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ABSTRACT 
___________________________________________________________ 

 

Channel equalisation is a process of compensating the disruptive effects caused 
mainly by Inter Symbol Interference in a band-limited channel and plays a vital role for 
enabling higher data rate in digital communication. The development of new training 
algorithms, structures and the selection of the design parameters for equalisers are active 
fields of research which are exploiting the benefits of different signal processing 
techniques. Designing efficient equalisers based on low structural complexity, is also an 
area of much interest keeping in view of real-time implementation issue. However, it has 
been widely reported that optimal performance can only be realised using nonlinear 
equalisers. As Artificial Neural Networks are inherently nonlinear processing elements 
and possess capabilities of universal approximation and pattern classification, these are 
well suited for developing high performance adaptive equalisers.  

          This proposed work has significantly contributed to the development of novel 
equaliser structures with reduced structural complexity in the neural network paradigm 
based on both the feedforward neural network (FNN) and the recurrent neural network 
(RNN) topologies. Various innovative techniques like hierarchical knowledge 
reinforcement, genetic evolutionary concept, transform domain based approach and 
sigmoid slope tuning using fuzzy logic approach have been incorporated into an FNN 
framework to design highly efficient equaliser structures. Subsequently, novel hybrid 
configurations using cascaded modules of RNN and FNN have also been proposed in this 
thesis work. Further, suitable modifications in the Back-Propagation and Real-Time-
Recurrent-Learning algorithms have been incorporated to update the connection weights 
of the proposed structures. Significant performance improvement over the conventional 
FNN and RNN based equalisers, faster adaptation and ease of implementation in real-
time applications are the major advantages of the proposed neural equalisers. Exhaustive 
simulation studies carried out on various linear and nonlinear channels verify the efficacy 
of the proposed neural equalisers. 

          Further, all the proposed FNN based equalisers are of decision feedback type as 
inclusion of this technique significantly improves the performance alongwith a 



 

considerable reduction in the structural complexity. A proper selection of feedforward 
order, decision delay and feedback order is a challenging task in such equalisers as these 
key design parameters play a crucial role for an impressive performance. A detailed study 
of various factors influencing the bit error rate performance of optimal Bayesian equaliser 
has been undertaken in the present work. This study has given an insight for proposing of 
a novel approach in the parameter selection issue, which can eliminate the use of 
cumbersome procedure of determining these design parameters from graphical analysis. 
Thus a major breakthrough has been achieved in successfully evaluating these parameters 
of the equaliser structure. The new methodology and its logical interpretation that led to 
the development of some empirical relationships have emerged as a powerful tool for 
selecting the key design parameters directly from the channel characteristics. 
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In today’s world, digital transmission has a tremendous impact on the human 
civilization. There has been a sea change in modern day living and the credit goes to 
the development in digital communication technology. With expanding 
communication networks, as we move towards a more information centric world and 
the demand for very high speed efficient data transmission over physical 
communication channels increases, communication system engineers face ever-
increasing challenges in utilising the available bandwidth more efficiently so that new 
services can be handled in a flexible way. The objective of any digital communication 
system is to convey information, with the minimum possible introduction of error. 
Some typical forms of transmission media are open-wire lines, coaxial cables, 
microwave radio, optical fibers, satellite links etc. These media differ, essentially, in 
the volume of data per unit time which they can transmit. This data rate is limited by 
the noise and distortion introduced in the communication channel. 

The distortions (phase-delay variations) introduced in the communication 
channel cause the transmitted symbols to spread and overlap over successive time 
intervals, resulting in a phenomenon, known as Inter Symbol Interference (ISI). In 
addition to ISI, the transmitted symbols are subjected to other impairments such as 
thermal noise, impulse noise and non-linear distortions arising from the modulation 
and demodulation process, cross talk interference, the use of amplifiers and converters 
etc.  All the signal processing techniques used at the receiver end to combat 
distortions introduced due to channel impairments and recover the transmitted 
symbols accurately, are referred to as equalisation schemes. 

A common means of overcoming this problem has thus been to introduce an 
inverse filter into the receiver to equalise the channel. This simplistic view offers a 
satisfactory solution provided the channel transfer function is known and its inverse is 
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convergent. However, such an inverse will be unstable in non-minimum phase 
channels (zeros outside the unit circle in the z-plane). Further, the designer does suffer 
from the disadvantage of having no a-priori knowledge of the channel transfer 
function and this function will be time-varying when the channel conditions are not 
stationary. For these reasons, in realistic situations equalisers are commonly adaptive 
in nature; that is, they automatically adjust their parameters when subjected to some 
external stimuli. Adaptive equalisers are characterised in general by their structures, 
the learning algorithms and the use of training sequences. Bandwidth efficient data 
communication requires the use of adaptive equalisers. Adaptive equalisation 
algorithms need to exhibit some from of learning and this learning property is 
naturally found in artificial neural networks. Hence, many avenues have been 
established in the application of neural networks to adaptive equalisation problems.  

By viewing equalisation as a pattern classification problem in which the 
optimal decision boundary is highly nonlinear, the solution offered by a linear 
equaliser is inherently sub-optimal. This drawback also has motivated the 
development of efficient non-linear equalisers for optimising the performance. 
Artificial neural networks are parallel distributed structures in which many simple 
interconnected elements (neurons) simultaneously process information and adapt 
themselves to learn from past patterns. Attractive properties of neural networks 
relevant to the equalisation problem are adaptive capability, finite memory, the ability 
to form nonlinear decision boundaries and efficient hardware implementation. Neural 
networks based equalisers have been applied to this field in recent past achieving 
better performance than conventional methods. This thesis work mainly deals with the 
development of novel adaptive equalisers on the framework of feedforward neural 
network and recurrent neural network topologies which have outperformed their 
existing counterparts. The primary objective of the proposed work is to design neural 
equalisers on reduced structural framework keeping in mind the real-time 
implementation issue, as a reduced size network means a lesser computational cost 
and a more economical hardware implementation. Suitable modifications in the 
popular Back-Propagation and Real-Time-Recurrent-Learning algorithms also have 
been incorporated for faster adaptation of the proposed neural equaliser structure 
parameters. Selection of key design parameters of the equaliser is given much 
importance for optimising the performance and some empirical relationships also 
have been developed purely from induction. 

This chapter begins with an exposition of the principal motivation behind the 
work undertaken in the thesis followed by a brief literature survey on equalisation in 
general and nonlinear equalisers in particular as discussed in Section 1.2. The 
contributions made in this thesis work have been outlined in Section 1.3.  At the end, 
the layout of the thesis is presented in Section 1.4. 
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1.1   Motivation for Work 

The adaptive equalisers have gone through many stages of development and 
refinement in the last few decades since their inception in late 1960[1]. In the recent 
past a lot of researches have been carried out on equalisation of data communication 
channels using a rich variety of Artificial Neural Network (ANN) techniques. These 
include the development of many novel architectures and efficient training 
algorithms. The underlying reasons for it are scientific curiosity and a desire to 
provide alternative engineering solutions to the problems. Different ANN 
architectures such as multilayer perceptron (MLP), radial basis function (RBF) and 
recurrent neural network (RNN) for constructing adaptive equalisers have been 
suggested in the literatures [2,3,4,5,6].  

 The channel equalisation is viewed as a classification problem [7,8,9,10], 
where the equaliser attempts to classify the input vector into a number of transmitted 
symbols. The optimal solution for symbol-decision equaliser derived using Bayes 
Decision Theory [11,12] is an inherently nonlinear problem. Therefore, structures 
which incorporate some degree of nonlinear decision making ability must be 
considered to achieve fully or near optimal performance. In the light of above, the 
linear transversal equaliser (LTE) does not achieve the full potential of equalisation 
process as the decision boundary is necessarily hyper planar. Though for minimum 
phase channels, the two classes in the observation space (2-PAM signalling) are 
linearly separable, the solution is not optimal. Also in case of non-minimum phase 
channels, a linear equaliser with zero delay is incapable of reconstructing the input 
signals even in a noise-free case. Further, employing non-zero delays, although the 
channel states are linearly separable, it can not realise the optimal boundary and the 
performance still remains sub-optimal due to linear classification by the decision 
boundary. Thus, the channel equalisation is basically a nonlinear problem regardless 
of whether a channel is minimum phase or non-minimum phase [13,14]. So, nonlinear 
structures are essential which can form decision boundaries beyond the capabilities of 
LTE. Taking this into consideration, ANN offers a much better solution to channel 
equalisation problem due to its pattern classification capability [15,16,17]. The prime 
advantage of using neural networks for adaptive equalisation is their capability to 
model any non-linear decision boundaries [14,18,19]. Further, structure selection for 
an ANN equaliser has always been a point of concern because a small size and hence 
a less complex structure is much easier to implement in real-time using VLSI circuits, 
DSP and FPGA [20,21,22] chips etc. Use of efficient structures having compact 
design will help in varieties of present day applications like mobile communication 
system [23], optical recording [24], magnetic hard disk storage [25] etc. 
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 Considering all these issues and future requirement, this research work is 
motivated towards development of new nonlinear equaliser structures in the neural 
network paradigm which are superior in performance compared to conventional ones. 
The architectures of the proposed structures are based on Feedforward Neural 
Network (FNN) topology [6] having configurations of reduced structural complexity. 
It is obvious that in a reduced structural framework some performance loss may occur 
and hence a compromise is to be made between the complexity and performance 
while designing new equalisers. Decision feedback equalisation (DFE) is a powerful 
technique used in digital communication systems to eliminate ISI without 
enhancement of noise by using past decisions to subtract out a portion of the ISI. The 
multilayer perceptron based DFE offers a superior performance as a channel equaliser 
to that of conventional DFE, especially in high noise conditions [26,27,28]. This 
technique motivated the research work to utilise decision feedback in all the proposed 
FNN based equaliser structures. Amongst all the equalisers with symbol decision 
structures, the Adaptive Bayesian DFE [29] provides the best theoretical performance 
reducing the structural complexity and hence assessing its performance is considered 
to be valuable. The proper selection of DFE structure parameters namely delay order, 
the feedforward order and feedback order is crucial, as each one plays a significant 
role in the performance of an equaliser. With a motivation to optimise the 
performances of all the proposed FNN based configurations, the selection of decision 
feedback parameters is made with reference to the parameters obtained for the optimal 
Bayesian equaliser. 

 Development of equalisers of reduced structural complexity further motivated 
to work in another avenue of research, i.e. in the area of Recurrent Neural Network 
(RNN). RNN configurations are inherently of low complexity structures which 
exhibit highly nonlinear characteristics. In particular, RNNs are in some respect very 
similar to DFEs because in that outputs are fed back to the classifier to assist in 
subsequent decisions [30,31], however unlike DFEs  RNNs may store additional 
information about the past signals in the form of an internal state.  A simple two unit 
RNN is sufficient to model many communication channels encountered in practice. 
The RNN is used for the adaptive equalisation of linear and nonlinear channels and it 
is reported that the RNN equalisers have much improved performance in comparison 
to traditional linear equalisers [32,33,34].  

1.2   Literature survey 

Nyquist’s telegraph transmission theory [35] in 1928 laid the foundation for 
digital communication over band-limited analogue channels. The research in channel 
equalisation in the 1960s was centered around the basic theory and structures of zero-
forcing transversal or tapped-delay-line equalisers [36,37,38]. In 1960, Widrow [39] 



                                                                                                     CHAPTER-1:   Introduction  

 5 

presented a least- mean-square (LMS) algorithm which revolutionised the adaptive 
filtering schemes for the last couple of decades. But it was Lucky [1] who used this 
algorithm in 1965 to design adaptive channel equalisers. With the popularisation of 
adaptive linear filters in the field of equalisation their limitations were too soon 
revealed. It was seen that the linear equaliser, in spite of best training, could not 
provide acceptable performance for highly dispersive channels. This led to the 
investigation of other equalisation techniques beginning with the development of the 
maximum likelihood sequence estimatation (MLSE)[40] using the Viterbi algorithm 
[41] in 1970’s. But this application had a limitation in the sense that when the length 
of ISI was long, the structural complexity of equaliser had a dramatic increase. 
Another form of nonlinear equaliser which appeared around the same time was the 
infinite impulse response (IIR) form of linear adaptive equaliser, where the equaliser 
employed feedback [42] and was termed decision feedback equaliser (DFE).  Other 
works carried out in this field in 1970’s and 1980’s were the development of fast 
convergence and/or computationally efficient algorithms like the recursive least 
square (RLS) algorithm [39], Kalman Filters [43] and RLS lattice algorithm [44].  
Fractionally spaced equalisers (FSE) [45] were also developed during this period. A 
review of the development of equalisers till 1985 is available in [46]. 

In the late 1980’s, the beginning of development in the field of ANN brought a 
new dimension to all spheres of research. Gibson et al. first applied the MLP structure 
to the channel equalisation problem [13,14,18]. These new forms of equalisers were 
computationally efficient than MLSE and could provide superior performance 
compared to the conventional adaptive equalisers with adaptive filters. Traditionally, 
the problem of equalisation has been considered equivalent to the inversion of the 
transmission channel. A different and innovative approach considered equalisation as 
a classification problem. The optimal solution for a symbol-by-symbol equaliser 
derived using Bayes classification theory is highly non-linear and hence application of 
non-linear structures is essential to achieve fully or near optimal performance. 
Further, the Bayesian solution for the symbol decision structure with decision 
feedback highlighted the importance of decision feedback technique with a clear 
geometric explanation [29]. A multilayer perceptron based DFE was proposed which 
also provided better bit error rate (BER) performance compared to a conventional 
DFE, because of its ability to form complex decision regions with non-linear 
boundaries [26,27].  

Another form of ANN called Radial Basis Function (RBF) [6] gained much 
importance and thereafter equalisers constructed using RBF networks were reported 
[47,48].  Wang and Mendel applied RLS fuzzy filter and LMS fuzzy filter to 
nonlinear channel equalisation problems achieving performance level close to optimal 
equaliser [49]. Subsequently new training algorithms and efficient equaliser structures 
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using ANNs, RBFs and FAFs were developed [50,51,52]. Many possible approaches 
of using neural network for equalisation have been developed in the last few years. 
Kirkland et al. [53] applied feedforward neural networks to equalise the digital 
microwave radio channel in the presence of multipath fading.  Peng et al. [54] 
modified the nonlinear activation function of the classical multilayer perceptron in 
order to take into account signals typically encountered, namely, PAM and QAM.  
Kechriotis et al.[32] applied fully recurrent neural networks trained with real-time-
recurrent-learning algorithm (RTRL) [55] to the equalisation of non-minimum phase, 
partial response, and nonlinear channels. Chang et al. [56] introduced a neural-based 
decision feedback equaliser to perform equalisation of indoor radio channels. A 
wavelet NN [57, 58] trained with the recursive least squares (RLS) algorithm was 
used to equalise a non-linear transmission channel. Al-Mashouq et al. [59] used a 
FNN to perform equalisation and decoding in presence of severe ISI conditions; 
which outperforms classical structures formed by cascading a linear equaliser and a 
decoder. All these works show that neural networks can be successfully applied to the 
problem of channel equalisation. 

Training schemes to optimise minimum Bit Error Rate (BER) of neural 
network based equalisers using fuzzy decision learning have also been developed 
[60].  Algorithms for training ANN equalisers to achieve MLSE performance with 
minimum BER criterion involving conditional distributed learning [61], Hopfield 
networks with mean field annealing [62], cellular neural networks with hardware 
annealing [63,64] have shown better equaliser performance.  A number of efficient 
neural equalisers using single layer architecture with polynomial perceptron [12,65], 
functional link perceptron [66,67,68], polynomial lattice [69] have been developed. 
The lattice-based MLPDFE outperformed both the LMSDFE and MLPDFE in both 
time-invariant and time-varying channels [70]. Evolutionary algorithm provided a 
new optimisation technique for the solution of channel equalisation problem. The 
effectiveness of using an Evolutionary Algorithm (EA) for equalisation of a non-
minimum phase channel using a feedforward MLP is highlighted [71]. The emerging 
machine learning technique called Support vector machines (SVMs) is proposed as a 
method for performing non-linear equalisation in communication systems [72,73]. In 
research work cited in [74] a strategy is proposed for designing the DFE using SVM, 
which is found to be computationally efficient and can be of great help in data storage 
system and slow time-varying communication links. However, the learning algorithm 
in the SVM needs to solve a quadratic programming problem and the optimisation 
method is somewhat computationally intensive.  Recent research works have derived 
some adaptive linear and decision feedback minimum-BER (MBER) equalisers 
[75,76,77] which consider the BER to be a true performance indicator for equalisation 
instead of  MSE criterion. A DFE using recurrent neural networks trained with 
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Kalman filter is developed with features of fast convergence and good performance 
using relatively short training symbols [78]. Recently, structure and property of 
MMSE linear and DFEs under realisability constraints have been analysed [79,80]. 
The computational complexity of optimal symbol-by-symbol equaliser using 
Bayesian solution can be reduced by signal space partioning technique, but the 
number of hyperplanes can not be controlled. A new algorithm has been proposed to 
overcome such problem [81,82].The recent advances in the field of nonlinear 
equalisation are centered on the design of efficient equaliser structures, development 
new approaches and faster training algorithms and proper selection of equaliser 
parameters for optimising its performance [83,84,85,86,87]. Also designing low 
complexity network for easier implementation has always been a challenging task 
amongst communication system designers and is quite an encouraging area of 
investigation.   

 

1.3  Thesis contribution 

The major focus of the present work is aimed at developing efficient neural 
equalisers with reduced structure configuration so as to make these attractive for easy 
implementation in real-time applications. All the proposed structures have been 
designed either on Feedforward Neural Network (FNN) or Recurrent Neural Network 
(RNN) framework. The widely used algorithms like Back-Propagation for FNN based 
structures and Real-Time-Recurrent-Learning Algorithm for RNN based structures 
could not be directly applied for training the proposed structures and hence suitable 
modifications have been included into the existing algorithms while estimating the 
local gradient of errors at different nodes looking into the respective structural 
paradigms. Further, the proposed neural equalisers have resulted in encouraging BER 
performance in comparison to their conventional counterparts being trained with 
much less training samples. The prime objective of the present research is to optimize 
the BER performance of the proposed equalisers with reduced structural 
configurations. It is seen that the key parameters for equaliser design like feedforward 
order ‘m’, feedback order ‘nb’ and decision delay ‘d’ influence the performance 
significantly and hence selecting an optimum combination of these parameters is of 
great concern. In order to choose such a combination of these parameters, exhaustive 
studies have been carried out and the performance of the optimal symbol-by-symbol 
equaliser is evaluated under a broad range of parameter variations which has led the 
research to derive certain empirical relations for parameter selection in both feedback 
and without feedback conditions. 
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Development of novel equaliser structures in the FNN domain are based on the 
following techniques: 

•        Hierarchical knowledge reinforcement – 

This new technique can be viewed as an enhancement in the knowledge base at the 
nodes of an existing multilayer feedforward configuration for arriving at a near 
optimal solution. In terms of hierarchy, nodes in the final layer occupy the highest 
level in the process of decision making and hence these experts are fed with more 
information to enrich their knowledge base. The popular Back-Propagation (BP) 
algorithm has been suitably modified for error back propagation at each node of the 
proposed structure for training. 

