the exchange of internal routing 
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messages and the overload on the gateway node, which is the bottleneck of the 

communication from the WSN to the external network.  

3.2 EOS and HDFS Storage 

The secondary storage (to EOS and HDFS systems) operation is performed by some 

specific tasks instantiated on PyoT Worker nodes. The screenshot in Figure 7 shows a 

storage operation performed on a worker node, sending a file to the EOS system. Storage 

has been implemented following three alternative patterns: Sensor, WSN and Global 

levels. The patterns respond to different requirements in terms of latency and efficiency 

of the storage operation. In this context latency of storage is the interval of time between 

the reception of the notification from the sensor and the moment in which the data is 

present in the storage infrastructure. Latency is an important factor if a prompt reaction, 

based on the result of the computation, is required. 

 

 

Figure 7 PyoT storing data on EOS 

 

3.2.1 Sensor level  

When the system is running, a CoAP client is active listening for notifications from each 

sensor node in the WSN. In this scenario the CoAP client itself is responsible for storing 

the information received from the sensor on the Storage system. When a certain number 

of records is reached a temporary file is created and the storage client is called (EOS or 

HDFS). In this configuration a file is periodically stored for every sensor resource in the 

network (see Figure 8). This pattern can generate a large overhead if the number of 

sensors is large. The latency depends mainly on the desired chunk size, that is the number 

of records to save temporarily on the worker node before the storage. This pattern is 

effective if a fine control on the behaviour of some specific node is required. 
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Figure 8 Sensor level storage 

3.2.2 WSN level 

In this scenario data from sensors are stored in a temporary database on each PyoT 

worker node. A periodic task is activated on each Worker node, checks the local database 

and collects all the messages received from the WSN nodes in the previous period (see 

Figure 9). Then a temporary file is created and uploaded on the storage system. This 

approach reduces significantly the number of files stored in the system (one for each 

WSN in each period). A database on each worker node is used in order to guarantee the 

persistency of the collected data within the period.  

 

 

Figure 9 WSN level storage 

3.2.3 Global level  

In this case one periodic task for the whole network of WSNs (see Figure 10) collects all 

the messages received in the previous period and stores them. The task can be executed 

on any of the PyoT worker nodes: if the job fails, the execution can be retried on another 

node. In the global level case a common database is used to temporarily store the data. 

Since the database is accessed by every worker process on all the workers node, it may 

easily become the bottleneck; redundancy and clustering of the database may be 

considered to improve reliability and availability of the system.  
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Figure 10 Global level storage 

3.3 Workflow 

Figure 11 represents workflow implemented in the project. The large-scale WSN 

emulator streams data to the storage systems (EOS and HDFS). Data is then analysed 

using both LSF batch jobs and Hadoop Map-reduce. The result of the computation is 

used to send a feedback to the WSN. In order to validate the workflow a simple algorithm 

has been employed. The algorithm simply counts the number of messages received by 

each sensor node. The feedback function has been implemented switching a set of virtual 

actuators inside the WSN, using PyoT’s macro-programming feature.  

 

Figure 11 WSN Emulation workflow 

3.3.1 LSF batch processing workflow 

Typically the user sends a shell script containing the processing algorithm to the LSF 

batch system. The script is responsible for transferring the data set from EOS using the 

xroot protocol. Then the script executes the algorithm, possibly calling an external 

program, and finally stores the results on EOS. 

3.3.2 Hadoop Map-Reduce workflow 

Unlike LSF workflow, Map-Reduce does not require an additional data transfer. The 

framework is responsible for sending the processing function to the right data node. At 

the end of the computation the results are available on HDFS. The experiments have been 

performed using Hadoop Streaming API which helps passing data between Map and 

Reduce functions via standard input and standard output. 
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3.3.3 Results 

The experiment has been run using 8 Virtual Machines, hosting a total of 128 WSN 

nodes. The resulting rate of the data collection is around 151KRecords/h. A total of ~30K 

Files has been stored on both EOS and HDFS. The analysis of ~250MB of data on 

Hadoop required ~1 minute to complete. During the experiments a large number of small 

files has been created on EOS and HDFS. To mitigate the overhead of the storage a 

mechanism to compact small files is recommended. This can be easily realized with a 

periodic job aggregating the small files.  

