10 research outputs found

    Multilayer perceptron-based DFE with lattice structure

    Get PDF
    The severely distorting channels limit the use of linear equalizers and the use of the nonlinear equalizers then becomes justifiable. Neural-network-based equalizers, especially the multilayer perceptron (MLP)-based equalizers, are computationally efficient alternative to currently used nonlinear filter realizations, e.g., the Volterra type. The drawback of the MLP-based equalizers is, however, their slow rate of convergence, which limit their use in practical systems. In this work, the effect of whitening the input data in a multilayer perceptron-based decision feedback equalizer (DFE) is evaluated. It is shown from computer simulations that whitening the received data employing adaptive lattice channel equalization algorithms improves the convergence rate and bit error rate performances of multilayer perceptron-based DFE. The adaptive lattice algorithm is a modification to the one developed by Ling and Proakis (1985). The consistency in performance is observed in both time-invariant and time-varying channels. Finally, it is found in this work that, for time-invariant channels, the MLP DFE outperforms the least mean squares (LMS)-based DFE. However, for time-varying channels comparable performance is obtained for the two configuration

    Multilayer perceptron-based DFE with lattice structure

    Get PDF
    The severely distorting channels limit the use of linear equalizers and the use of the nonlinear equalizers then becomes justifiable. Neural-network-based equalizers, especially the multilayer perceptron (MLP)-based equalizers, are computationally efficient alternative to currently used nonlinear filter realizations, e.g., the Volterra type. The drawback of the MLP-based equalizers is, however, their slow rate of convergence, which limit their use in practical systems. In this work, the effect of whitening the input data in a multilayer perceptron-based decision feedback equalizer (DFE) is evaluated. It is shown from computer simulations that whitening the received data employing adaptive lattice channel equalization algorithms improves the convergence rate and bit error rate performances of multilayer perceptron-based DFE. The adaptive lattice algorithm is a modification to the one developed by Ling and Proakis (1985). The consistency in performance is observed in both time-invariant and time-varying channels. Finally, it is found in this work that, for time-invariant channels, the MLP DFE outperforms the least mean squares (LMS)-based DFE. However, for time-varying channels comparable performance is obtained for the two configuration

    Time series prediction and channel equalizer using artificial neural networks with VLSI implementation

    Get PDF
    The architecture and training procedure of a novel recurrent neural network (RNN), referred to as the multifeedbacklayer neural network (MFLNN), is described in this paper. The main difference of the proposed network compared to the available RNNs is that the temporal relations are provided by means of neurons arranged in three feedback layers, not by simple feedback elements, in order to enrich the representation capabilities of the recurrent networks. The feedback layers provide local and global recurrences via nonlinear processing elements. In these feedback layers, weighted sums of the delayed outputs of the hidden and of the output layers are passed through certain activation functions and applied to the feedforward neurons via adjustable weights. Both online and offline training procedures based on the backpropagation through time (BPTT) algorithm are developed. The adjoint model of the MFLNN is built to compute the derivatives with respect to the MFLNN weights which are then used in the training procedures. The Levenberg–Marquardt (LM) method with a trust region approach is used to update the MFLNN weights. The performance of the MFLNN is demonstrated by applying to several illustrative temporal problems including chaotic time series prediction and nonlinear dynamic system identification, and it performed better than several networks available in the literature

    Multilayer perceptron-based DFE with lattice structure

    No full text
    The severely distorting channels limit the use of linear equalizers and the use of the nonlinear equalizers then becomes justifiable. Neural-network-based equalizers, especially the multilayer perceptron (MLP)-based equalizers, are computationally efficient alternative to currently used nonlinear filter realizations, e.g., the Volterra type. The drawback of the MLP-based equalizers is, however, their slow rate of convergence, which limit their use in practical systems. In this work, the effect of whitening the input data in a multilayer perceptron-based decision feedback equalizer (DFE) is evaluated. It is shown from computer simulations that whitening the received data employing adaptive lattice channel equalization algorithms improves the convergence rate and bit error rate performances of multilayer perceptron-based DFE. The adaptive lattice algorithm is a modification to the one developed by Ling and Proakis (1985). The consistency in performance is observed in both time-invariant and time-varying channels. Finally, it is found in this work that, for time-invariant channels, the MLP DFE outperforms the least mean squares (LMS)-based DFE. However, for time-varying channels comparable performance is obtained for the two configuration

    Multilayer perceptron-based DFE with lattice structure

    No full text

    Adaptive Equalisation of Communication Channels Using ANN Techniques

    Get PDF
    Channel equalisation is a process of compensating the disruptive effects caused mainly by Inter Symbol Interference in a band-limited channel and plays a vital role for enabling higher data rate in digital communication. The development of new training algorithms, structures and the selection of the design parameters for equalisers are active fields of research which are exploiting the benefits of different signal processing techniques. Designing efficient equalisers based on low structural complexity, is also an area of much interest keeping in view of real-time implementation issue. However, it has been widely reported that optimal performance can only be realised using nonlinear equalisers. As Artificial Neural Networks are inherently nonlinear processing elements and possess capabilities of universal approximation and pattern classification, these are well suited for developing high performance adaptive equalisers. This proposed work has significantly contributed to the d..

    Performance of the Multilayer Perceptron-based DFE with Lattice Structure in Linear and Non-Linear Channels

    No full text
    The effect of whitening the input data in a multilayer perceptron -(MLP)based decision feedback equalizer (DFE) is evaluated. It is shown that whitening the received data employing adaptive lattice channel equalization algorithms improves the convergence rate and bit error rate performances of MLP-based decision feedback equalizers. The consistency in performance is observed in time-invariant, time-varying and non-linear channels
    corecore