•        Orthogonal basis function expansion- 

 The orthogonal basis function (OBF) expansion technique is motivated by a genetic 
evolutionary concept of self breeding. Here, the decision at a node termed as expert 
opinion of a generation, undergoes an orthogonal expansion in two dimensions. One 
of the outputs possessing the knowledge base for that generation participates in taking 
the final decision; while  the  other  one  is   allowed   to  pass  on the information 
further to generate the expert opinion  for  the  next  generation  and  the  process 
continues. Finally, a collective judgment based on the expert opinions evolved from 
decisions of individual generations gives a more rational and heuristic solution. 
Propagation of output error backwards and calculation of local gradients at each node 
become a difficult task as the OBF block is positioned in between the neurons of 
different layers. In order to circumvent such situation, a new technique has been 
evolved so that the BP algorithm can be applied. 

• Transform domain approach- 

Further, a hybrid configuration has also been presented where a discrete cosine 
transform (DCT) block with normalisation is embedded within the framework of a 
conventional FNN structure. Such a cascaded network representing a heterogeneous 
configuration proves to be efficient by learning faster and also performing better in 
comparison to  a conventional FNN structure. The BP algorithm has been applied to 
adapt the weights in the proposed neural structure, but certain modifications in the 
algorithm has been incorporated taking into account the structural changes when 
compared with a conventional one.  

• Sigmoid slope tuning by fuzzy logic controller approach- 

In this thesis attempt has been made to improve the performance of conventional FNN 
equaliser with a reduced structure by adapting the slope of the sigmoidal activation 
function using fuzzy logic control technique. While the existing BP algorithm takes 
control in updating the network weights, the fuzzy controller approach adjusts the 
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slope of the sigmoidal activation function of all the nodes in the network based on the 
available error information making the proposed structure more adaptable. Also, the 
new equaliser can learn faster giving a satisfactory BER performance.    

While in the FNN domain much emphasis has been given to the design of 
equaliser structures possessing low structural complexity, RNN topology too has been 
considered because even a reduced network structure in RNN domain can show better 
performance due to its inherent self-feedback configuration. Basically in this research 
work, cascading technique is utilised to evolve new topologies with RNN as the main 
module.  

Development of novel cascaded equaliser structures in the RNN domain are 
based on the following techniques: 

•    FNN-RNN cascading- 

The inputs to RNN module is directly fed from the outputs of FNN module 
and hence already pre-processed. This configuration being a hybrid one, the weight 
adaptation of different modules becomes a challenging task as no such direct 
algorithm exists for such task. The updation of the weights of the RNN module can be 
carried out straightforward using the RTRL algorithm and based on the output error. 
As the RTRL algorithm does not provide  any  explicit  estimate  about  the local  
gradients  at   the  RNN  nodes,  problem  is encountered in updating weights of the 
FNN module directly. This bottleneck has motivated the present research in pursuing 
a new strategy named as equivalence approach to estimate pseudo local gradients at 
all the nodes of the RNN module and hence the weight adaptation of the FNN module 
is done by applying the BP algorithm.  

• Hierarchical knowledge based FNN-RNN cascading- 

An efficient equaliser structure is designed employing the concept of hierarchical 
knowledge reinforcement to the proposed FNN-RNN cascaded network. It is expected 
that by providing more information at the final processing layer in the RNN module 
its knowledge base is enriched and hence the performance improves. 

• RNN-FNN cascading- 

Another variant of the cascaded architecture, which is identical to the first hybrid 
structure mentioned, has been proposed with the only exception that the FNN and 
RNN modules are swapped. It can be inferred that such structure has an intermediate 
decision feed-back mechanism embedded into the network configuration. The weights 
of the FNN module at the output end can be updated using existing BP algorithm 
directly. After the estimation of the errors at the nodes of the RNN module is done, 
the RTRL algorithm is applied to update the weights of the RNN module.  
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• RNN-Transform cascading- 

Further, in the previous cascading structure, replacing the FNN module by a discrete 
cosine transform(DCT) block with normalisation, a new structure is presented. 
However, such configuration has inherent constraints of direct application of BP 
algorithm to update the connection weights due to the positioning of transform block. 
In order to overcome such a scenario, a novel strategy has been deployed to propagate 
the output error back through the network. 

• Fuzzy tuned sigmoid slope of RNN nodes  

The concept of fuzzy logic control technique has been applied to tune the slope of 
sigmoidal activation functions of the RNN nodes to make the structure more adaptive 
keeping the structural complexity same as that of a pure RNN one.  

Further in the present work, a detailed study on various factors influencing the 
BER performance of the Bayesian equaliser has been undertaken because such type 
provides the optimum performance for symbol-by-symbol type of equalisers. It is 
observed here that its Bayesian equaliser performance is influenced by additive noise 
level, decision delay‘d’, feedforward order‘m’ and feedback order‘nb’. Some of the 
important observations in this present study are as follows. 

• The probability of those sample points of one class crossing the optimal 
decision boundary and entering to the wrong class increases depending on the 
noise severity, causing more and more misclassification. 

• The number of noise-free channel states close to the optimal decision 
boundary varies with decision delay significantly. Also the channel states in 
close proximity to the optimal decision boundary are vulnerable and have 
undesirable effect on the optimal BER performance, i.e., when additive noise 
present in the communication system is more, a higher probability of 
misclassification is expected. 

• The structural complexity increases with larger equaliser feedforward order 
‘m’, which necessitates restriction of m to a certain order.  

• It is observed that inclusion of the decision feedback increases the minimum 
distance between the two classes of channel states and hence the separation of 
noise-free channel states from the optimal decision boundary is more in 
comparison to that obtained without feedback. Hence the probability of 
received samples crossing the optimal decision boundary reduces considerably 
which in turn improves performance. 

• The selection of proper combination of parameters like m, nb and d is essential 
to achieve optimal BER performance.  
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From the above important observations achieved by parameter variations, 
certain empirical relations have been derived in this present research work for 
choosing those key design parameters directly by examining the channel 
characteristics. Hence the parameters for satisfactory BER performance for equalisers 
(without feedback and with decision feedback) can be evaluated only by a simple 
examination of the type of channel model and its tap coefficients. This methodology 
has really opened up a new horizon for parameter selection problem in an efficient 
way, without going for exhaustive graphical study. The approach suggested in this 
present work also has been logically interpreted and verified from the various 
simulation results. A trade-off between structural complexity and performance loss 
has been well taken care of in choosing the feedforward order ‘m’, which has been 
restricted to the channel order ‘na’. This interpretation brings a new dimension to 
parameter selection issue in equalisers with and without decision feedback.  

         In summary, the proposed work relates to designing of novel equaliser structures 
employing both FNN and RNN topologies along with suitable modifications in the 
existing training algorithms and selection of key parameters in equaliser design. So 
far as this work is concerned, the main emphasis has been given to design equaliser 
configurations on a reduced structural framework. All the proposed equalisers have 
resulted faster learning and encouraging BER performances for various linear and 
nonlinear communication channel models, but the gains obtained are entirely channel 
dependent as observed from the exhaustive simulation studies in the present work. 

 

1.4   Thesis layout 

The rest of the thesis is organised as follows. 

Chapter 2 presents the background of channel equalisation along with the 
optimal Bayesian equaliser structure. Most commonly referred linear and nonlinear 
equaliser structures and their training algorithms have been explained.  Artificial 
Neural Network based structures are focussed here as these form the basis for 
development of novel neural equaliser structures and training algorithms pertaining to 
the proposed work. 

Chapter 3 provides a detailed study on various factors influencing the BER 
performance of the optimal Bayesian equaliser. It is observed here that the decision 
function is dependent on decision delay ‘d’, equaliser feedforward order ‘m’ and the 
additive noise level. It is also observed that including decision feedback results 
significant improvement in the performance of a symbol-by-symbol Bayesian 
equaliser. Further the design of a DFE structure depends upon the proper selection of 
parameters like feedforward order, feedback order and decision delay for optimising 
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the BER performance. Certain empirical relations have been derived and logically 
explained in this research work based on the fundamental concepts of equaliser 
design. These critical design parameters can be chosen directly by examining the 
channel tap coefficients following the new methodology presented. 

Chapter 4 is devoted to the design of efficient equaliser structures based on 
Feedforward Neural Network (FNN) topology and development of appropriate 
training algorithms to adapt the network weights. Various innovative techniques like 
hierarchical knowledge reinforcement, genetic evolutionary concept, transform 
domain based approach, sigmoid slope tuning using fuzzy logic concept etc. are 
incorporated into an FNN framework. Results have been presented for various 
simulation studies in real channels (both linear and nonlinear) to validate the efficacy 
of the proposed FNN structures.  

Chapter 5 emphasises on designing of new cascaded equaliser structures in the 
RNN domain where RNN block being an integral module, other modules like FNN 
block, transform block etc. have been appended with it to supplement the decision for 
enhancing the performance. The cascading technique employed to evolve new 
topologies is based on various combinations of these blocks. In order to prove the 
efficacy of the proposed equaliser structures, equalisation of various channel models 
have been investigated and their performance improvements over the conventional 
ones are illustrated.   

Chapter 6 summarises the thesis work undertaken, discusses its limitations and 
points out the possible directions for further research. 
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This thesis discusses the development of adaptive channel equalisers for 
communication channels using feedforward and recurrent neural networks. In order to 
establish the context and motivation for this research work undertaken clearly and 
coherently, it is necessary to discuss the background of channel equalisation. Some 
basic equaliser structures and fundamental concepts are presented here, which form 
the basis for designing equalisers as discussed in the following chapters. 

Section 2.1 introduces the basic principle of the channel equaliser including 
classification. Section 2.2 explains the general finite impulse response (FIR) filter 
model for ISI channels. The optimal Bayesian equaliser alongwith channel states, 
decision function and effect of decision feedback is described in Section 2.3.  An 
overview of symbol-by-symbol linear equaliser and decision feedback equaliser are 
discussed in Section 2.4. The two basic nonlinear equaliser structures (MLPDFE and 
RNE) are introduced in Section 2.5. Lastly, the concluding remarks are given in 
Section 2.6. 

 

2.1   The channel equaliser 

In an ideal communication channel, the received information is identical to 
that of the transmitted signal. However, this is not the case for real communication 
channels, where signal at the receiver gets distorted in both amplitude and phase. This 
distortion causes the transmitted symbols to spread and overlap over successive time 
intervals, which is known as Inter Symbol Interference (ISI). The time dispersion is a 
serious limitation in attempting to achieve a high transmission rate through a 
particular band-limited channel. Equalisation techniques are employed at the 
receiving end to compensate for such distortions and reconstruct the transmitted 
signal faithfully. 

 

 

CHAPTER 2

Background
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 The block diagram of baseband model of a digital communication system 
(DCS) is depicted in Figure 2.1. Communication systems are studied in the base band 
frequency to avoid the complexity associated with the analysis of various subsystems 
within a DCS. The data source constitutes the signal generation system that originates 
the information to be transmitted. The efficient use of the available bandwidth is 
achieved through the transmitter filter, also called the modulating filter. The channel 
is the medium through which information propagates from the transmitter to the 
receiver.  At the receiver the signal is first demodulated to recover the baseband 
transmitted signal. This demodulated signal is processed by the receiver filter, also 
called the receiver demodulating filter, which should be ideally matched to the 
transmitter filter and channel. The equaliser in the receiver removes the distortion 
introduced due to the channel impairments.  The decision device provides the estimate 
of the transmitted signal. During transmission of high speed data over a band-limited 
channel, its frequency response is usually not known with sufficient precision to 
design an optimum match or matched filter. The equaliser is therefore, should be 
adaptive in nature to take care of the variations in the characteristics of the channel. 

Adaptive  
 equaliser device

Training signal
generator

Error

Figure 2.2: An adaptive equaliser configuration
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The configuration of an adaptive equaliser is shown in Figure 2.2, where an 
adaptive algorithm is applied to recursively update the equaliser configuration based 
on the observed channel output.  There are two periods of operation of the equaliser, 
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one is the training period and the other one is the decision directed period. During the 
training period a known sequence is transmitted and a synchronized version of this 
signal is generated in the receiver, which is assumed to be the desired response. By 
comparing this with equaliser output the error signal is computed, based on which the 
adaptive algorithm works. After the training, the equaliser is switched to the decision 
directed mode, where the equaliser can update its parameter based on the past 
detected samples. 

2.1.1   Adaptive equaliser classification 

This section provides adaptive equaliser classification as presented in Figure 
2.3. In general the family of adaptive equalisers is either supervised or unsupervised.  
The channel distortions introduced into the signal can be conveniently removed by 
sending a training or pilot signal periodically during the transmission of information.  
A replica of this pilot signal is available at the receiver which uses this to update its 
parameters during the training period. These types are supervised equalisers.  
However, in certain communication systems like digital television and digital radio, 
there is hardly any scope for the use of a training signal. In such situations the 
equaliser needs some form of unsupervised or self-recovery method to update its 
parameters so as to provide near optimal performance. These are called blind 
equalisers. This thesis investigates supervised equalisers in general. 

Adaptive Equalisers

Supervised training
(Training signal available)

Unsupervised or Blind training
(Training signal not available)

Sequence estimation
(MLSE)

Viterbi equaliser

Symbol estimation
(Bayesian Equaliser)

Linear equalisersNon-linear equalisers

Volterra filtering
Artificial neural networks

Radial basis function
Fuzzy systems

(Classification problem)
Wiener filter solution

RLS
LMS

(Filtering problem)

Lattice

 

Figure 2.3: Adaptive equaliser classification 
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The process of supervised equalisation can be achieved in two forms. These 
are sequence estimation and symbol-by-symbol estimation. The former one uses the 
sequence of past received samples to estimate the transmitted symbol for which it is 
considered as an infinite memory equaliser and is termed Maximum-Likelihood-
Sequence-Estimation (MLSE) [40].  The MLSE can be implemented with the Viterbi 
Algorithm [41].  An infinite memory sequence estimator provides the best bit error 
ratio (BER) performance for equalisation of time invariant channels but its 
complexity increases for longer channel length and while tracking a time-varying 
channel.  The symbol-by-symbol equaliser on other hand works as a finite memory 
equaliser and uses a fixed number of input samples to detect the transmitted symbol.  
The optimum decision function for this type of equaliser is given by MAP criterion 
and can be derived by Bayes’s theory [11].  Hence this optimum finite memory 
equaliser is also called the Bayesian equaliser [29]. The Bayesian equaliser provides 
the lower performance bound for symbol-by-symbol equaliser in terms of probability 
of error or BER. The sub-optimal ones are of two types, linear and non- linear. The 
linear adaptive equaliser is a linear FIR adaptive filter [88,89] trained with an adaptive 
algorithm like the LMS, RLS or lattice algorithm. During the process of training, 
these linear equalisers optimise certain performance criterion like minimum mean 
square error (MMSE). Linear equalisers trained with MMSE criteria provide the 
Wiener filter [88,89] solution. Further, if decision feedback is employed, the linear 
equaliser provides a decision function received samples along with previously 
detected samples. 

Recent advances in signal processing techniques have provided a rich variety 
of nonlinear equalisers, which are capable of providing the optimum performance.  
Some of the equalisers developed with these techniques are based on Volterra filters, 
MLP, RNN, RBF networks and fuzzy filters.  A review of some of these equalisation 
techniques can be seen in [18,31,47,52]. The nonlinear equalisers treat equalisation as 
a pattern classification process instead of inverse filtering adopted in linear ones. All 
of these nonlinear equalisers, during their training period, optimise some form of a 
cost function like the MSE or probability of error and have the capability of providing 
the optimal Bayesian equaliser’s performance in terms of BER. The following 
sections analyse some of the commonly referred linear and nonlinear equalisers in 
detail. 

 

2.2 FIR model of a channel 

An ideal physical propagation channel should behave like an ideal low pass 
filter with fixed amplitude and linear phase characteristics. However in reality all 
physical channels deviate from this behavior. When signals are transmitted over a  
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channel, both distortion and additive noise are introduced into it. The transmitted 
symbols persist beyond the time interval allocated for the transmission and hence 
subsequent symbols interfere, causing Inter Symbol Interference (ISI). This 
phenomenon increases as the data rate compression is increased within a fixed 
bandwidth channel. It is common to model a propagation channel by a digital finite 
impulse response(FIR) filter shown in Figure 2.4, with taps chosen at the signal’s 
sampling interval and coefficients chosen to accurately model the channel impulse 
response [37,38].  

s(n) s(n-1) s(n-n +1)
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         Figure 2.4: FIR model of a channel 

The channel impulse response in the z-domain can be represented by  

 H(z) = ∑
−

=
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0

-z 
an

i

i
ia = a0 + a1  z -1 + a2  z -2 + ….                                            (2.1) 

where  na represents the length of the channel impulse response (channel order) and 
the channel provides dispersion up to na samples.  The coefficients ai   represent the 
strength of the dispersion. The output from FIR modelled channel is described as 

 r(n) = ˆ( )nr + N (n) 

       = ∑
−

=
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0
)(
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where r(n) is the channel observed output (input to the equaliser). It is given 
by the sum of the noise free channel output ˆ( )nr , which is formed by convolution of 

the transmitted sequence s(n) with the channel taps  ai,  0 ≤ i ≤ na-1 and AWGN N 
(n).  
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2.3   Optimal symbol-by-symbol equaliser: Bayesian equaliser 

The optimal symbol-by-symbol equaliser is termed as Bayesian equaliser. To 
derive the equaliser decision function the discrete time model of the baseband 
communication system is presented in Figure 2.5. 

s(n) s(n-1) s(n-n +1)

0a 1a 2a

a

n -1a a

+ r(n)(n)
AWGN

r(n) r(n-1) r(n-m+1)

Equaliser decision function

Decision Device

(n-d)s

r(n)

Channel Equaliser

Figure 2.5: Discrete time model of a digital communication system
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 The equaliser uses an input vector r(n) ∈Rm,  the  m dimensional space where 
the term m is the feedforward order of the equaliser. The equaliser provides a decision 
function G{r(n)} based on the input vector which is passed through a decision device 

to provide the estimate of transmitted signal )(ˆ dns − , where d is a delay associated 

with equaliser decision. The communication system is assumed to be a two level 
PAM system, where the transmitted sequence s(n) is drawn from an independent  
identically distributed (i.i.d) sequence comprising of {±1} symbols. The noise source 
is Additive White Gaussian Noise (AWGN)  characterised by zero mean and a 

variance of 2σ N .  