For both LSF and Hadoop systems the speed of the analysis is depending on many factors 

and is generally unpredictable. The main factor is the availability of the computing 

resources. Though many techniques can be adopted to provide guarantees to the 

execution, these were outside the scope of the project and have not been adopted.  

4 Data Analysis 

The second part of the project focused on the study of analysis techniques on data coming 

from large-scale sensor networks. The case study is that of city-scale ITS system 

equipped with a pervasive network of vehicle detectors. More specifically the problem of 

estimating the Origin-Destination-matrix from traffic count has been considered [6]. A 

traffic simulator has been used in order to generate realistic data collected by the 

detectors.  

4.1 SUMO 

SUMO, "Simulation of Urban MObility", is an open source, microscopic, multi-modal 

traffic simulation. It allows to simulate how a given traffic demand which consists of 

single vehicles moves through a given road network. The simulation allows to address a 

large set of traffic management topics. It is purely microscopic: each vehicle is modelled 

explicitly, has an own route, and moves individually through the network. SUMO 

includes all applications needed to prepare and perform a traffic simulation, supports 

different vehicle types, multi-lane streets with lane changing, traffic lights, loop detectors 

etc. Moreover SUMO is capable of supporting large-scale simulations (up to 500.000 

vehicles). Figure 12 shows a road intersection in SUMO simulator. 
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Figure 12 Road intersection in SUMO 

A SUMO simulation is generated from different components: a road network, a traffic 

demand, and a definition of induction loop detectors.  

Road Network A SUMO network file describes the traffic-related part of a map, the roads 

and intersections the simulated vehicles run along or across.  

Traffic Demand The traffic demand describes the information about the vehicles. 

Specifically a trip is a vehicle movement from one place to another defined by the 

starting edge (street), the destination edge, and the departure time. A route is an expanded 

trip, that means, that a route definition contains not only the first and the last edge, but all 

edges the vehicle will pass. There are several ways to generate routes for SUMO. The 

choice depends on the available input data. Traffic demand is often defined using Origin-

Destination-Matrices (or OD-matrices), which are often available from traffic authorities. 

OD-matrix matches trip makers’ origins and destinations to develop a “trip table”, a 

matrix that displays the number of trips going from each origin to each destination, 

describing traffic pattern between various zones. 

Inductive loops Inductive loops are wire loops buried in pavement, connected to an 

inductive loop detector in the controller cabinet. Detector is “tuned” to normal inductance 

of loop, and when a vehicle passes over the loop, the loop inductance changes, and the 

detector sends an impulse to the controller. Single loop detector stations (one per lane) 

are typically deployed on freeways for real time traffic monitoring. SUMO supports both 

common loop detectors and instantaneous loop detectors. While common loop detectors 

aggregate the number of vehicles per time unit, the output of instantaneous loop detectors 

is an instantaneous measure for every vehicle detected. In the second case a vehicle 

identificator is part of the measure, enabling more complex applications like vehicle 

tracking. The reconstruction of the OD-matrix for an urban scenario is only possible 

when instantaneous loop inductor detectors are used. Conversely the use of common 

induction loop detectors (providing an aggregated measure) is only effective in highway 

scenario, for which entry and exit points can be monitored accurately. 

SUMO provides a set of tools to create the routes starting from a definition of an OD-

matrix. The procedure to create the routes is as follows. 
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1. Network creation. The network can be created starting from a real map, importing 

a road network from Open Street Map
5
 or defining an abstract network (using the 

random network generator) for testing purpose. 

2. OD-matrix definition. A set of  traffic assignment zones (TAZ) - defines the 

districts. Each district is defined by a set of edges, for which input and output 

probabilities are assigned. OD-matrix is then associated with TAZs, defining the 

count of vehicles entering and leaving the zone. 

3. Trips definition. Using the OD2TRIPS tool a set of trips is created starting from 

the network definition and the OD-matrix. 

4. Routes definition. Starting from network and trip files the DUAROUTERS 

software creates the routes. 