The equaliser performance is described by the probability of misclassification 
w.r.t.  Signal to Noise Ratio (SNR).  The SNR is defined as, 

SNR = 
2

2

ˆ( )

( )

r n

n

⎡ ⎤⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦
N

E

E
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         = 

1
2 2

0
2

an

s i
i

aσ

σ

−

=
∑
N

                        (2.3) 

where, E is the Expectation operator, 2
sσ  represents the transmitted signal 

power and ∑
−

=

1

0

2an

i
ia is the channel power. With the assumption that the signal is drawn 

from an i.i.d. sequence of {±1}, the signal power becomes 2
sσ =1. Hence, the SNR 

can be represented as, 
SNR = 10 log 10 (1 / 2σ N ) dB                                                 (2.4)  

The equaliser uses the received signal vector r(n)=[ ( ), ( 1),...r n r n −  ..., ( 1)]Tr n m− + ∈  

Rm to estimate the delayed transmitted symbol )( dns − . The decision device at the 

equaliser output uses a  sgn(x) function given by  

1 0
( )

1 0
if x

sgn x
if x

+ ≥⎧
= ⎨− <⎩

 (2.5) 

Hence, the estimate of the transmitted signal given by the equaliser is  

)(ˆ dns − = sgn (G{r(n)})  = { }
{ }

1 ( ) 0
1 ( ) 0

if r n
if r n

+ ≥⎧⎪
⎨− <⎪⎩

G
G               (2.6) 

The performance of an equaliser can be evaluated as follows. For bit error rate 
(BER) calculation if the equaliser is tested with statistically independent random data 
sequence of 107 channel samples then an error value ei is generated in the following 
manner. 

 ei  = 
⎩
⎨
⎧

−≠−
−=−

)()(ˆ1
)()(ˆ0

dnsdnsif
dnsdnsif                                       (2.7) 

Then the BER is evaluated in decimal logarithm as 

BER = log10(∑
=

710

1i
ie /107 )                                                           (2.8) 

The process of equalisation discussed here can be viewed as a classification 
process in which the equaliser partitions the input space r(n) ∈ Rm, into two regions 
corresponding to each of the transmitted sequence +1 /-1 [14,29,90]. The loci of 
points which separate these two regions is termed as the decision boundary. If the 
received signal vector is perturbed sufficiently to cross the decision boundary due to 
the presence of AWGN, misclassifications result. To minimise the probability of mis-
classifications for a given received signal vector r(n), the transmitted symbol should 
be estimated based on s(n) ∈ {±1} having a maximum a-posteriori probability 
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(MAP) [11,91].  The partition which provides the minimum probability of 
misclassification is termed as optimal (Bayesian) decision boundary.  

 

2.3.1  Channel states  

 The concept of channel states is introduced here. The equaliser input vector 

has been defined as ( ) [ ( ),  ( 1),  .... , ( 1)]Tn r n r n r n m= − − +r ∈Rm, the m dimensional 

observation space. The vector ˆ( )nr  is the noise-free received signal vector 

ˆ ˆ ˆ ˆ( ) [ ( ),  ( 1),  .... , ( 1)]Tn r n r n r n m= − − +r . Each of these possible noise-free received 

signal vectors constitutes a channel state. The channel states are determined by the 
transmitted symbol vector 

[ ]( ) ( ),   ( 1),   ......,   ( 2) T
an s n s n s n m n= − − − +s  ∈  1am n+ −R  (2.9) 

Here ˆ( )nr  can be represented as ˆ( ) [ ( )]n s n= Hr , where matrix H ∈  ( 1)am m n× + −R  is the 

channel matrix which can be expressed as 

0 1 1

0 2 1

0 1

0 0 0
0 0 0

0 0

a

a a

a

n

n n

n

a a a
a a a

a a

−

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

L L L
L L L

M M M O O O M M M
L L L L L

 (2.10) 

 Since the channel input sequence s(n) has 12 am n
sn + −=  combinations, the 

noise-free channel output vector ˆ( )nr  has sn  states, which are constructed with sn  

sequences of s(n). The set of these states, denoted as Rm,d can be partitioned into two 
subsets according to the value of transmitted symbols )( dns − , i.e. 

( )
, ,

1    2

i
m d m d

i≤ ≤
= UR R                                                                    (2.11) 

where,  ( )
, ˆ{ ( ) ( )  }i

m d in s n d s− =R = r ,  1 ≤ i ≤ 2 (2.12) 

Here, the positive channel states for si = +1 are denoted as 1
,m dR  where as the negative 

channel states are 2
,m dR  for si = -1. The number of states in each ( )

,
i

m dR  for 1 ≤ i ≤ 2  is 

given by 

2/)(
s

i
s nn =                                                                               (2.13) 

Example: 

An example is considered to show the channel states. The channel considered here is 

a non-minimum phase channel represented by its z-transform 1
4 ( ) 0.5 1.0 H z z−= + .  

The equaliser feedforward order considered here is m = 2. The number of noise-free 
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channel states are sn =8 1(2 )am n+ −  and are presented in Table 2.1. Their location with 

reference to ˆ( )nr  is decided taking the scalar components ˆ ˆ[ ( ),  ( 1)]Tr n r n − . 

 

 

ˆ( )nr   
No.   

 
Transmitted  symbol sequence   
  s(n)          s(n-1)        s(n-2)      ˆ( )r n  ˆ( 1)r n −  

1 
2 
3 
4 
5 
6 
7 
8 

    1 
    1 
    1 
    1 
   -1  
   -1 
   -1 
   -1 

    1 
    1 
   -1 
   -1  
    1 
    1 
   -1 
   -1 

    1 
   -1 
    1 
   -1 
    1 
   -1 
    1 
   -1 

   1.5 
   1.5 
  -0.5 
  -0.5 
   0.5 
   0.5 
  -1.5 
  -1.5 

   1.5 
  -0.5 
   0.5 
  -1.5 
   1.5 
  -0.5 
   0.5 
  -1.5 

 

                   Table 2.1: Channel states calculation for channel H4(z) = 0.5 + 1.0z-1   

                                      with  m = 2 

 

2.3.2.   Bayesian equaliser decision function 

 The presence of additive noise (AWGN) makes the channel observation vector  
r(n) a random process, having a conditional Gaussian density function centered at 
each noise free received vector ˆ( )nr . Hence, each channel state ˆ( )nr  is a conditional 

mean vector of r(n) given s(n). Bayes decision theory [29] provides the optimal 
solution to the general decision problem and is applicable here.  The two Bayesian 
decision variables for classifying into two regions corresponding to each of the 
transmitted sequence +1/-1 are computed as 

( )iP n = ( )

1

( )
( )( ) ,( )i

j
j

i
s

i
j

n
p p n

=

−∑ N r r       1 ≤ i ≤ 2                    (2.14) 

where ( ) ( )
,

i i
j m d∈r R  defined in Equation (2.12), ( )i

jp are the a-priori probabilities 

of ( )i
jr and Np (.) is the probability density function (pdf) of N(n). Each )(nPi is the 

conditional pdf of ( )nr  given isdns =− )( . Since the entire channel states can be 

assumed to be equiprobable, all the ( )i
jp  are equal and the noise distribution is 

assumed to be Gaussian, Equation (2.14) can be explicitly expressed as 

( )i nP =  ∑
=
χ

)(

1

i
s

j

n
 . exp 2( ) 2

2( ) /i
jn σ−⎛ ⎞−⎜ ⎟

⎝ ⎠
r r N ,      1 ≤ i ≤ 2          (2.15) 
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where χ is ( ) 2 / 2(2 )i m
jp πσ −

N  multiplied by an arbitrary positive constant and .  

constitutes the  Euclidean distance. 

 The minimum-error-probability decision is defined by  

*ˆ( ) is n d s− =         if * ( )iP n = max ( ),      1 2{ }iP n i≤ ≤          (2.16) 

The Bayesian decision procedure effectively partitions the m-dimensional 
observation space into two decision regions. Equation (2.16) can be rearranged as  

)(ˆ dns − = sgn(G{r(n)}) { }2 1( ) ( )sgn P n P n= −                  (2.17)  

where sgn(.) is the signum function and G(.) can be referred to as the Bayesian 
decision function. The decision function is nonlinear and is completely specified in 
terms of the channel states and the noise characteristics. Further, the set  

 { }{ }( ) ( ) 0n n =Gr r  (2.18) 

defines the optimal decision boundary, which is a hypersurface in the observation 
space. It also means that the optimal decision boundary exists when the two class 
probabilities are equal for a 2-PAM input signalling scheme.  

 

2.3.3    Bayesian equaliser with decision feedback 

Inclusion of decision feedback further reduces the number of channel states 
and it also increases the minimum distance between the two classes of channel states. 
The significant improvement in performance offered by decision feedback can be 
explained by the following mathematical reasoning. 

The feedback order nb of the equaliser [29] employed to mitigate ISI from 
previously detected symbols is given by  

 nb = na + m – 2 – d                                                                  (2.19) 

The feedback vector ˆ ( )f n d−s has 2 bn
fn =  states. These feedback states are 

denoted as ,f js , 1≤ j ≤ fn .  A subset of the channel states ( )
,

i
m dR  defined in Equation 

(2.12) can further be partitioned into nf   subsets according to the feedback state    

( )
,

i
m dR = ( )

, ,
1    f

i
m d j

j n≤ ≤
U R                                                                (2.20) 

             with     

 ( )
, ,

i
m d jR = ,ˆ ˆ( ) | ( ) ( ) ,{ }i f f jn s n d s n d− = − =Ir s s       1 ≤  j ≤  nf             (2.21) 
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The number of states in each ( )
, ,

i
m d jR  is ( )

,
i

s jn = ( ) /
f

i
sn n . Under the assumption of 

correct feedback vector ˆ ( )f n d−s , the two Bayesian decision variables given 

ˆ ( )f n d−s = sf,j are 

       

( )
,

2

1

2( )
, exp 2ˆ  . |  ( ) ( )( ) ( / )

i
s fn

i
f jfiP n n - d s n σ−

=
= χ= −∑ l

l
s r r N ,   1 ≤ i ≤ 2 (2.22) 

 where  
( ) ( )

, ,
i i

m d j∈lr R  

The conditional Bayesian decision is defined as 

*ˆ( ) is n d s− =   if  ( )iP n∗ = ,ˆmax ( | ( ) ),{
f f jiP n n d− =s s   1 ≤ i ≤  2} (2.23) 

The feedback vector is used to reduce the number of channel states needed in 
decision making. Without feedback, all the ns channel states are required to compute 
the two decision variables. As a result of feedback, only a fractional number of these 
states   ns / nf = 2d+1 are needed to compute the decision variables. Hence, there is a 
reduction in computational complexity due to inclusion of decision feedback 
technique. 

 

2.4   Symbol-by-symbol  linear equaliser 

    The structure of a linear equaliser is presented in Figure 2.6.  

r(n) r(n-1) r(n-m+1)r(n-2)

Adaptive
Algorithm

Figure 2.6: Structure of a linear equaliser

r(n)

m-121w0

y(n)

Training Signal
(n-d)s

Decision Device

(n-d)s

w w w

e(n)
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              The equaliser consists of a tapped delay line (TDL) which receives the 

receiver sampled input vector ( ) [ ( ), ( 1),..., ( 1)]Tn r n r n r n m= − − +r  and provides an 

output )(ny  which is the convolution sum of input vector ( )nr with the weight vector 

w.  The output is computed once per symbol and can be represented as 

=)(ny
1

0
 ( )

m

i
i

w r n i
−

=
−∑                                              (2.24)

      The weight vector w optimises one of the performance criteria like zero 
forcing (ZF) or MMSE criteria [37,38]. The decision device present at the output of 
the equaliser, provides the transmitted signal constellation. The MMSE criteria 
provide equaliser tap coefficients to minimise the mean square error at the equaliser 
output before the decision device. This condition can be represented as 

2( ) ( )J n e n=E  (2.25) 

( ) ( ) ( )e n s n d y n= − −  (2.26) 

where e(n) is the error associated with the equaliser output y(n). Adaptive 
algorithms like LMS and RLS can be used to recursively update the equaliser weights 
during the training period. The convergence properties and the performance of linear 
equalisation have been well documented in the literature [37,38]  

 Linear equalisers with higher weight dimensions can improve accuracy. 
However, higher dimensions leave the equaliser susceptible to noisy samples and such 
structures will take a long time to converge [46]. Thus LTE suffers performance 
degradation when the communication channel causes severe ISI distortion. When the 
channel has a deep spectral null in its bandwidth, linear equalisation performs poorly 
since it places a high gain at the frequency of the null, thus enhancing the additive 
noise. Under such conditions decision feedback equalisation [46] can be employed to 
overcome these limitations. 

 

2.4.1 Decision feedback equaliser 

A basic structure of Decision Feedback Equaliser is presented in Figure 2.7. 
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r(n) r(n-1) r(n-m+1)

Figure 2.7: Structure of a linear decision feedback equaliser

w1w0 w2 wm-1

(n-d)y(n)

Decision Device

(n-d-n )

wn -1 w0

s

(n-d)ss

b b
b

b

r(n-2)

 

 This equaliser is characterised by its feedforward order m  and the feedback 
order nb. The equaliser uses m  feedforward samples and nb feedback samples from 
the previously detected samples.  

The signal vector associated with feedback weight vector 
1

[ , ,....., ]
b

b b  b T

b 0 0 n
w w w

−
=w  is 

given by ˆ ˆ ˆ ˆ( ) [ ( 1), ( 2),....., ( )]T
bn s n d s n d s n d n= − − − − − −s . Considering that the DFE 

is updated with a recursive LMS algorithm, the feedforward and feedback filter 
weights can be jointly adapted using a common error signal e(n). The feedback 
section in the equaliser helps to remove the ISI contribution from the estimated 
symbols and hence the DFE provides better performance than a conventional 
feedforward linear equaliser under severe ISI distortion. 

The linear equaliser can successfully reconstruct the transmitted sequence only 
if the channel is minimum phase. The non-minimum phase channels can be equalized 
by linear equalisers only if some delay d is introduced. This is illustrated by examples 
of minimum phase and non-minimum phase channels [12,13,14]. Thus, in order to 
design structures to equalise non-minimum phase channels, more sophisticated 
architectures are needed.  

 

Example: 

A minimum phase channel is considered as an example whose transfer 
function is given by  

1
1( ) 1 0.5H z z−= +  (2.27) 
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By viewing the concept of the linear equaliser as a classification process, the 
observation space is formed by using two successive samples of the channel output. 
The linear equaliser partitions the input observation space by a simple hyperplane as 
shown in Figure 2.8. It gives a complete satisfactory solution in the absence of noise. 
However, if noise is added then this linear division is no longer optimum as it is 
observed that perfect observation vectors (noise-free channel states) lie at unequal 
distances from the hyper plane. Further, if we apply MAP criterion, it is observed that 
the optimal decision boundary is highly non-linear as shown in Figure 2.8 and 
deviates markedly from any decision boundary which can be formed by a linear 
equaliser. Therefore solution offered by any linear equaliser is inherently sub-optimal 
and this important drawback motivated the development of several nonlinear 
architectures capable of realising the optimal decision boundaries. 

                  

Figure 2.8:   Optimal decision boundary and noise-free channel states corresponding to 
a {+1} transmission given by symbols(■) and points corresponding to a {-1} 
transmission given by symbols (▲) for the channel with impulse response 
H1(z), m=2, d=0. 

 

2.5   Symbol-by-symbol adaptive nonlinear equalisers 

All non-linear equalisers treat equalisation as a non-linear pattern 
classification problem and provide a decision function that partitions the input space 
Rm to the number of transmitted symbols. As a result the equaliser assigns the input 
vector to one of the signal constellations. The nonlinear equalisers discussed in the 
following section are based on the Artificial Neural Network (ANN). The 
Feedforward Neural Network (FNN) and the Recurrent Neural Network (RNN) are 
explained in detail as the proposed equaliser structures are built on these frame works. 
Some of the other nonlinear equalisers are the RBF network, [51], recurrent RBF [92], 
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Volterra filters [93], the functional link networks [66], adaptive fuzzy filters [94], etc. 
Amongst the FNN structures, the most commonly and widely used is the multilayer 
perceptron (MLP). The MLP architecture consists of a number of processing neurons 
organised in layers and is capable of performing complex, nonlinear mappings 
between the input and output. Gibson et al. [13] showed that such an equaliser can 
provide the non-linear decision boundary associated with the MAP equaliser. Further, 
its performance can be enhanced by incorporating decision feedback approach. It is 
shown that the MLP decision feedback equaliser (DFE) trained in a supervised 
manner using the Back Propagation (BP) algorithm gives a significant improvement 
in performance as documented in the literature [26].  

 

2.5.1   A multilayer perceptron decision feedback equaliser : MLPDFE 

In equaliser application the input to the multilayer perceptron structure is 
presented through a set of tapped delay lines and the output layers has a single neuron. 
A MLPDFE structure [26] is shown in Figure 2.9, consisting of a feedforward filter 
and a feedback filter. The input to the feedforward filter is the sequence of noisy 
received signal samples r(n).  The input to the feedback filter is the estimated signal 
ŝ (n-d) from the decision device, where d is the delay introduced. The equaliser 
structure can be trained in a supervised manner using the BP algorithm [06]. 

+

Detected Symbol
(n-d)s

e(n)

(n-d)s
Desired signaly(n)Output

MLP Output layer

Hidden layer 

Hidden layer

Input elements

received signals
r(n)

feedback signals (n-d)s

Figure 2.9: Multilayer perceptron decision feedback equaliser

-
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 At time index n, the  mx1 received signal vector r(n)=[r(n), r(n-1), …, r(n-
m+1)]   and  nbx1 decision signal vector [ ŝ (n-d-1), ŝ (n-d-2),… , ŝ  (n-d-nb)] are fed 
into the decision feedback equaliser. The signal at the input layer of the decision 
feedback equaliser can be represented by a (m + nb) x 1 vector as  

 x(n) = [r(n),r(n-1),……, r(n-m+1); ŝ (n-d-1), ŝ (n-d-2),… , ŝ  (n-d-nb)]T     (2.28)   

The final estimated output signal y(n) at time index n, can be calculated as follows 
2 1 1

(3) (2) (1)

1 1 0

(1) (1) (2) (3)

1

( ) ( ) ( ) ( ) ( )

ˆ                                         ( ) ( ) ( ) ( )
b

N N m

o ko k jk j ij
k j i

n
b
pj j k o

p

y n w n w n w n r n i

w n s n d p th n th n th

−

= = =

=

⎛ ⎛ ⎛= −⎜ ⎜ ⎜⎜ ⎝⎝⎝
⎞⎞⎞

+ − − + + + ⎟⎟⎟ ⎟ ⎟⎠ ⎠ ⎠

∑ ∑ ∑

∑

F F F
   (2.29)                           

where all F’s denote sigmoidal activation functions in the neurons. N1 and N2 are the 
number of neurons in the two hidden layers respectively. The output of the nonlinear 
detector can be defined as 

⎩
⎨
⎧
−

≥=− otherwise1
0)(if1)(ˆ nydns                                    (2.30) 

The w (weights) and th (threshold levels) in Equation (2.29) are values specified by 
the training algorithm, so that after training is completed the equaliser will self-adapt 
to the changes in the channel characteristics occurring during transmission (decision 
directed mode). The BP learning algorithm [06] for training multilayer perceptron 
network is discussed in detail in Appendix A. 

 

2.5.2   Recurrent neural network equaliser (RNE) 

Recurrent Neural Networks (RNNs) are highly nonlinear. The network 
incorporates feedback mechanism of its own and as a result their architectures become 
inherently dynamic. Actually RNNs model non-linear IIR filters and can accurately 
realise the inverse of finite memory channels using relatively small number of 
neurons.  The use of Recurrent Neural Network Equalisers (RNE) for adaptive 
equalisation of linear and non-linear channels has been proposed in [32].  Kechriotis 
et al. showed that simple RNE structures having small sizes can be successfully 
applied to equalisation problems. The block diagram of a communication system that 
employs a RNN based adaptive equaliser is shown in Figure 2.10.  
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External Inputs

+1 or -1

Decision devicee(n)
y (n)

Figure 2.10: Recurrent neural network equaliser

0

d (n)0

 

The most widely used Real–Time–Recurrent–Learning (RTRL) algorithm, 
proposed by Williams and Zipser [55], is used to update the weights of the RNN by 
computing the gradient of the squared error with respect to the weights of the 
equaliser.  The details of the RTRL algorithm are discussed in detail in Appendix B.  

 

2.6   Conclusion  

In this chapter the background of channel equalisation along with the optimal 
Bayesian Equaliser structure have been discussed elaborately. The symbol-by-symbol 
linear equaliser has been explained along with its drawbacks. Its performance is 
inherently suboptimal as the optimal decision boundary is nonlinear in nature. It is 
concluded that by incorporating a degree of nonlinearity in the design of an equaliser, 
it is possible to produce a structure which can achieve near optimal performance. All 
non-linear equalisers treat equalisation as a pattern classification problem and from 
this angle neural networks offer attractive solutions as they are capable of providing 
nonlinear decision boundaries. Feedforward neural network and recurrent neural 
network have been the main focus of this chapter, as all the proposed neural equaliser 
structures and their respective training algorithms have been designed on these 
platforms. The effectiveness of proposed structures in terms of BER performance in 
comparison with conventional ones has been validated in the subsequent chapters. 
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The symbol-by-symbol detection approach to equalisation applies the channel 

output samples to a decision classifier that separates the symbols into their respective 
classes. The main objective is the separation of the received symbols in the output 
signal space with the minimum probability of misclassification. The optimal solution 
for the symbol-by-symbol equaliser structure has already been discussed in the 
previous chapter using Bayes decision theory, which views equalisation exclusively 
as a two state classification problem assuming 2-PAM signalling scheme [14,29,90]. 
A detailed study on various factors influencing the BER performance of the optimal 
Bayesian equaliser has been undertaken in this research work. It is observed here that 
the Bayesian decision function is greatly dependent on decision delay ‘d’, equaliser 
feedforward order ‘m’ and additive noise level [29]. Also from the design point of 
view, the proper selection of ‘m’ and  ‘d’  plays a significant role in the optimal BER 
performance, which is evident from  in-depth computer simulation study carried out 
for various real channel models (both minimum phase and non-minimum phase).  

Further, the performance of a symbol-by-symbol Bayesian equaliser improves 
after incorporating decision feedback technique. Simulation studies carried out in the 
present research work have also proved that if the noise-free channel states belonging 
to different classes are either coincident or very close to the optimal decision 
boundary, then symbol-by-symbol Bayesian equalisers with decision feedback are 
capable of classifying the transmitted symbols correctly, while equalisers without 
feedback fail to achieve any acceptable performance even if the feedforward order is 
increased to a higher value. This advantage offered by DFE structure has necessitated 
the selection of proper values of structure parameters like feedforward order ‘m’, 
feedback order ‘nb’and decision delay ‘d’ for optimising the BER performance of an 
equaliser[29,86,95]. Considering this aspect to be of great importance, certain 
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empirical relations based on fundamental concepts have been developed and logically 
interpreted in this present work for selection of these critical design parameters by 
directly examining the channel coefficients. 

In the present simulation work, the bit error rate (BER) of optimal Bayesian 
equaliser is computed based on a realisation of 105 channel samples and averaged over 
20 independent realisations. Each realisation has a different random input sequence 
(binary message). Equalisation of various linear and nonlinear channels with 2-PAM 
signalling input only is considered for all comparative performance analysis. The 
performance measure is presented through the plot of scatter diagrams, decision 
regions and BER curves. 

 

3.1   Factors  influencing  the  performance  of  optimal symbol -by -    
 symbol (Bayesian) equaliser  

 

The Bayesian decision boundary is affected by the decision delay parameter 
and the noise statistics, which are to be discussed in the subsequent sections. Further, 
the role of decision feedback in improving the BER performance is studied. Decision 
regions for equaliser’s feedforward order ‘m’ = 2 only has been shown in order to 
provide some geometric insight into the equalisation process in a two-dimensional 
observation space as the graphic display is difficult to realise in higher dimensions. 

 

3.1.1   Additive noise level 

The performance of an equaliser is greatly dependent on the additive noise 
level irrespective of the influence of the ISI. However, it has been observed that if the 
effect of ISI is completely ignored then at certain additive noise level, the observed 
samples belonging to one class (either class 1 or 2 i.e. for +1 or -1 transmitted 
symbols respectively) in a two state classification, can invade the decision boundary 
and migrate to the territory of the other class causing misclassification. It particularly 
occurs at severe noise conditions and hence under no circumstances this effect can be 
mitigated. It clearly signifies that for a given feedforward order of the equaliser, 
compensation for missed bits is not satisfactory at higher level of noise. This 
phenomenon has been explained in detail. 

In the beginning the effect of additive noise on the BER performance while 
equalising an ideal channel (without ISI effect) is analysed. Such a channel is 
characterisied  by unit impulse response and its transfer function is defined as 

H(z)=1                                                                                                      (3.1) 
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            Figure 3.1a shows the noise-free channel states and the corresponding optimal 
decision region plots for this channel. Here the decision delay ‘d’ has  been  chosen  
as  d = 0. The optimal decision regions also provide an insight into the margin 
between the two classes (1and 2) in the classification, where the margin is defined as 
the minimum distance of the channel states from the decision boundary. 

             Figures 3.1b-d represent the two-dimensional scatter plots  of the  observed 
channel output vectors  belonging to the two classes for  various additive noise levels 
(i.e., SNR=6dB, SNR=12dB, and SNR=20dB). The observed channel output points 
will be distributed as a sum of 2-dimensional Gaussian distributions with spread 
determined by the variance of noise and centered on the noise-free channel states.                                      

It is clearly evident that at low noise level (SNR=20dB) the radius of spread of 
the observation clusters is squeezed; hence no received sample points can migrate 
from one class to another. But depending on the noise severity, the probability of 
those sample points of one class crossing the optimal decision boundary and entering 
to the wrong class increases, causing more and more misclassification. This 
interesting phenomenon is corroborated in the BER performance characteristic given 
in Figure 3.1e, where at point ‘A’ (SNR = 6dB), the BER level is more in comparison 
to point ‘B’ (SNR = 12dB). 

 

 

 
Figure 3.1:  (a) Noise-free channel states and optimal decision regions{-ve symbols 

represented by triangles and +ve symbols represented by rectangles}(Ideal 
Channel: H(z) = 1) 
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Figure 3.1 : Optimal decision boundary and scatter plots  (b) SNR=6dB,  (c) SNR=12dB,  

(d) SNR=20dB {-ve symbols represented by triangles (pink) and +ve symbols 
represented by squares(blue)} and  (e)  Optimal   Bayesian   performance 
curve ( Channel : H(z)=1)                                                                                                   
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     The influence of ISI in a channel degrades the equaliser’s BER 
performance, as evident from the comparative analysis given in Figure 3.2. The 
various channel models used here are defined as 

H1(z)=1+0.5z-1 (3.2) 
H2(z)=1+0.7z-1 (3.3) 
H3(z)=1+0.95z-1 (3.4) 

            Further, the importance of additive noise level in a channel with ISI effect is 
discussed. Figures 3.3a-c illustrate in a qualitative manner the 2-dimensional scatter 
plots and optimal decision boundary for different additive noise levels (i.e., 
SNR=6dB, SNR=10dB, and SNR=20dB) for a two-tap channel model H1(z). It is 
inferred from these plots that the margin between the two classes reduces depending 
upon the severity of noise level and also the optimal decision boundary becomes 
nonlinear. This effect of additive noise level remains unchanged irrespective of the 
presence of ISI.  

             If the additive noise level is high (SNR < 7dB), the influence of ISI on BER 
performance is minimal as evident from Figure 3.2. This is because the noise 
amplitude is already strong enough to push the received sample points of a given class 
in such a way that these sample points can easily cross the optimal decision boundary 
and enter into the territory of the other class. And thus the ISI factor can not degrade 
the BER performance further, as misclassifications of received sample points have 
already been occurred. However, at additive noise level i.e., SNR=12dB, the effect of 
ISI is predominant over additive noise level as seen in Figure 3.2. This happens 
because the separation distance (margin) from the decision boundary reduces 
significantly in comparison with that without ISI due to the nonlinearity introduced by 
the channel characteristics as observed in Figure 3.3c. So the chances of 
misclassification of the received sample points are more due to crossover of the 
decision boundary by them. 
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Figure 3.3: Optimal decision boundary and scatter plots for (a) SNR=6 dB,(b)SNR=10 dB, 

(c) SNR=20 dB with delay  d=0 (Channel:  H1(z) = 1+0.5z-1)   
              {-ve symbols represented by triangles(pink) and +ve symbols represented       

by squares(blue)} 
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Again a careful examination of  Figure 3.2 reveals that a situation may exist 
when the effect of ISI is not at all noticeable  for a certain level of additive noise and 
an expected level of  the error probability has  to be achieved. This situation has been 
discussed more elaborately in Figure 3.4.  
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Figure 3.4: Combined effect of ISI and additive noise on optimal BER performance 
 
 

 The optimal BER plot for channel model with transfer function H2(z) 
intersects a pre-fixed error probability level of 10-5 at point ‘C’ and corresponding to 
this point the SNR level is found to be 20.6 dB. Similarly, the BER performance plot 
of channel without ISI defined by H(z), intersects with the given error probability 
level at point ‘A’ (SNR=12dB). Thus it can be concluded that if the additive noise 
level is below the point ‘D’ (SNR =6dB), the BER performance characteristics with 
all the channels considered here are identical; hence the effect of ISI on performance 
remains insignificant in high noise conditions. Also beyond the point ‘E’(20.6 dB), 
the ISI has no prominent effect on the BER performance characteristics i.e., at low 
noise conditions. Thus it is concluded that both the additive noise and ISI factor in a 
channel influence the equaliser’s BER performance appreciably only over a restricted 
range of   SNR (i.e., for realistic SNR levels). 
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3.1.2   Decision delay   

The decision delay parameter is of paramount importance in adaptive channel 
equalisation process. Decision delay order strongly influences the location of channel 
states and thus the need for either linear or nonlinear equaliser structure arises. For a 
fixed equaliser feedforward order ‘m’, proper selection of delay ‘d’ is extremely 
crucial to achieve optimum performance. The effect of the various possible decision 
delays on optimal BER plots has been illustrated and analysed thoroughly considering 
for various types of channel models. The following equation yields all the possible 
values of delay order parameter ‘d’ values  for optimal performance as cited in [29], 
which has been taken into consideration in the following simulation study.  

d ≤ m + na – 2 (3.5) 

The first example taken here is a two-tap minimum phase channel 
characterised by 

H1(z) = 1+0.5z-1                                                                                        (3.6) 
where a Bayesian equaliser, with feedforward order m=2 and decision delay d=0,  
yields better performance as shown in Figure 3.5a compared to d=1 or 2. 
Corresponding optimal decision regions plots varying the delay values are depicted in 
Figures 3.5b-d   for SNR = 10dB. 

            The second example considered here is a three-tap non-minimum phase 
channel defined by 

H5(z) = 0.3482+ 0.8704 z -1+ 0.3482 z -2  (3.7) 

It is observed in Figure 3.6a, the optimal BER performances with d = 1 and 2  are 
much superior in comparison to either d= 0 or 3 for a fixed equaliser feedforward 
order m =2. Corresponding decision regions for SNR = 10dB are plotted in Figures 
3.6b-e support the performance analysis for different ‘d’ values. 

            Further, an example of a five-tap channel described by the following transfer 
function  is given by 

H11(z)= -0.2052 - 0.5131z -1+ 0.7183 z -2+ 0.3695 z-3+ 0.2052 z -4 (3.8) 
Various values of ‘d’ for a fixed equaliser order m=2 are considered for performance 
analysis. It is observed in the decision region plot for d=2 shown in Figure 3.7c that 
the degree of non-linearity of the optimal decision boundary is milder and this helps 
the channel states belonging to two classes to be classified almost in a linear manner. 
For d=1 and 3, shown in Figures 3.7b and 3.7d, the channel states belonging to two 
classes are non-linearly separable. But for d=0, 4 and 5, these cannot be separated in 
two distinct classes as seen in Figures 3.7a, 3.7e and 3.7f. It is also observed that 
optimal BER performance is better at decision delay d=2 in comparison with other 
delay values as depicted in Figure 3.7g, hence this result conforms to the 
corresponding decision region plot as illustrated in Figure 3.7c. 
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Figure 3.5 :  Channel: H1(z) = 1 + 0.5z-1 (a)Optimal Bayesian BER performances  varying 
the delay parameter, Decision region plots and Noise-free channel states 
with various delays (b) d=0,(c) d=1,(d) d=2 {-ve symbols represented by 
triangles and +ve symbols represented by rectangles}  
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Figure 3.6 :  Channel H5(z) = 0.3482+ 0.8704 z-1+ 0.3482 z-2 (a)Optimal Bayesian BER 
performances varying the delay parameter, Decision region plots and noise-
free channel states with different delays (b) d=0, (c)  d=1, (d) d=2 and (e) d=3. 
{-ve symbols represented by triangles and +ve symbols represented by 
rectangles}  
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(a) 
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 (e) 

 
 (b) 

 
 (d) 

 
 (f) 

                                               

Figure 3.7 :  Decision  regions  and   noise-free  channel   states  (a) d=0 (b) d=1 (c) d=2 (d) d=3  
                      (e) d=4 (f) d=5, and (g) optimal BER performance  comparison  for various delay  
   parameters (Channel:H11(z)=-0.2052 - 0.5131z-1+  0.7183z-2+ 0.3695z-3 + 0.2052z-4)  
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It is an important finding from the decision region plots that the number of 
noise-free channel states, close to the optimal decision boundary varies with decision 
delay significantly and it is less at that specific decision delay or delays for which an 
equaliser’s BER performance is the optimal. Also, the channel states in close 
proximity to the optimal decision boundary have undesirable effect on the optimal 
BER performance, i.e., when additive noise present in the communication system is 
more, a higher probability of misclassification of the received sample points in the 
observation space is expected and performance degrades. 

 

3.1.3 Equaliser order 

 It is observed that increasing the equaliser feedforward order ‘m’ and properly 
selecting the decision delay ‘d’ for that specific ‘m’ value, result in significant 
improvement in performance of equaliser in general.  But the structural complexity 
increases with larger equaliser order, which necessitates restriction of m to a certain 
order. Detailed study regarding this critical aspect in equaliser design is undertaken in 
the present work.    

          Figures 3.8a-c show the optimal BER performances of equalisers for three 
channel models by increasing the feedforward order ‘m’. The channel models under 
study are defined by transfer functions H1(z), H5(z) and H11(z). It is observed that by 
increasing ‘m’, the input observation space dimensionality  of the equaliser increases 
too,  thus reducing the chances of misclassification of the received sample points quite 
appreciably, which in turn results in an enhancement of equaliser’s BER performance.  

Further, in  some typical situations it is noticed that, if some of  the noise-free 
channel states belonging to two different classes are either coincident or very close to  
the decision boundary, then even increasing the equaliser’s feedforward order ‘m’ to a 
higher value, satisfactory gain in performance can never be achieved. This limitation 
is observed in a linear 3-tap channel defined by 

H6(z)= 0.4084 +0.8164 z -1+0.4084 z -2  (3.9) 

In this example, channel states belonging to the two different classes are 
coincident on the decision boundary. It is noticed from Figure 3.8d that gain in BER 
performance remains unsatisfactory even after increasing ‘m’ to 6. This poor BER 
performance necessitates the inclusion of the decision feedback technique, which has 
been discussed in the following section. 
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            Figures 3.8 : Optimal Bayesian BER performance curves varying equaliser’s 
                                  feedforward order(m) (a) channel H1(z), (b) channel H5(z),  
                                  (c) channel H11(z)  and (d) channel H6(z) 
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3.1.4   Effect of decision feedback 

Decision feedback (either corrected or detected symbols used) improves the 
performance of a Bayesian equaliser and the performance loss due to error 
propagation, which occurs when wrongly detected symbols are passed into the 
feedback vector, is not significant [29]. Because of decision feedback, considerably 
fewer states are used in computing Bayesian decision function.  Also it is observed 
that the decision feedback increases the minimum distance between the two classes of 
channel states and hence the separation of noise-free channel states from the optimal 
decision boundary is more in comparison to that obtained without feedback. Hence 
the probability of received samples crossing the optimal decision boundary reduces 
considerably which in turn improves performance. Previous research work has 
demonstrated that the decision feedback effectively merges channel states and this 
simplifies the equalisation process [75] by making the decision regions linearly 
separable. Motivated by this phenomenon, the present work further investigates 
geometric translation property in channel output observation space due to decision 
feedback considering the following examples.  

           All the combinations of transmitted symbol (channel input) sequences and the 
expected receiver sample vectors at equaliser input in each case are listed for a three-
tap channel characterised by transfer function H6(z) in Table 3.1.         

H6(z)=0.4084+0.8164z-1+0.4084z-2  

Here the received sample vector is the position of the symbols (channel states) in a 2-
dimensional observation space. The possible combinations of transmitted symbol 
sequence has been represented in a matrix form (transmitted symbol sequence matrix 

S), which has 12 am n+ −  rows and m+na-1 columns. The subset channel states for a given 
feedback [1 2]T are emphasized in boldface in the given Table 3.1. Here 1 and 2 
denote the two classes which belong to the transmitted symbols +1 and -1 
respectively.  
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Transmitted Symbol Sequences 

 
Received sample vectors at 

equaliser input 
s(n) s(n-1) s(n-2) s(n-3) ˆ( )r n  ˆ 1( )r n -  

1 
1 
1 
1 
2 
2 
2 
2 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
2 
2 
1 
1 
2 
2 

1 
2 
1 
2 
1 
2 
1 
2 

1.6332 
1.6332 
0.8164 
0.8164 
 0.8164 
 0.8164 
- 0.0004 
- 0.0004 

1.6332 
0.8164 
 0.0004 
- 0.8164 
 1.6332 
 0.8164 
 0.0004 
- 0.8164 

1 
1 
1 
1 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
2 
2 
1 
1 
2 
2 

1 
2 
1 
2 
1 
2 
1 
2 

 0.0004 
 0.0004 
- 0.8164 
- 0.8164 
- 0.8164 
- 0.8164 
- 1.6332 
- 1.6332 

 0.8164 
 0.0004 
- 0.8164 
- 1.6332 
  0.8164 
- 0.0004 
- 0.8164 
- 1.6332 

 

Table 3.1: Transmitted  symbol  sequences and  received  sample  vectors   at  
equaliser’s input. Structure parameters are  d = 1, m = 2, and nb = 2. 
Bold faced numbers : given feedback sf, j = [1 1]T    

                                  (Channel H6(z) = 0.4084+ 0.8164 z-1 + 0.4084 z-2) 
 

DFE channel states in the output observation space are solely decided by the 
elements of the feedback vector. The reduction in channel states for the other possible 
feedbacks i.e.  [2  1]T, [1  1]T and  [2  2]T are shown by three coordinate translations  
in the respective  decision region plots as depicted in Figures 3.9a-d. Basically, the 
decision feedback performs a space translation that maps the DFE onto an equivalent 
transversal equaliser in the input observation space. In the translated observation 
space, the subsets of channel states corresponding to the different decisions are almost 
linearly separable.  
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(d)  

  
Figure 3.9 :  Effect of feedback vector on the optimal decision regions and Noise-free 

channel   states   with   m=2,  nb =2,  d=1 and SNR= 10dB (a) Feedback Vector  
[1 1]T ,(b) Feedback Vector [1  2]T, (c) Feedback Vector [2 1]T and (d) 
Feedback Vector [2 2]T (Channel : H6(z)=0.4084+0.8164z-1+0.4084z-2) {-ve 
symbols represented by triangles and +ve symbols represented by rectangles} 
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The geometric properties of a DFE are further illustrated here. Occurrence of 
coincident channel states, which is prominently noticed in the decision region plot 
without feedback in Figure 3.10a, can be completely eliminated by incorporating 
decision feedback. It is observed that when the decision feedback is used with the 
feedback order nb=1 (which means that symbol from either class 1 or class 2 is 
fedback), the number of noise free channel states are reduced from 16 (i.e., without 
feedback) to 8  as depicted in Figures 3.10b. This is because the number of channel 

states is now reduced by an order of magnitude (2 )bn [29] and those are called virtual 

channel states which actively take part in decisions. Again it is observed that  with a 
specific decision delay  d=2, only four states in the vicinity of the optimal decision 
boundary are vulnerable in comparison to that with different decision delay 
values(i.e., d= 0 or 1), and hence it is expected that for d =2 the equaliser’s 
performance improves significantly. Increasing the feedback order ‘nb’ to 2 and 3, the 
number of vulnerable channel states are further reduced to 4 and 2 respectively as 
observed in Figure 3.11. Optimal BER comparisons utilising decision feedback (nb=1, 
nb=2 and nb=3) and for various d values are illustrated in Figure 3.12. 