4.2 Objective 

The main goal is to create a set of traces, obtained from SUMO traffic simulator, 

describing the passage of vehicles through the network (routes). The traces simulate the 

data collected by a large-scale sensor network. Following the workflow depicted in 

Figure 13 the collected data is analysed to reconstruct the OD-matrix and compared with 

the initial input data. The analysis is performed offline, using both batch jobs and Map-

reduce.  

 

Figure 13 Data analysis workflow 

4.3 Evaluation 

In order to evaluate the effectiveness of the workflow a simple road network has been 

manually defined. The network includes a set of 16 Instantaneous loop detectors. The 

virtual detectors are placed in a simple road network, shown in Figure 14, composed by 8 

nodes, 16 edges (lanes), 4 intersections, and 4 TAZs (named A, B, C, D). A simple OD-

matrix has been defined in order to generate a sustained traffic in the network while 

preventing excessive congestions.  

                                                 
5
 http://www.openstreetmap.org 

http://www.openstreetmap.org/
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Figure 14 Simple road network 

The simulation has been run for 8 days of simulated time. The raw output, containing the 

measurements from the instantaneous induction loop detectors, has approximate size of 

100MB. In order to have a more realistic idea of the time needed to process the data the 

dataset has been expanded, replicating the output 100 times, creating a “virtual” output of 

100 simple road networks. 

Considering the analysis performed using LFS batch job system, a script has been created 

in order to compute the OD-matrix starting from the output of the simulator. Specifically 

the script: 

1. fetches the data from EOS; 

2. searches for all the routes travelled by vehicles, for every route it computes the 

number of vehicles that have travelled through it; 

3. computes the Origin/Destination matrix for the network; 

4. writes the results to the standard output. 

The number of routes per trip is shown in Figure 15. The output O/D matrix, represented 

in the bi-dimensional histogram in Fig. YYY, reflects the input matrices, confirming the 

correctness of the calculation.  A small difference between the original matrix and the 

computed one is possible because of some vehicles teleporting (moving across non 

adjacent edges) in SUMO simulation.  

The histogram in Figure 16 shows the computed number of trips for all the possible 

routes. The analysis of ~10GB of data on Hadoop required ~2 minute to complete. 

Anyhow the results are approximate because the experiments could not be executed in a 

well-controlled environment. 
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Figure 15 Computed OD-matrix 

 

 

Figure 16 Computed number of trips per route 

5 Conclusions and future works 

In this project a system for connecting a large-scale WSN to CERN storage and 

computing system has been evaluated. The workflow, which comprises data collection, 

storage, online, and offline analysis, has been implemented and validated. The first part 

of the project focused on the development of an infrastructure enabling large-scale WSN 

emulation, supporting the storage of large amount of data on scalable systems such as 

EOS and HDFS. The infrastructure is capable of supporting a complete control loop, 

including data collection, online analysis and feedback in the environment. The second 
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part regarded the study of data analysis pattern for data coming from large-scale WSNs, 

with a focus on the offline computation of ITS-related data. The project demonstrated the 

effectiveness of the usage of tools such as Hadoop Map-reduce for the offline analysis of 

sensor-related data. Anyway further studies are needed to better evaluate the feasibility of 

quasi-online computation on sensor data. Specific mechanisms should be adopted in 

order to provide guarantees in terms of timeliness to the system. Moreover a direct 

connection between the traffic simulator (SUMO) and a WSN simulator should be 

considered. An interface should be in charge of synchronization and information 

exchange between the two simulators. The resulting simulator would allow to evaluate 

the impact of a large-scale cooperative intelligent transport system more realistically.  

In the system evaluated the nodes are in charge of simply sensing the environment and 

forwarding the data to the distributed storage system. Anyway in WSN the largest source 

of energy consumption is due to wireless transmission. Since motes have local 

computational power and support remote reprogramming, a system distributing the data 

processing inside the network should be considered to enhance the energy efficiency of 

the system. If we consider every node of the WSN as having a local collection of 

measurements of type key-value the WSN can be seen as a distributed file system and the 

map-reduce computing model in which every node of the network is a worker node, 

could be applied. Anyway porting the map-reduce runtime environment in a resource-

constrained world is challenging. Besides, the model should be adapted to a lossy 

network, in which nodes may fail or disappear frequently. 
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