Further, it is found that both decision delay  ‘d’ and feedback order ‘nb’ are of 
much importance in deciding the performance of a DFE .  In Figure 3.13a it has been 
shown that for the 5-tap channel model H11(z) (H11(z)=  -0.2052 - 0.5131 z -1+ 0.7183 
z -2+ 0.3695 z-3+ 0.2052 z -4 ), if an  equaliser with feedback order nb=1 is chosen, the 
total number of noise-free channel states are reduced to 32 from 64 (i.e., equaliser 
without feedback). Decision region plots in Figures 3.13b-e show that increasing ‘nb’ 
to 2, 3, 4 and 5, the number of channel states are further reduced to 16, 8, 4 and 2 
respectively.  

Optimal decision region plots in Figures 3.14a-c show  the effect of varying 
the decision delay order ‘d’ for a fixed  feedback order ‘nb’ in another example of a 2-
tap channel model H1(z)(H1(z)=1+0.5z-1). The corresponding optimal BER plots are 
provided in Figure 3.14d.  

A careful examination of various optimal decision region plots illustrated here  
reveal that reduction in the number of noise-free channel states depends on feedback 
order ‘nb’ in a DFE  structure. The decision delay order chosen decides the location of 
channel states and number of channel states in close proximity of the decision 
boundary. It is observed that decision delay further causes a rotation of the decision 
boundary. All these effects combine to contribute for the improvement in the BER 
performance due to decision feedback.  
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Figure 3. 10 :     Decision region plots (a)  without feedback with delay d = 1, With feedback  
                            and  for different values of  delay parameter (b) d = 0, (c) d = 1, (d) d = 2  
                            (Channel : H6(z) = 0.4084+ 0.8164z-1+ 0.4084z-2) {-ve symbols represented by 
                            triangles and +ve symbols represented by rectangles} 
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(a)  

 
(b)

 

 
(c) 

 
Figure 3.11 : Decision region plots for different combinations of feedback order and delay 

parameter (Channel H6(z)),  (a)  nb=2 and d = 0, (b) nb=2 and d=1 and (c) nb=3 
and d = 0 ) {-ve symbols represented by triangles and +ve symbols represented 
by rectangles} 
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Figure 3.12 :   Optimal performance comparisons varying the delay parameter and with 
feedback (a) nb=1,(b) nb=2 and(c) nb=3  

                           (Channel: H6(z) = 0.4084 + 0.8164 z-1+ 0.4084 z-2)  
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Figure 3.13  :  Optimal decision region plots  (a) nb=1 and d=2, (b) nb=2 and d=2, (c) nb=3 

and d=2, (d) nb=4 and d=1 (e) nb=5 and d=0 (Channel : H11(z) =-0.2052-
0.5131z-1 + 0.7182z-2 + 0.3695z-3 + 0.2052z-4 {-ve symbols represented by 
triangles and +ve symbols represented by rectangles} 
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Figure 3.14 : Decision region plots  (a) nb=1 and d=0, (b) nb=1 and d=1, (c) nb=2 and d=0  
    {-ve symbols represented by triangles and +ve symbols represented by   

rectangles) (d) Optimal Bayesian performance comparisons for ‘m’=2 
                       (Channel : H1(z)=1+ 0.5 z-1)                                                                                                                  
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Here, an important observation can be made from Figure 3.15, which 
contradicts the very concept that improvement in BER performance is guaranteed 
simply by increasing the feedback order of a DFE for a fixed delay parameter. Thus it 
can be inferred here that both decision delay ‘d’ and feedback order ‘nb’ play a vital 
role in  deciding the optimal BER performance of a  Bayesian DFE. 
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Figure 3.15:  Optimal Bayesian performance curves varying the feedback order ‘nb’ 
                       (a) Channel H11(z) with m= 5 and d= 4  
                       (b) Channel  H6(z) with m= 2 and d=1  
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3.1.5   Importance of selection of ‘nb’ and  ‘d’ in a DFE structure 

Selection of right combination of feedback order ‘nb’ and decision delay ‘d’ 
for a  fixed feedforward order ‘m’ in DFE structure  plays a  major  role in obtaining 
the optimal performance. Detailed simulation study has been undertaken by 
exhausting all possible combinations of ‘nb’ and ‘d’ for a given ‘m’, based on the 
already established relationship [29] as given by 

nb = m + na – 2 –d (3.9) 

 Figure 3.16a shows that for channel H6(z) if equaliser feedforward order ‘m’ 
is fixed at 3, then combination of nb=2 and d=2 results in improved performance in 
comparison to all other possible combinations of ‘nb’ and ‘d’. Similarly for different 
channel models various combinations of ‘nb’ and ‘d’ for a fixed value of ‘m’  in the 
equaliser design are selected based on Equation (3.9) and the optimal BER 
performance comparisons curves are illustrated in Figures 3.16b-e. It has been 
concluded from these extensive simulation results that only a specific combination of 
‘nb’ and ‘d’ for a fixed ‘m’ yields superior performance amongst all. These optimal 
combinations of ‘m’, ‘nb’ and ‘d’ for different channel models  are summarised below 
in Table 3.2. 

 

 

 

Table 3.2: Optimal combination of parameters of a Bayesian DFE 

An important observation, made from the various optimal BER plots shown in 
Figure 3.16a-e is that a Bayesian equaliser without decision feedback but with a 
proper delay order parameter can outperform those with decision feedback 
incorporating non-optimal combination of ‘nb’ and ‘d’ parameters. Hence, inclusion 
of decision feedback in Bayesian equaliser does not enhance the optimal BER 
performance significantly unless the  combination  of  parameters ‘m’, ‘nb’ and ‘d’  is 
rightly chosen. For example, the Bayesian equaliser without feedback and with d=1 
outperforms DFEs without proper combination of feedback order and decision delay 
as observed in Figure 3.16c. 

 

 
Channel transfer functions 

 

Optimal combination 
of 

equaliser parameters 
H6(z)=0.4084 + 0.8164z -1+0.4084z -2 

H1(z)= 1+ 0.5z -1 

H5(z)=0.3482+ 0.8704 z -1+ 0.3482 z -2 
H10(z)=0.35+0.8 z -1+1 z -2 +0.8 z -3 
H11(z) = -0.2052-0.5131z -1+ 0.7183 z -2+0.3695  
z-3+0.2052 z -4 

m=3, nb=2 and d=2 
m=2, nb=1 and d=1 
m=3, nb=2 and d=2 
m=2, nb=3 and d=1 
m=5, nb=4 and d=4 
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Figure 3.16 :  Optimal Bayesian performance comparisons (a) Channel H6(z) with    m= 

3, (b) Channel  H1(z) with m= 2, (c) Channel  H5(z) with m= 3 
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Figure 3.16  :  Optimal Bayesian performance comparisons (d) Channel  H10(z) with m= 
2 and (e) Channel  H11(z) with m= 5 
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3.2  A new approach for selection of equaliser parameters 
 

So far as equalisers without decision feedback is concerned, in order to arrive 
at an optimal value of decision delay ‘dopt’ for a given feedforward order ‘m’, a set of 
graphical plots for various  possible d values is required. This process of sorting the 
numerous plots to pick ‘dopt’ value is extremely cumbersome. In order to circumvent 
such a problem a logical explanation has been provided for establishing empirical 
relationships for ‘dopt’ purely from induction, which has been graphically interpreted 
for the sake of brevity. Thus the new approach can be applied to parameter selection 
process by simply examining the channel characteristics.  

Similarly, a proper selection of feedforward order ‘ m’, decision delay ‘ d’ and 
feedback order ‘nb’  is a challenging task in equalisers with decision feedback as these 
design parameters play a crucial role in the BER performance. Some studies have 
already been made regarding this aspect as reported in the literatures[86,95,96]. In the 
present research work, attempt has been made to interpret this concept in a different 
way taking into account the transmitted symbol sequence matrix S. The column span 
‘ncol’of the S matrix is the deciding factor for the selection of optimal values of 
feedback order ‘nb(opt)’and decision delay ‘dopt’ for a fixed feedforward order ‘m’of the 
equaliser. Logical explanations for the new approach have been provided and 
interpreted also in the form of mathematical expressions. 

A major breakthrough has been thus achieved in successfully evaluating the 
key design parameters of equalisers with and without feedback from the channel 
characteristics directly. The efficacy of the proposed approach has been verified by 
considering examples of various symmetric and asymmetric channel models.  
 

 
3.2.1  Equaliser without decision feedback 

 

In the equaliser structure without feedback, the optimal value of decision delay 
‘dopt’ has been evaluated for a fixed equaliser feedforward order ‘m’. In the proposed 
approach the selection of ‘dopt’ is decided broadly by the two types of channel i.e., 
whether symmetric or asymmetric. Separate analysis for each type has been carried 
out in the following subsections. 
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3.2.1.1 Symmetric channels 
For symmetric channel a methodology has been developed for computing the 

optimal decision delay ‘dopt’. The column span ‘ncol’ of the transmitted symbol 
sequence matrix S, which is generally used to determine the channel states, as given 
in Table 3.1, satisfies the following relationship. 

ncol  = m+ na-1 (3.10) 
where ‘m’ is the equaliser’s feedforward order and ‘na’ is the channel order. 

As the equaliser performance depends on the energy content of the individual 
channel taps [29], the concept utilised here is that the energy is distributed over the 
entire column span (ncol) of the S matrix. While this procedure is adopted it is seen 
that  ‘ncol’ generally exceeds the channel order ‘na’. Hence the distribution of energy 
will be such that the channel tap coefficient representing the maximum amplitude, 
will have a major share of the column span. Also due to the mirror-symmetry of the 
channel characteristics, the remaining tap coefficients will occupy the column space 
(one for each tap coefficient) in a symmetric fashion about the position of tap 
coefficient with the maximum amplitude ‘tapmax’. The allocation of column space one 
by one starting from both the ends of the S matrix continues simultaneously till all the 
tap coefficients get exhausted leaving behind the tapmax only, to occupy the rest of the 
column space. This column space left for ‘tapmax’ is directly related to the evaluation 
of the optimal decision delay ‘dopt’ for a given feedforward order ‘m’. The 
interpretation of this statement is that  depending upon the column span left for tapmax, 
as already mentioned, the solution of ‘dopt’  can be multi-valued. Hence any one of the 
‘dopt’ can be chosen to achieve the optimal BER performance of equaliser for a fixed 
feedforward order ‘m’ which also signifies that the BER performance for all of the 
‘dopt’ values are exactly identical. 

 
The mathematical expression governing ‘dopt’values is given by 
 
dmin  ≤  dopt  ≤ dmax (3.11) 
 

where, ‘dmin’ and ‘dmax’ both are dependent upon the ‘tapmax’ and are defined as given 
below. 
 

dmin =  tapmax -1 (3.12) 
dmax =  tapmax+ m- 2 (3.13) 
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Example 1: 

 

The first example of a symmetric channel considered here is represented by 

 H5(z) = 0.3482+ 0.8704 z -1+ 0.3482 z -2  

In this three-tap channel H5(z) for a feedforward order m=2, the column span 
is ncol = 4 as given by Equation (3.10) and shown in Figure 3.17. The position of the 
tap coefficient with maximum amplitude is tapmax= 2. Hence the values of optimal 
decision delay decided by Equation (3.11) is 

1  ≤  dopt  ≤ 2     

where  dmin =1 and dmax =2 are given by Equation  (3.12)  and  Equation (3.13) 
respectively. The optimal BER performance of equaliser, given in Figure 3.19a for 
different delay values, clearly shows that the optimal values of decision delay are  dopt 
= 1 or 2 for a feedforward order m=2. These results are exactly identical with that 
obtained from the mathematical expressions based on the new approach as discussed.  

 

Example 2:  

 

The second example of a symmertric channel is given by  

H13(z) = 0.227 + 0.46 z -1 + 0.688 z -2 + 0.46 z -3 + 0.227 z –4  

 Figure 3.18 shows that if a feedforward order m=2 is chosen, then the column 
span is ncol = 6 for this five-tap channel H13(z) as given by Equation (3.10). The 
position of the tap coefficient with maximum amplitude is tapmax= 3. Hence the values 
of optimal decision delay given by Equation (3.11) is 

2  ≤  dopt  ≤ 3   

where dmin =2 and dmax =3 are obtained from Equation (3.12) and Equation (3.13) 
respectively. 

The  optimal BER performance illustrated in Figure 3.19b for different delay values, 
shows that the optimal decision delay values are  dopt = 2 or 3 for a feedforward order 
m=2, which are exactly identical with that obtained from the mathematical 
expressions directly based on the new approach for parameter selection.  
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Figure 3.19 :  Optimal BER performance comparisons of Symmetric Channels 
                        varying delay values (a) H5(z) with m= 2 and (b)  H13(z) with m= 2 
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3.2.1.2 Asymmetric channels 
The energy distribution of an asymmetric channel is quite different from a 

symmetric channel as is seen in the previous section. However, the common feature 
between the two types of channel is the position of the channel tap coefficient 
representing the maximum amplitude ‘tapmax’, which dominates the BER 
performance. It can rather be said that ‘tapmax’ dictates the optimal value of decision 
delay parameter ‘dopt’ to be selected for a fixed equaliser feedforward order ‘m’. Here 
also a significant contribution of  ‘tapmax’ exists so far as the spread of the column 
‘ncol’ of the S matrix is concerned. As symmetry is not maintained in such type of 
channel characteristics, uneven distribution of tap energy along the column span is 
bound to occur. Though due to mirror-symmetry exactly identical BER performances 
are obtained for all the ‘dopt’ values in symmetrical channels, this does not happen in 
case of asymmetrical ones. But like its symmetrical counterparts the other tap 
coefficients do occupy the column space based on their respective positions. Further it 
is inferred that the BER performances are greatly influenced by the decision delay ‘d’ 
values as decided by the positions of tap coefficients in the channel characteristics and 
their corresponding amplitudes.  

Asymmetric channels have been primarily configured into two groups 
depending upon whether channel order ‘na’ is even or odd. In the light of the above 
concept, different empirical relationships have been determined separately for those 
two groups which are entirely based on the position of the tap coefficient with the 
maximum amplitude ‘tapmax’ in the channel characteristics for a fixed feedforward 
order ‘m’.  Following the new approach any one of the ‘dopt’ values can be chosen in 
order to achieve optimal BER performance. The expression governing ‘dopt’   is given 
by Equation (3.11). 

 
The values of ‘dmin’ and ‘dmax’ both are dependent upon ‘tapmax’ directly and  

the mathematical expressions relating these parameters are given as  below. 
 

  1           /2             (if    is  even)    
    for   

          3             ( 1)/2      (if   is   odd)     
min max max a a

max max max a a

d tap tap n n
d tap m tap n n

= − ≤⎫
⎬= + − ≤ +⎭

 (3.14) 

 

 
                /2                 (if   is  even)    

    for     
          2            ( 1)/2         (if    is  odd)     

min max max a a

max max max a a

d tap tap n n
d tap m tap n n

= >⎫
⎬= + − > +⎭

 (3.15) 
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Example 1: 

The first example of a two-tap asymmetric channel considered here is 
represented by 

 H1(z)=1 + 0.5 z -1 

Figure 3.20 shows that if a feedforward order m=2 is chosen, then the column 
span is ncol = 3 following the Equation (3.10). The position of the tap coefficient with 
maximum amplitude tapmax= 1 and the channel order is even i.e., na=2. Hence the 
values of optimal decision delay given by Equation (3.11) is 

 dopt  = 0     

where dmin =0 and dmax =0 are computed by Equation  (3.14). 

The BER performance of equaliser for different delay values shown in Figure 3.22a 
indicates that the optimal value of decision delay values is  dopt =0 only for a 
feedforward order m=2, which is exactly identical with the value obtained from the 
mathematical expressions derived in the new approach.  

 

Example 2: 

The second example of a two-tap asymmetric channel is represented by 

 H4(z)=0.5 + 1 z -1 

If a feedforward order m=2 is chosen, then the column span is ncol = 3 as 
shown in Figure 3.21. The position of the tap coefficient with maximum amplitude 
tapmax=2 and the channel order is even i.e., na=2. Hence the values of optimal decision 
delay based on Equation (3.11) is given by 

            dopt  = 2     

where dmin =2 and dmax =2 are obtained from Equation  (3.15). 

The BER performance of the equaliser for different delay values, given in Figure 
3.22b, shows that the optimal decision delay value here is dopt =2 only for a 
feedforward order m=2, which is exactly identical with the value obtained from the 
mathematical expressions based on the new approach as discussed earlier.  
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      Figure 3.22: Optimal BER performance comparisons of Asymmetric Channels 
varying delay values (a) H1(z) with m= 2 and (b) H4(z) with m= 2. 
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Example 3: 

 

The next example of a four-tap asymmetric channel is defined by 

 H9(z)= 0.7255 + 0.584 z -1 + 0.3627 z –2 + 0.0724 z –3 

Figure 3.23 illustrates that for a feedforward order m=4, the column span is 
ncol = 7. The position of the tap coefficient with maximum amplitude tapmax= 1 and 
the channel order is even i.e., na=4. Hence, the values of optimal decision delay given 
by Equation (3.11) is 

0  ≤  dopt  ≤ 2   

where dmin =0 and dmax =2 as computed by Equation  (3.14). 

The BER performance of the equaliser, given in Figure 3.25a for different delay 
values shows that the optimal decision delay values are dopt = 0 , 1 or 2 for a 
feedforward order m=4.  The optimal decision delay values obtained from the 
mathematical expressions given in the new approach are exactly the same.  

 

Example 4: 

 

The next example of a five-tap asymmetric channel considered here is defined by 

             H11(z)=-0.2052–0.5131z -1+ 0.7183 z -2+0.3695 z -3+0.2052 z -4                                                                  

             As   shown in  Figure 3.24, for a feedforward order m=3, the column  span is 
ncol = 7. The position of the tap coefficient with maximum amplitude tapmax= 3 and 
the channel order is odd i.e., na = 5.  Hence the values of optimal decision delay given 
by Equation (3.11) is 

2  ≤  dopt  ≤ 3   

where both dmin = 2 and dmax = 3 are obtained from Equation  (3.14). 

The BER performance of the equaliser, given in Figure 3.25b for different delay 
values shows that the optimal values of decision delay values are dopt = 2 or 3 for a 
feedforward order m=3, which are exactly identical with the values obtained from the 
mathematical expressions directly based on the new approach.  
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Figure 3.25:  Optimal BER performance comparisons of Asymmetric Channels 
varying delay values (a) H9(z) with m= 4 and (b) H11(z) with m= 3. 
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3.2.2   Equaliser with decision feedback 

 
Attempt has also been made for selecting feedback order ‘nb’ along with the 

decision delay parameter ‘d ’for equaliser structures incorporating  decision feedback. 
The computer simulations for this study have prompted a new approach in 
determining the above parameters. Further it has been observed that inclusion of 
decision feedback makes the parameter selection procedure totally different from that 
without feedback structures. While in case of feedback type configurations, the 
column span ‘ncol’ of   S matrix plays a vital role in parameter selection procedure, 
the position of channel tap coefficient with maximum amplitude  ‘tapmax’ is a key 
factor for decision delay selection for equalisers without decision feedback.  In 
feedback type structures the value of  ‘d ’ and ‘nb’ are related in such a way that  they 
span the entire columns  of  S matrix together as demonstrated in Figure 3.26.  This 
aspect is further mathematically expressed as 

ncol = d + nb + 1 (3.16) 
 
 
 
 
 
 
 
 
 
 
                                             
 

                                                       d=0                                        nb=3 
               

                                                       d=1                                                nb=2 
                 

             d=2                         nb=1 
 

Figure 3.26 : Channel transmitted symbol sequence matrix (S) 
                        illustrating the relationship between d and nb , m=2 
                        (Channel:  H6(z)=0.4084+0.8164z-1+0.4084z-2) 
 
It is also found that the BER performance based on a given value of ‘nb’ and 

the computed value ‘d ’using the above expression always yields a better result than 
any other values of ‘d ’. A methodology has been evolved taking this concept into 
account to find the optimum values of ‘nb(opt)’ and ‘dopt’. Various BER plots for 
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different channels both symmetric and asymmetric types are already given in Figure 
3.16 for different ‘nb’ and ‘d’ combinations. The conclusion derived from these plots 
forms the basis of framing certain empirical relations between the  design parameters 
‘m’, ‘nb’ and ‘d’ for a given channel order ‘na’. The analysis based on these plots has 
resulted in an interesting finding, where the optimum length of the feedback vector 
‘nb(opt)’ is always related to the channel order  ‘na’ given by the following expression  

nb(opt) = na-1 (3.17) 
Hence the feedback order ‘nb(opt)’ for the condition of optimality is equal to 

‘na-1’. Once ‘nb(opt)’ is evaluated as per Equation (3.17), the ‘dopt’ value can now be 
computed using Equation  (3.16) as  

 dopt =  ncol – nb(opt) -1                                                                           (3.18) 
 
The optimal combinations of parameters ‘nb(opt)’ and ‘dopt’ for a fixed 

feedforward order of equaliser for various channels using Equation (3.17) and 
Equation (3.18) based on the proposed approach  are given in Table 3.2, which are 
exactly identical to the parameter values given in Table 3.3 obtained previously from 
BER performance plots .     

 

 

 
      Table  3. 3:  Optimal values of parameters for equalisers (with decision feedback)      

 

 

 
Channel transfer  functions 

 

 
Channel 
Order 

(na) 

 
Column 

span 
(ncol) 

 
Optimal values of 

equaliser parameters 

 
H6(z)=0.4084+0.8164z-1 +0.4084z-2    

 

  
3 

              

         
5 

 
 m=3, nb(opt)=2 and dopt =2   
 

 
H1(z)= 1+ 0.5z-1                   

 

 
2 

 
3 

 
m=2, nb(opt)=1 and  dopt =1   

 
H5(z)=0.3482+0.8704z-1+0.3482z-2     
 

 
3 

 
5 

 
m=3, nb(opt)=2 and  dopt =2   

 
H10(z)=0.35+0.8z-1+1z-2 +0.8z-3          
 

 
4 

 
5 

 
m=2, nb(opt)=3 and  dopt =1   

 
H11(z)= -0.2052- 0.5131 z-1+ 0.7183 
            z-2+0.3695 z-3+0.2052 z-4         

 
5 

 
9 

 
m=5, nb(opt)=4 and  dopt =4   
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3.3  Selection of feedforward order ‘m’ 

All the discussions in the previous sections are based on a fixed feedforward 
order ‘m’. It is observed from the Figures 3.27a-b that for equalisers without feedback 
and with feedback, increasing the feedforward order ‘m’, the BER performance 
improves. Basically optimal equaliser design may need a large feedforward order. 
However, increasing the order of ‘m’ to a higher value elevates the structure size, thus 
computational complexity and hardware cost further rises. Also it is observed in 
Figure 3.27c-d that increasing the feedforward order of ‘m’ of the equaliser, 
convergence in the BER performance characteristic is achieved.  

 So far as this research work is concerned, the very point of emphasis is laid 
on selecting ‘m’ for designing a reduced structural configuration. And if this criterion 
is to be satisfied then the only possibility lies with picking up a small value for the 
feedforward order ‘m’. It is found that if a lower order of ‘m’ is chosen, some 
performance loss is accounted for with respect to BER performance. But this small 
sacrifice is made purposefully in order to gain structural advantage in design of 
equalisers, which is the prime objective of this research work. Thus a trade off 
between structural complexity and performance loss has been well taken care of in 
choosing the feedforward order ‘m’. Considering this aspect, the feedforward order 
‘m’ has been restricted to the channel order ‘na’ such that the BER performance loss is 
not appreciable. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                             CHAPTER-3: Factors Influencing Equaliser’s Performance and Parameter Selection 

 71

 
 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

2 4 6 8 10 12 14

Signal to Noise Ratio(dB)

lo
g 

10
(B

it 
Er

ro
r R

at
e)

m=2 m=3 m=4 m=5 m=6  
 

(a) 
 

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

2 4 6 8 10 12 14

Signal to Noise Ratio(dB)

lo
g 

10
(B

it 
Er

ro
r R

at
e)

m=2 m=3 m=4 m=5  
(b)  

 
Figure 3.27 : Optimal BER performance comparisons varying equaliser’s feedforward           

order(m) (a) Channel H5(z), (b) Channel H6(z) 
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Figure 3.27 :  Optimal BER performance comparisons varying equaliser’s  

feedforward order (m)  (c) Channel  H1(z) and (d) Channel H11(z) 
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The restriction imposed on for selection of equaliser’s feedforward order ‘m’, 
can be further justified from the  simulation result given below. It is observed that if 
the change in the additive noise level is fixed, then the BER performance loss 
occurred is more predominant in case of equalisers with higher ‘m’ compared to those 
with lower ‘m’. This study is illustrated in Figure 3.28. For an increase of 2 dB in 
SNR value (BA), the BER performance loss in case of equaliser with m=3 and m=5 
are CD and EF respectively, which justifies clearly another additional advantage 
gained in choosing a lower order feedforward order ‘m’ for equaliser design. 
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Figure 3.28:  Effect of increasing equaliser’s  feedforward order on BER performance 

loss incurred for a  given SNR change (Channel: H5(z)) 
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3.4 Conclusion 

In the present work, a detail study on various factors influencing the BER 
performance of Bayesian equaliser has been undertaken as it provides the optimum 
performance for symbol-by-symbol type of equalisers. It is observed here that a  
Bayesian equaliser’s BER performance is greatly influenced by additive noise level, 
decision delay‘d’, feedforward order‘m’ and feedback order‘nb’. It is inferred that 
both the additive noise level and ISI factor in a channel influence the equaliser’s BER 
performance only for realistic SNR levels. The decision delay parameter decides the 
location of channel states with respect to the optimal decision boundary in the input 
observation space of the equaliser. In case of channels with coincident states, 
appreciable gain in BER performance is only achieved by incorporating decision 
feedback technique. Reduction in the number of noise-free channel states entirely 
depends on feedback order ‘nb’ in a DFE structure. Selection of right combination of 
feedback order ‘nb’ and decision delay ‘d’ for a  fixed feedforward order ‘m’ in DFE 
structure  plays a  major  role in obtaining the optimal performance. Further, this 
research work provides an insight in determining the optimal values of its various 
parameters from a different perspective while comparing with the previous works. 
The parameters for optimizing the BER performance for equalisers (without feedback 
and with decision feedback) can easily be evaluated only by a simple examination of 
the type of channel model and its tap coefficients. This methodology has really 
opened up a new horizon for parameter selection problem in an efficient way, without 
going for exhaustive graphical study. The approach suggested in this present work is 
conceptually different from that suggested by previous researchers [29] and has been 
logically interpreted from various simulation results. Hence this aspect of present 
study brings a new dimension to parameter selection issue in decision feedback based 
equaliser structures. 
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It has already been established that multilayer feedforward neural network 

(FNN) based equalisers have significant performance improvement over the 
conventional linear equalisers based on LMS or RLS adaptive algorithms 
[13,18,88,89]. The basic objective of the present work is primarily aimed at 
developing new equalisers in the FNN domain having reduced structural complexity 
so that these can be easily implemented in real-time. The learning algorithms 
developed to update the weights of different structures utilise the basic BP algorithm 
concept. However, with reference to the structural paradigm certain modifications 
have been included in the estimation of local gradient of errors at different nodes. In 
addition to this, a novel technique has been presented for adapting the slope parameter 
of the sigmoidal activation function using fuzzy controller approach for all the nodes 
of a conventional multilayer FNN structure without any structural modifications.  

The major contribution of this chapter comprises of designing efficient 
equaliser structures based on feedforward neural network (FNN) topology and 
development of appropriate training algorithms to adapt the network weights faster. In 
Section 4.1, an elaborate explanation has been provided for an hierarchical knowledge 
reinforced feedforward neural network equaliser. Thereafter Section 4.2 deals with 
another variant in the FNN configuration, where an orthogonal basis function 
expansion technique has been employed to develop a new structure.  Subsequently in 
Section 4.3, an analysis is carried out for a hybrid transform domain FNN equaliser 
structure. In Section 4.4, a novel fuzzy controller concept is introduced to tune the 
slope of the sigmoidal activation function of a conventional FNN based equaliser. 
Simulation study and the BER performance comparisons of all the proposed 
equalisers with reference to a conventional FNN one are presented in Section 4.5.  
Finally, Section 4.6 provides the summary of this chapter.  

 

CHAPTER 4
 

Proposed FNN Based Equalisers
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4.1 Hierarchical knowledge based feedforward neural network 
(HKFNN)  equaliser 

 

In this configuration the concept of hierarchical knowledge has been 
incorporated into an existing multilayer feedforward adaptive equaliser to augment 
the decisions at the nodes (expert’s opinion)[97]. The expert’s opinion is based on the 
outputs from the nodes of the previous layers and the original information (external 
inputs)  fed to the structure. This new technique can be viewed as an enhancement in 
the knowledge base required for arriving at a pseudo-optimal solution. The order of 
cascading of nodes (experts) depends entirely upon the channel characteristics and 
hence the structural complexity directly relates to the problem under consideration. 
Thus more and more refined and matured information need to be processed from a 
raw database in order to correctly update the domain of knowledge for optimally 
characterizing a system. 

The proposed neural structure shown in Figure 4.1 has only one neuron 
(expert) in each layer. Except the first layer, the knowledge base at other layers is 
strengthened by the expert opinions of the previous layers as well as the original input 
information. This realization is quite different from the conventional FNN, where the 
decision at a node solely relies upon the information generated at the nodes of the 
previous layer. This can be attributed to the fact that while the decision in case of 
conventional structure may be a biased one, the proposed method provides a well 
defined rational approach as it follows the basic concept of laws of natural justice. To 
be more specific, it can be stated that before delivering the final decision, each node 
(expert) analyses thoroughly the original information (external inputs to the network) 
along with the filtered knowledge generated by the nodes of the previous layers with 
an objective to eliminate any possible uncertainty that might have influenced it. The 
structure has been so chosen that the nodes responsible for the final decision are more 
reinforced with knowledge compared to the nodes at the intermediate layers. In terms 
of hierarchy, these nodes (experts) occupy the highest level in the process of decision 
making and hence these experts be fed as much information as possible to enrich their 
knowledge base in order to arrive at a near optimal solution. The proposed neural 
equaliser has to be trained first before its performance in terms of bit-error-rate is 
evaluated and the training algorithm is discussed in the following section.  
4.1.1  Learning algorithm 

The supervised training of the neural structure is adopted, through an error 
correction learning rule based on the Back Propagation algorithm, which is a 
generalisation of the LMS optimisation procedure. The adaptation of the neural 
network’s synaptic weights is carried out by the method of gradient descent in the 
weight space which is implemented by propagating the error back from the output 
layer towards the input. 
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The various notations used in the development of algorithm are as follows: 
j  is the layer index for 1 ≤ j ≤ nn.  nx is the number of inputs to the equaliser structure. 
V is the weight matrix connecting inputs to the neurons of different layers. 
W is the weight matrix connecting the neurons of different layers. 
The learning algorithm comprises of the following steps for updating the connection 
weights sequentially. 
• All the synaptic weights and thresholds are initialized to small random values 

chosen from a uniform distribution. 
• The network is then presented with training samples and for each sample, the 

following sequences of forward and backward computations are carried out as 
given hereunder. 

• The signal at the input layer of the proposed equaliser can be represented by a 
(m+nb) x 1 vector as  

x(n) = [ r(n), r(n-1), ……, r(n-m+1); 
∧
s (n-d-1) … …, 

∧
s (n-d-nb)]T      (4.1) 

• With a signal vector x(n) applied to the input layer, the activation potentials and 
function signals of the network by proceeding forward through the network, layer 
by layer  are computed. 

The net internal activity level cj(n) for a neuron in layer j is 

c j(n)  = 
1

( ). ( ) ( )
nx

kj k j
k

v n x n th n
=

+∑ ,       j = 1  and  nx = m + nb        (4.2) 

= 
1

1 1
( ). ( ) ( ). ( ) ( )

jnx

kj k ij i j
k i

v n x n w n y n th n
−

= =
+ +∑ ∑ ,      1 < j ≤ nn          (4.3) 

Considering sigmoidal activation function, the output of the neuron in jth layer 
is calculated as  

    y j(n) = F {c j(n)}  = 
. ( )

. ( )
1

1

j

j

c n

c n
e

e

−φ

−φ
−

+
,        1 ≤  j  < nn        (4.4) 

The final output from the equaliser is computed considering the node in the 
output layer to be a summing unit as given by 

y j(n) = c j(n) ,       j  =  nn                                  (4.5)  
• The output of the neural network is then compared with the desired value and 

consequently an error signal is produced. 
ej(n)= do(n) – y j(n)                                                                                    (4.6) 
The error signal   ej(n) actuates a control mechanism, the purpose of which is 

to apply corrective adjustments to the synaptic weights. This objective is achieved by 
minimizing a cost function or index of performance, ( )nJ . A commonly used cost 

function based on the mean-squared-error criterion has  been applied here. 

21
( ) ( )

2
= j

j
n e nJ ∑                                                                                      (4.7) 
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• The local gradients (error terms) at each node of the proposed neural network can 
be computed by propagating the output error backward, layer by layer through all 
the connection weights towards the input. 

δ j(n) =  e j(n) ,           j =  nn ( for the output layer)                              (4.8) 

δ j(n) =  {1 – y j(n)2}.(φ / 2).
1

( ) . ( )
nn

i
i j

n v njiδ
= +
∑ ,       1 ≤  j  < nn       (4.9) 

• The BP learning algorithm updates the network weights that minimize the cost 
function. The training algorithm applies a weight correction matrix, which is 
proportional to the instantaneous gradient of the cost surface w.r.t. the neural 
network synaptic weight vectors. The synaptic weights of the network of a layer 
are adjusted according to the generalised delta rule as given below. 

vkj(n+1) =  v kj(n) + Δv kj(n) 

              = v kj(n) - η . ( ) ,
( )κj

J n
v n
∂
∂

          1 ≤ j ≤ nn  and 1 ≤ k ≤ nx                 (4.10) 

wji(n+1) =  wji(n) - η . ( )
( )ji

J n
w n
∂
∂

,   1 ≤  j < nn   and  j +1 ≤  i ≤ nn    (4.11) 

These equations can be explicitly expressed as 
vkj (n+1) = vkj(n) + α[vkj(n) - vkj(n -1)] + ηδ j(n) xk(n),   1 ≤  k ≤  nx   (4.12) 
wji(n+1) = wji(n+1) + α[wji(n) - wji(n -1)] +ηδ ji(n) yj(n),   j +1 ≤ i ≤ nn  (4.13) 
thj(n+1)  =  thj(n) +  β δ j(n) ,        1 ≤  j < nn               (4.14) 

where η and β are the learning-rate parameters used in adaptation of weights and 
thresholds respectively and α is the momentum constant. 
• Once a new set of weights are evaluated, the response of the network is again 

computed using this set of weights and by presenting a new set of samples to the 
network. This process of recursion continues till the objective function is 
minimized. 

 

4.2 Orthogonal basis function based feedforward neural network 
(OBFNN)  equaliser  

 

The proposed neural equaliser structure is based on an orthogonal basis 
function (OBF) expansion technique, motivated by genetic evolutionary concept, 
which utilises a self-breeding approach [98]. A natural concept underlying the 
principle of genetic transformation is applied to evolve new information so as to 
consolidate the final decision of a structure, which correlates the individual opinions 
of the experts of independent generations. The equaliser structure developed utilising 
this novel idea has outperformed the conventional multilayer FNN equaliser by a wide 
margin. It has also a reduced structural complexity and has the potential to become a 
challenging candidate for real-time implementation issue. The schematic diagram of 
the proposed neural equaliser structure is shown in Figure 4.2.  
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This structure resembles to that of a multilayer FNN with the exception that 
each layer comprises of only one neuron and is based on orthogonal basis function 
expansion technique. The basic idea revolves around decomposing the signal ‘y’ at a 
node, into two orthogonal pairs as ‘y cos y’and ‘y sin y’ such that the energy contained 
by transformed signals remains unaltered. Comparing this technique with self-
breeding genetic approach, these two generated signals may be termed as offsprings 
of the present generation ‘y’ which  take part in reproducing further to create a new 
generation.  In  this process out of  these two offsprings only one is allowed to mutate 
and reproduce further in order to create a new generation, while the other one is 
constrained to remain as it is to preserve the knowledge of the corresponding 
generation which it forwards to the output node (expert) responsible for taking the 
final decision. The process of evolution continues for a number of generations 
depending upon the complexity of the problem under investigation. The prime 
objective focussed here is to develop a strategy, where a collective judgment based on 
the expert opinions evolved from decisions of individual generations can be employed 
to achieve a more rational and heuristic solution at the equaliser output. The proposed 
neural equaliser structure is adapted during the learning phase and then its 
performance is evaluated. 
 
4.2.1 Development of the concept for weight adaptation in the proposed structure 

Basically this structure belongs to a class of multilayer FNN and hence the 
conventional BP algorithm can be applied to adapt the network weights. However, 
this algorithm needs to be suitably modified to take into account the error propagated 
through the orthogonal basis function (OBF) block.  

According to the back propagation algorithm the evaluation of local gradient 
at each node is of prime importance for updating synaptic weights connected to the 
corresponding unit. Calculation of local gradients at each node cannot be directly 
computed using BP algorithm, as the OBF block is positioned in between the neurons 
of different layers. Hence, some suitable measures must be evolved to overcome this 
bottleneck. This can be achieved by modifying the BP algorithm to accommodate 
such limitations.  
 
Example : 

An example of the proposed structure and its expanded view are shown in 
Figure 4.2.1 and Figure 4.2.2 respectively. It is visualized that two parallel blocks can 
substitute an OBF block because a pair of orthogonal signals originates from it. Each 
block comprises of a function block and a multiplier unit. Details of error propagation 
and mathematical derivation of local gradients at each node are explained as follows. 
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Figure 4.2.1: An example of proposed OBFNN structure
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Figure 4.2.2: Expanded view of OBFNN structure

Figure 4.2.3: Error distribution through a multiplier unit
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The error at the output node 3 is computed as  
e3(n) = do(n) - y3(n)                                                                                   (4.15) 

Further, as this node is a pure summing unit, the error term is given by, 
δ3(n) = e3(n)                                                                                             (4.16) 

The error propagated back to node 2 through the connection weight w23(n) is given by 
e2(n) = δ 3(n) . w23(n)                                                                              (4.17) 

and corresponding local gradient at node 2 
δ 2(n) = e2(n){1 – y2(n)2}(φ/2)                                                               (4.18) 
The errors, propagated through the connection weights w12(n) and w13(n), are 

e1C(n) and e1S(n) respectively and are computed as given below. 
e1C(n) = δ 2(n) . w12(n)                                                                      (4.19) 
and                    
eIS(n) = δ 3(n) . w13(n)                                                                      (4.20) 
Further, a major problem is encountered in dividing e1C(n) between the  two 

input connection paths at the multiplier node during error propagation backward. 
Hence a new strategy is applied in distributing this error between these two paths. 

With reference to Figure 4.2.3, the proposed concept for error distribution is 
explained below more elaborately. For sake of clarity the time index ‘n’ is dropped in 
all the derivations given below. Using the basic descent gradient approach, the change 
in the network weights are evaluated as.  

1wΔ   = -η
1

J
w
∂
∂

                                                                      (4.21) 

2wΔ = -η
2

J
w
∂
∂

                                                                        (4.22) 

where J and η denote the objective function and learning parameter respectively. 

Following the chain rule, the two terms 
1

J
w
∂
∂

 and 
2

J
w
∂
∂

 are expressed as the 

product of partial derivatives, which can be computed individually as below. 

1

1 1 1

 .   .    . J J e f f
w e f f w
∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂

 

         = e (-1)  f2  x1  

         = - e  f2   x1   (4.23)    

Hence,  

1wΔ  = η e f2 x1     (4.24) 

Now, if e1 is assumed to be the error propagated through the weight 1w  and x1 

is the input connected to weight w1, then using the descent gradient approach (LMS 
algorithm in Adaptive Filter Theory [68,69] ) the change in weight 1wΔ  is given by 

1wΔ  = η e1 x1             (4.25) 
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Now equating Equations (4.24) and (4.25), the error  e1 is evaluated as 
e1= e . f2        (4.26) 

In a similar manner the error e2 is calculated by  
e2 =e . f1                                                                               (4.27) 

Based on the explanation as mentioned above, the errors propagated back from the 
multiplier units are given by 

e11(n) = e1S(n) siny1(n)              (4.28) 

12e′ (n)= e1S(n) y1(n)                                                                     (4.29) 

13e′ (n)= e1C(n) y1(n)                                                               (4.30) 

14e (n)= e1C(n) cosy1(n)                                                              (4.31) 

The errors 12e′ (n) and 13e′ (n), at the output of function block, are to be 

propagated back through it. Here, an adhoc solution has been devised by considering 
the function block, which performs a nonlinear mathematical operation to be 
equivalent to the sigmoidal nonlinearity of a neuron. Following this strategy, BP 
algorithm, can be utilised directly for error calculation at the input end of the function 
block. Thus the errors are computed as  

e12(n)  = 12e′ (n)  cosy1(n)                                                      (4.32) 

           and  
e13(n) = - 13e′ (n)  siny1(n)                                                     (4.33) 

Finally, a rational approach is followed to evaluate the total error at the output 
of node 1, e1(n)  by combining  all the errors  e11(n), e12(n), e13(n) and e14(n), as it has 
been  contributed from four different paths connected to that node. 

e1(n) = e1S(n) siny1(n)+e1S(n) y1 cosy1(n)+e1C(n) cosy1(n)–e1C(n) . y1 siny1(n)   
        = δ3(n)w13(n){siny1(n)+y1 cosy1(n)}+δ2(n) w13(n){cosy1(n) –y1siny1(n)}              

 (4.34) 
Hence, the local gradient at node 1 is calculated as 

δ1(n) = e1(n){1 – y1(n)2}(φ/2)                                                               (4.35) 
Thus all the synaptic weights connected to node 1 can be directly updated based on 
δ1(n). 
 

4.2.2 Learning algorithm 
The various notations used in the following algorithm are given as below: 

j is the layers index,      1 ≤ j ≤ nn 
nx is the number of  input to the equaliser. 
V is the weight matrix connecting inputs to the neurons of first layer. 
W is the weight matrix connecting the neurons of different layers. 
The generalised algorithm is summarised as below: 
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• The synaptic weights and thresholds are initialised to small random values which 
are uniformly distributed. 

• The signal at the input layer of the proposed equaliser can be represented by a 
(m+nb) x 1 vector as x(n) = [ r(n), r(n-1), …, r(n-m+1); ŝ (n-d-1) , …, ŝ (n-d-nb)]T. 

• Calculation of network output  
 The forward propagation of signal continues layer by layer till the final output 
yo(n) of the neural structure is calculated.  The internal activity of the node at the first 
layer is given by 

cj(n) =
1

( ). ( ) ( ),
nx

k k j
k

x n v n th n
=

+∑        nx = m +nb (4.36) 

For all the nodes in the middle layer, the internal activity of each node is 
calculated as 

c j(n) = yi cosyi(n) . wi j(n) ( )jth n+ ,    1< j < nn  and   i = j - 1             (4.37) 

The local expert decisions at the nodes of all layers except the output are 
decided by the sigmoidal nonlinearity as given by 

y j(n) = F {c j(n)} = 
. ( )

1
. ( )

1

j

j

c n
e

c n
e

−φ
−

−φ
+

,        1 ≤ j < nn                 (4.38) 

The node at the output layer combines the knowledge available from all 
generations (weighted sum of all the signals) to generate the final output.   

2
  

1
( ) ( ) ( ) ( ). ( )

nn

j i i j k k k nn
k

y n y n w n y siny n w n
−

=
=

+ ∑ ,      j = nn and i = j -1  (4.39) 

• Computation of error terms: 
As the final node is a summing unit, the error term at time index n is computed 

by comparing the output with the desired value.  
δ nn(n) = ej(n)= do(n) – yj(n),          j = nn                                                 (4.40) 

For the node in (nn –1)th layer, the error term is calculated as 
δ j(n) =δ l(n) wjl (n){1 – y j(n)2}(φ/2),          j = nn – 1 and  l = j+1    (4.41) 

For the nodes in all the middle layers, the error terms are calculated as 
δ j(n) = {δl(n) wjl (n) (cosyj(n) – yj sinyj(n)) 

       +δ nn(n)w j nn(n) (siny j(n) + y j cosy j(n))}{1 – y j(n)2}(φ/2),   1 ≤ j ≤ nn – 2 (4.42) 
• Updation of synaptic weights and thresholds is carried out using the generalised 

delta rule as follows.                                                                       
w j nn(n+1)=w j nn(n)+ηδ nn(n) y j siny j(n)+αΔw j nn(n –1),   1 ≤ j ≤ nn –2  (4.43) 
wjl (n+1)=w jl(n) + ηδ l(n) y j cosy j(n) +α Δw jl (n –1),  1 ≤ j ≤ nn – 2     (4.44) 
w jl(n+1)=w jl(n) + ηδ nn(n) y j(n) +α Δw jl (n – 1),        j = nn – 1        (4.45) 
v k(n+1)=v k(n) +ηδ 1(n) x k(n)  + α Δvk(n –1),             1≤  k ≤ nx            (4.46) 
thj(n+1) = thj(n) + β δj(n),         1 ≤ j < nn (4.47)                           
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where η and β are the learning-rate parameters of weights and thresholds                        
respectively and α is the momentum constant. 
• This process of recursion continues till a given performance index is achieved. 
  

4.3 Transform domain based feedforward neural network(TDFNN)                     
equaliser  

 
 
 

In this present work a hybrid configuration has been proposed where a real-
valued discrete transform (RDT) block is embedded within the framework of a 
conventional FNN structure [99,100]. A signal vector is mapped from a given domain 
to another when fed to a transform block, because basically the transform block 
performs a fixed filtering operation. Almost an identical operation is carried out in a 
neuron block i.e. an FNN structure where signal transformation also takes place. But 
the basic difference between the transform block and the neural block is that while 
adaptive weights are associated with the later, fixed weights are inherent in the 
former. Hence, such a hybrid network representing a heterogeneous configuration has 
been proposed to solve the channel equalisation problem. Further, as this work is 
aimed at designing real-time implementable structure, RDT has been purposefully 
utilised. Though various transforms like Discrete Cosine Transform(DCT), Discrete 
Sine Transform(DST) and Discrete Hartley Transform(DHT) [101] have been 
exhaustively tried initially in the simulation, the performance of DCT is found to be 
best amongst all. Thus, the entire analysis in this section is devoted to DCT.  

The proposed equaliser given in Figure 4.3 is equivalent to a conventional 
multilayer feedforward neural structure with an exception that only one layer of an 
FNN structure is employed, followed by a discrete cosine transform block. This new 
idea has originated from the transform-domain adaptive filter theory [101,102]. A 
real-valued transform is a powerful signal decorrelator which performs whitening of 
the signal by causing the eigen value spread of an auto-correlation matrix to reduce. 
Further, these transformed signals undergo a power normalisation process [102], 
which speeds up the convergence of adaptive weights and also improves the 
performance significantly. The final output of the proposed structure is evaluated as 
the weighted sum of all normalised signals from the transform block. The BP 
algorithm is then applied to adapt the weights in the proposed hybrid structure with 
certain modifications incorporated based on the structural changes when compared 
with a conventional FNN structure, because the transform block placed at the output 
end poses difficulty in the propagation of error back through it. This problem is 
overcome by taking the inverse discrete cosine transform (IDCT) of the errors and 
computation of the local gradients of all the nodes of the FNN structure is done. The 
training algorithm for the proposed neural based equaliser structure has been 
described step by step as follows.  
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4.3.1 Learning algorithm 
The various notations used in the development of algorithm are as follows: 
nx is the number of inputs to the equaliser structure. 
ns is the number of neurons in the single layer FNN structure.  
nn is the output layer index. 
V is the weight matrix connecting inputs to the neurons of first layer. 
W is the weight matrix connecting transformed signals to the output unit. 
The training algorithm is summarised as below: 
• Initialisation of all the network weights and thresholds to small random values that 

are uniformly distributed.  
• The signal at the input layer of the proposed equaliser can be represented by a 

(m+nb) x 1 vector as x(n) = [ r(n), r(n-1), …, r(n-m+1); ŝ (n-d-1) , …, ŝ (n-d-nb)]T. 
• Calculation of network output: 

The output of kth neuron of input layer at time n is given by   

y k(n) = 
. ( )

1
. ( )

1

j

j

c n
e

c n
e

−φ
−

−φ
+

,           1 ≤ k ≤ ns             (4.48) 

            where  cj(n) = 
1

( ) ( ) ( )
nx

ik i k
i

v n x n th n
=

+∑         (4.49) 

The outputs from the single layer FNN form a signal vector y(n), which is 
forwarded to the  DCT block for necessary processing. 
The kth   element of the transformed signal is given by 
yTk(n) = T yk(n)                                                                      (4.50) 
The T pq

th element of the N X N   transform matrix T  is defined as 

T pq=

1 , 0; 0,1,......, 1

2 (2 1)cos , 1,2,.... 1; 0,1,...., 1
2

p q N
N

q p p N q N
N N

π

⎧ = = −⎪
⎪
⎨⎛ ⎞ +⎪ = − = −⎜ ⎟⎜ ⎟⎪⎝ ⎠⎩

 (4.51) 

             Transformed signal  yTk (n)  is  then  normalised   by  the  square  root of their 

power  B k(n)  which  can be estimated by filtering the 2
kyT (n)  with  an exponentially 

decaying window of scaling parameterγ ∈ [ 0,1] as derived in the literature [102] and 

shown below.  
The kth element of the normalized signal, 

( )nkyN   =  
( )k

 k

y n

(n) ε+
T

B
                                                        (4.52) 

B k(n)  =γ  B k(n-1)+ (1 - γ ) 2
kyT (n)                                          (4.53) 
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 The small constant ε  is introduced to avoid numerical instabilities when 
signal power B k(n) is close to zero. The resulting equal power signals from the 

normalized block are given to a summing unit, which produce the final output given 
by 

yj(n)
1

( ). ( )
ns

k
n v nk ky

=
∑= N   (4.54) 

• Calculation of error terms: 
The error at the output ej(n) is found by comparing the final output with the 

desired value of equaliser  at  time index n, 
  ej(n)= do(n) – yj(n),     j = nn                                                                   (4.55) 
Using the Back–Propagation algorithm, the output error is propagated 

backwards through all the connections layer by layer. First the error at the output of 
normalisation block is calculated as, 

eNk(n)  =  ej(n) . wk(n) ,          1 ≤ k ≤ ns                                           (4.56) 
The power normalisation can be considered as a process, whose operation is 

quite similar to the nonlinear transformation produced by sigmoid activation function 
of a neuron.  Following this concept, the error terms (i.e., local gradients) at the output 
of the transform block can be calculated using the following equation.  

δ Tk(n)  =  e Nk(n) . k

k

∂
∂

N

T

y n
y n

( )
( )

   

 =  e Nk(n) . 

 
( )

( )
 

 k
 k k

k

 k

(n)
(n) y n

y n
(n)

ε
ε

ε

∂ +
+ −

∂
+

BB

B

T
T  

= e Nk(n) . 2

2

( ) ( )(1 ) ( )
( )

( )
( )

k
k k

k

k

k

y n y n y n
y n

y n
y n

γ− −T
N T

N

T
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 = eNk(n)  (yNk(n) / y Tk(n)) {1 – (1-γ ) 2 ( )ky nT }             (4.57)  

Once the errors are back propagated through the transform block, the errors at 
its input ek(n) can be evaluated using the Inverse Discrete Cosine Transform(IDCT) 
operation [101]. 

ek(n)  =  IDCT{δ Tk (n)}                                                       (4.58) 
Further, the local gradients (error terms) at the nodes of the input layer of the 

proposed structure are calculated accordingly.  
δk(n)    = ek(n) {1 – y k(n)2}(φ / 2),           1 ≤ k ≤ ns                  (4.59) 

• Adaptation of  network weights: 
The synaptic weights and thresholds of the input layer and the output layer are 

updated using the generalised delta rule. 
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vik(n+1) = vik(n)+ ηδk(n) xi(n)+ α Δv ik (n-1),   
                                                       1 ≤ i ≤ nx and 1 ≤  k ≤ ns   (4.60)  
thk(n+1) = thk(n)+ β δk(n),            1 ≤  k ≤ ns                                         (4.61) 
wk(n+1) = wk(n) + η e(n) yNk(n),    1 ≤  k ≤ ns                                         (4.62) 

where η and β are the learning-rate parameters of weights and thresholds 
respectively and α is the momentum constant. 
• This recursion procedure is continued till the objective function is minimised. 

 
4.4     Fuzzy tuned feedforward neural network (FZTUNFNN) 

equaliser  
 

 
In a neural network paradigm the synaptic weights and threshold values are 

generally considered as free parameters in conventional sense, which are adapted 
using appropriate learning algorithms in order to train the network. However there are 
many other parameters like slope of the sigmoidal activation function, learning-rate 
parameter for synaptic weights, thresholds and momentums etc., which can also be 
tuned to enhance the adaptability of the network. The slope of the sigmoidal 
activation function of each neuron in a multilayer neural network paradigm plays an 
important role and is a key parameter in the decision-making ability of that specific 
node. Performance of conventional MLP neural equaliser can be improved by tuning 
the slope of the activation function along with weight updation. In the present 
research work attempt has been made to develop a new neural structure by adapting 
the slope of the sigmoid activation function using fuzzy logic controller approach.  

Fuzzy logic controller approach has proved to be a potential candidate in 
varieties of control applications recently. The development of fuzzy logic controllers 
has resulted in improved performance of dynamic systems in comparison to 
conventional PID controllers [103,104]. The most important feature of fuzzy logic 
controller is the application of linguistic information derived from the abstract values 
of the plant parameters to evaluate a control action. On the other hand, the PID 
controllers sometimes fail to deliver optimal performances and setting of the 
controller gain is highly sensitive to the types of disturbances experienced by the 
systems [105,106]. This background idea about controllers has motivated the research 
to develop a novel equaliser structure on a multilayer FNN framework. The proposed 
structure is a hybrid one because in this configuration, while the BP algorithm takes 
control by recursively updating the network weights and threshold values the fuzzy 
logic controller approach adjusts the slope of the sigmoid activation function of all the 
nodes of the network at the same time [107]. 
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In this section, the entire focus of analysis is aimed at tuning the slope 
parameter of the sigmoidal activation function. As the proposed equaliser under 
investigation is a conventional FNN with a reduced structure, the BP algorithm 
described in Appendix A is applied to update the network connection weights. The BP 
algorithm provides an estimation of the local gradient of the neurons in each layer and 
taking these into consideration adaptation of the slope parameter φ is done by the 
fuzzy logic controller approach. The proposed work is aimed at reduction of the 
training time as well as improvement in performance of conventional MLP neural 
equaliser. This entire process of sigmoid slope tuning is explained in detail in the 
following section. 

 
4.4.1 Description of the proposed concept of sigmoid slope tuning  

 
For a fully trained multilayer neural network, the error term at the output node 

(termed as global error) is not only at the lowest level but the error term at each node 
except output  node (termed as local error) of the network is at the lowest level too 
and ideally may be zero. Under such circumstances there will be no further change in 
the synaptic weights or the threshold values of the network. This confirms the basic 
concept embedded in the BP algorithm that the change in synaptic weights and 

thresholds is only possible if the error term ‘ ( ) ( )l
j nδ ’exists in the nodes at all, which 

can be verified from the mathematical equations governing the updation of the above 
parameters. The changes in the synaptic weights and thresholds of the network are 
expressed as 

Δwij
(l)(n+1) = η δj

(l)(n) yj (l-1)(n) + α Δwij
(l)(n)              (4.63) 

 and  

Δthj
(l)(n+1) =β δj

(l)(n)                                                  (4.64) 

If the above equations yield non-zero values, provided δj
(l)(n) exists, then the 

network continues to remain in the learning mode, else the network is said to be fully 

trained. If the error term ‘ ( ) ( )L
j nδ ’ in the output node (global error) is appreciably 

small, then by propagating it back into the network, will further result in almost 
negligible error terms (local errors) at hidden nodes of the network. Hence the error 
term at individual (neuron) of a neural structure is to be minimised to get a pseudo-
optimal solution. The fuzzy logic controller technique is applied to determine the 
amount of correction needed for the slope of the sigmoidal activation function at each 
node of the network such that output of the nodes are changed and local errors  are 
minimal. As a result the final output of the network can provide a near optimal 
solution faster with significant reduction of the training time.  
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4.4.1.1 Description of the fuzzy logic controller technique 
A schematic block diagram of fuzzy logic controller is presented in Figure 4.4. 

Basically a fuzzy controller evaluates the change in the control action based on the 
information regarding error and rate of change of error at the process output.  The 
same concept is adopted in the proposed work considering the error term and rate of 
change of error term at a node of the network as the two inputs to the fuzzy controller 
block. The fuzzy logic controller structure used here consists of five layers and is 
explained in detail in Appendix C. 

The node error term is known as ( ) ( )l
j nδ and its rate of change is described by 

( ) ( )l
j nδΔ = ( ) ( )l

j nδ - ( ) ( 1)l
j nδ −                                                               (4.65) 

are fed into the fuzzy controller block as shown in Figure 4.5. The output generated 
from the control block Δφ(n), as shown in Figure 4.5, is used to obtain the changed 
slope at the (n+1)th  time index  φ(n+1) of the sigmoidal activation function using the 
relation 

φ (n+1) = φ (n) + Δφ (n)                                                                    (4.66) 

In the present investigation, seven categories of linguistic variables {Large 
Positive (LP), Medium Positive (MP), Small Positive (SP), Zero (ZE), Small Negative 

(SN), Medium Negative (MN) and Large Negative (LN)} are employed to describe 

both the input variables ( ( ) ( )l
j nδ and ( ) ( )l

j nδΔ ) and the output Δφ(n). The membership 

functions of fuzzy controller structure are assumed to have Gaussian type distribution 
[108] and have fixed centres and widths.  The fuzzified inputs are used to construct 
the rule base. Taking into account the linguistic information of the inputs and with a-
priori knowledge about the bounds of the sigmoid slope variation, the controller 
output is decided. In order to reflect this concept a fuzzy rule base is constructed as 
given in Table 4.1. 

The fuzzy control rules [109,110] are expressed in the form of ‘IF…THEN’ 
statements where the indexing terms l and j have been dropped for the sake of clarity. 
The interpretations of the fuzzy rules for sigmoidal slope adjustments are listed 
below. 
• If δ (n) is SN and Δδ (n) is SP, then  Δφ (n) is ZE. 

• If δ (n)  is SP and Δδ (n) is LP, then Δφ (n) is LP. 

• …………………………………………………… 
• …………………………………………………… 
• …………………………………………………… 
 
• If δ (n) is MP and Δδ (n) is LN, then Δφ (n) is SN. 
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Table  4.1 Fuzzy  Rule Table

Figure 4.5: Fuzzy logic approach for tuning sigmoid slope  

Figure 4.4: Schematic block diagram of fuzzy logic controller

Ø
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Example: 
 

A typical case study for the necessary slope correction of the sigmoid 
activation function of a given node in the network using the fuzzy logic controller 
approach is undertaken in this work and is explained here as given below.  

In Figure 4.6a, the continuous line shows the sigmoid activation function at      
(n-1)th time index with slope parameter φ(n-1). Then corresponding to a given internal 
activity x(n-1),  the output of  the neuron is y(n-1).  Assuming  the local error δ (n-1) 
at  the  neuron (node)  to  be  large negative (LN), the desired output value at the node  
yd(n-1) will lie below y(n-1) as shown in the above figure. Now, if the local error is to 
be minimized a solution   is   to be sought such that for a given x(n-1)  the output 
should be yd(n-1). In order to achieve this the sigmoidal activation function must be 
rotated through the origin in clock-wise direction so that it will occupy a new position 
representing the desired value φd(n-1) as shown (dotted line) in Figure 4.6a. This 
activation function will be such that it should pass through the intersection of the 
vertical line through x(n-1) and the horizontal line through  yd(n-1). 

Now in Figure 4.6b the continuous line represents the sigmoidal activation 
function of the node at the nth time index with slope parameter φd(n-1). Here 
corresponding to a given input x(n), the output at the node is  y(n). Assuming that the 
error term  δ (n) to be small positive (SP), the desired output value yd(n)  will lie 
above y(n) as shown. Thus a new position of the activation function need to be 
estimated such that the error term at the given node is minimized as mentioned before 
and it  should pass through  the intersection of the vertical line through x(n) and the 
horizontal line through yd(n)  which will represent the desired slope parameter  φd(n). 
At this instant of time (nth

 time index) the fuzzy controller approach is applied to 
compute the change in the sigmoid slope at the given node for (n+1)th time index, 
which takes into account the estimates of δ (n) and Δδ (n) where 

 
Δδ (n)=δ (n) - δ (n-1)                                                                    (4.67) 

  
        Considering δ (n) to be small positive (SP) and δ (n-1) to be large negative (LN),  
Δδ (n) will then be categorised as large positive (LP). Now corresponding to the 
inputs δ (n) and Δδ (n) applied to the fuzzy controller block shown in Figure 4.5, the 
change in the sigmoid slope Δφ(n) is estimated to be large positive(LP). This leads to 
the correction of sigmoid slope parameter at (n+1)th time index after suitable 
defuzzification incorporated in  Figure 4.6c   and is given by 

φ(n+1) = φ(n) + Δφ(n)                                                                       (4.68) 
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            Figure 4. 6: Sigmoid activation function (a) (n-1)th , (b) nth ,and (c) (n+1)th time 
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4.5   Simulation study  
An exhaustive computer simulation study has been undertaken for evaluating 

the performance of all the proposed neural equaliser structures based on FNN 
topologies for a variety of linear and nonlinear real communication channel models. 
The simulation model of an adaptive equaliser considered, is illustrated in Figure 4.7.  
In the simulation study the channel under investigation is excited with a 2-PAM 
signal, where the symbols are extracted from uniformly distributed bipolar random 
numbers {-1,1}. The channel output is then contaminated by an AWGN (Additive 
White Gaussian Noise). The pseudo-random input and noise sequences are generated 
with different seed values for the random number generators. For mathematical 
convenience, the received signal power is normalised to unity. Thus the received 
signal to noise ratio (SNR) is simply the reciprocal of the noise variance at the input 
of the equaliser. The power of additive noise has been taken as 0.01, representing a 
SNR of 20dB. The actual performance measure of an equaliser is the bit error rate 
(BER) corresponding to the misclassification of transmitted symbols. For all 
structures based on FNN topology in the simulation, the bit error rates are obtained 
with detected symbols being fed back, as this technique presents a more realistic 
scenario in comparison with correct symbol feed back [29]. The proposed equaliser 
structures are trained using the learning algorithms reported in this work and the 
connection weights are frozen after a training phase consisting of 1000 training 
samples. Then the BER performances for each SNR value under study are evaluated 
based on 107 more received symbols (test samples) and averaged over 20 independent 
realisations.  
  

Figure 4.7: Simulation model of an adaptive equaliser 
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             Further, it is observed that increasing the structural complexity (i.e., either 
increasing layer and/or number of nodes) the performance of the proposed neural 
equalisers improve as the opinions of more experts can be merged together to arrive at 
a decision. However, the most important objective of the proposed research work is  
to develop FNN based equaliser structures with low network complexity. So keeping 
this in view, a compromise has been made between the performance and the structural 
complexity. Therefore the proposed equalisers in all the examples considered here are 
chosen to be of reduced structural complexity as shown in Figures 4.8a-e and a 
comparison of the configurations of all these structures with the conventional FNN 
one is given in Table 4.2. The HKFNN structure has a two layer configuration with 
one node in each layer and the final node is a summing unit. The OBFNN structure 
consists of three layers with one node in each layer and the final node is a summing 
unit. The TDFNN structure has a single layer FNN with two nodes cascaded with a 
Transform block (a 2X2 DCT with normalisation) and the final node is a summing 
unit only. The FZTUNFNN structure chosen here is a reduced structure {two layer 
(1,1) FNN} with adaptable sigmoid slope parameter for each node. The structure 
design parameters for all the FNN equalisers with decision feedback configurations 
and the decision delay have been selected based on the new approach for parameter 
selection discussed in Section 3.2 of Chapter-3 in order to optimise the performance.  
              The Back-Propagation algorithm given in Appendix-A is applied to update 
the CFNN {a two-layer structure} and the proposed FZTUNFNN structure, where as  
the other proposed equaliser structures are adapted based on the algorithms as 
explained elaborately in Sections 4.1.1, 4.2.2 and 4.3.1. The values of various 
parameters (η , β and α) chosen for weight adaptations used in the learning 
algorithms of all the structures are provided in Table 4.3.  
 
 
 

Sl. 
No. 

Equaliser 
structures 

No. of 
Neurons 

No. of 
Summing 

units 

No. of 
Adaptable 

weights  

No. of 
Fixed 
weight

Other 
Adaptable 
parameters 

Figure 
No. 

1 CFNN 6 - 36 - - 4.8a 
2 HKFNN 1 1 11 - - 4.8b 
3 OBFNN 2 1 08 - - 4.8c 
4 TDFNN 2 1 12 4 - 4.8d 
5 FZTUNFNN 2 - 06 - Slope(•) 4.8e 

 
 

         Table 4.2  :  Structural configuration comparison of the proposed FNN based 
    equalisers with the conventional FNN,  Feedforward  order of all 
    Equalisers  ‘m’= 3 and feedback order ‘nb’ =2. 
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Figure 4.8d: Proposed TDFNN structure

Single layer FNN

Inputs Figure 4.8b: Proposed HKFNN structure

Figure 4.8c: Proposed OBFNN structure

Figure 4.8e: Proposed FZTUNFNN structure
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Figure 4.8a: A two layer CFNN structure
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 Table 4.3:   Learning Parameters of Proposed  FNN Based  Equaliser  Structures 
 
 
 

CHANNEL   
PARAMETERS 

CFNN HKFNN OBFNN TDFNN FZTUNFNN 

η     0.8     0.8     0.2     0.8     0.3 
β     0.8     0.8     0.5     0.8     0.3 

H1(z) 

α     0.3     0.8     0.2     0.8     0.8 
η     0.5     0.6     0.2     0.5     0.3 
β     0.5     0.6     0.2     0.5     0.3 

 
H2(z) 

α     0.5     0.8     0.2     0.5     0.3 
η     0.2     0.5     0.2     0.2     0.3 
β     0.2     0.5     0.2     0.2     0.3 

 
H3(z) 

α     0.2     0.5     0.2     0.3     0.3 
η     0.8     0.5     0.09     0.2     0.2 
β     0.3     0.5     0.09     0.2     0.2 

 
H4(z) 

α     0.5     0.5     0.1     0.2     0.2 
η     0.3     0.5     0.09     0.5     0.09 
β     0.3     0.5     0.09     0.5     0.09 

 
H5(z) 

α     0.3     0.8     0.8     0.8     0.5 
η     0.2     0.5     0.1     0.3     0.2 
β     0.2     0.5     0.1     0.3     0.2 

 
H6(z) 

α     0.5     0.5     0.2     0.5     0.2 
η     0.3     0.5     0.09     0.9     0.3 
β     0.3     0.5     0.09     0.9     0.3 

 
H7(z) 

α     0.3     0.5     0.1     0.2     0.3 
η     0.3     0.2     0.5     0.1     0.2 
β     0.3     0.2     0.5     0.1     0.2 

 
H8(z) 

α     0.5     0.5     0.5     0.3     0.6 
η     0.3     0.2     0.2     0.1     0.3 
β     0.3     0.2     0.2     0.1     0.3 

 
H9(z) 

α     0.6     0.2     0.2     0.1     0.6 
η     0.2     0.3     0.09     0.02     0.2 
β     0.2     0.3     0.09     0.02     0.2 

 
H10(z) 

α     0.3     0.5     0.9     0.8     0.3 
η     0.5     0.3     0.1     0.8     0.3 
β     0.3     0.3     0.1     0.8     0.3 

 
H11(z) 

α     0.3     0.8     0.5     0.8     0.5 
η     0.3     2      0.1     0.09     0.06 
β     0.3     2     0.1     0.09     0.06 

 
H12(z) 

α     0.3     0.3     0.1     0.09     0.5 
η     0.2     0.3     0.3     0.6     0.4 
β     0.2     0.3     0.2     0.6     0.4 

 
H14(z) 

α     0.4     0.3     0.3     0.6     0.4 
η     0.2     0.5     0.3     0.5     0.35 
β     0.2     0.5     0.3     0.5     0.35 

 
H15(z) 

α     0.4     0.5     0.3     0.5     0.35 
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4.5.1  Performance analysis of the proposed FNN based equalisers  
  
Example 1 : Channel H1(z)=1+0.5z–1 

 
The first example used is a two-tap minimum-phase channel [12] defined by 

its transfer function H1(z)=1+0.5z–1. Figure 4.9 illustrates the comparison of the 
proposed structures with a conventional FNN (CFNN) configuration {a two-layer 
(2,1)} in terms of BER performance. The structures of all the proposed neural 
equalisers employed here are already mentioned in the previous section alongwith 
‘m’=2 (two samples in the feedforward section), ‘nb’ =1(one sample in the feedback 
section) and ‘d’=1(transmitted sequence delayed by one sample). These three design 
parameters are selected from the channel characteristic by Equation 3.14 given in  
Chapter-3 following the new approach suggested in this present work for optimising 
the performance of equaliser. It is observed that the proposed equalisers on FNN 
framework yield a significant improvement in BER performance in comparison to 
their conventional counterpart. However, under severe noise conditions (SNR < 7dB), 
the conventional FNN equaliser structure and all the proposed equaliser 
configurations yield similar performance. But the superiority in the performance of 
the proposed ones over the conventional ones is distinct as the signal to noise ratio 
improves (i.e. for more realistic SNR levels). For example, at a prefixed error 
probability level (BER) of 10-4, the proposed HKFNN, FZTUNFNN and OBFNN 
equalisers are able to provide SNR gain of about 1.8 dB over the conventional FNN 
one. 
 
 
Example 2 : Channel H2(z)=1+0.7z –1 

 

The second example considered here is a channel with transfer function 
H2(z)=1+0.7z–1, a simple minimum phase channel [32] (no zeros near the unit circle) 
with flat frequency response is shown in Appendix-E. The design parameters of all 
the proposed equaliser structures chosen are m=2, nb=1 and d=1. Comparison of BER 
performances of all proposed structures with a two layer conventional FNN {a (5,1) 
structure} is depicted in Figure 4.10, after presenting  a training sequence of 1000 
samples. It is noticed that proposed FNN based equalisers designed on a reduced 
structural configuration are able to provide better BER performance compared to the 
conventional FNN structure. For example, the proposed OBFNN equaliser achieves 
about 1.3dB improvement in SNR over the CFNN at a prefixed BER level of 10-5, 
where as the other new equalisers are also superior performance wise. 
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Example 3 : Channel H3(z)=1+0.95z –1 
 

 The third example considered here is a typical 2-tap channel with transfer 
function defined by H3(z)=1+0.95z –1 (zero close to unit circle) [111]. All the 
proposed equalisers (decision feedback type) are selected with parameters m = 2, nb = 
1 and d = 1, as this combination can provide the best BER performance based on 
Equation 3.14. After  exposing the equaliser structures with 1000 training samples, 
the BER plots  of all the proposed equalisers along with  a CFNN equaliser {(2,1) 
structure} are illustrated in Figure 4.11. It is observed that application of new 
equaliser structures in FNN domain result in improvement of the BER performance. 
The proposed TDFNN and OBFNN equalisers are preferred for this channel model 
considering their performance (i.e., SNR gain of 1dB at a BER of 10-4 over the CFNN 
equaliser). 
 

Example 4 : Channel H4(z)= 0.5 + z –1 
 

The fourth example under study is a linear non-minimum phase channel [76] 
with transfer function described by H4(z) = 0.5+ z –1. All the equaliser structures used 
here for comparative study are initially trained with a sequence of 1000 samples, then 
the weights are frozen and the BER performances are evaluated. For such type of 
channel, three input samples (two in the feedforward section ‘m=2’and one in the 
feedback section ‘nb=1’) are presented to all proposed FNN based equalisers. Further, 
the training sequence is delayed by one sample  ‘d=1’ as decided  in confirmation 
with Equation 3.15 described in Chapter 3. The BER plots  given in Figure 4.12, show 
that all the proposed equalisers with much reduced structural complexity are able to 
provide improved BER performance in comparison to a CFNN one{a conventional 
FNN (5,1) structure}for various SNR conditions.  
 

Example 5 : Channel H5(z)=0.3482+ 0.8704 z-1+ 0.3482 z –2 

 

Another example of a linear non-minimum phase channel [12]with transfer 
function, H5(z)=0.3482+ 0.8704 z-1+ 0.3482 z–2, is considered. Such type of channel is 
close to those encountered in practical communication system and widely used in 
technical literatures. Figure 4.13 depicts the BER performance comparison of a 
CFNN {(3,2) DFE with a 2 layer (2,1) FNN structure}equaliser with all the proposed 
structures discussed in this chapter. The decision delay ‘d’ for the transmitted training 
sequence is chosen to be 2. The selection of parameters has been done in accordance 
with Equation 3.11 as this channel model is a symmetrical one. It is observed from 
Figure 4.13 that all those proposed equalisers gain in terms of BER performance over 
the conventional FNN equaliser. 
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Example 6 : Channel H6(z)=0.4084 + 0.8164z –1+0.4084z–2 
 
The next example is a typical linear channel, given by  H6(z) = 0.4084 + 

0.8164 z–1+ 0.4084 z–2. This example represents a kind of worst scenario as the 
performance of this channel [70] is mainly limited by the fact that there is coincidence 
of channel states corresponding to different classes in the input observation space. All 
the equalisers chosen for a comparative analysis here are DFE structures with 
parameters m=3, nb=2, and d=2. The number of training samples is fixed at 1000 
samples for all equaliser configurations and the BER performance is evaluated. It is 
observed from Figure 4.14 that under high noise situations (SNR< 7 dB), no 
considerable gain in performance of all the proposed structures is noticed.  However, 
all the proposed structures offer improvement in BER performance over the CFNN 
one {a (5,1) structure} beyond 20dB SNR conditions. Especially, at a prefixed BER 
level of 10-5, the HKFNN equaliser offers SNR gain of about 1.3dB over the CFNN 
equaliser. 
 
Example 7 : Channel H7(z)=1- 2z –1+ z –2 

 

Further, the dominance of the proposed equalisers over the existing CFNN 
structure is established by considering an example of a partial response channel 
[34]described by transfer function  H7(z)= 1- 2z –1+ z –2. This channel has a double 
zero on the unit circle. Such channels are frequently encountered in magnetic 
recording. The CFNN equaliser is a 2 layer (5,1) structure with parameters chosen as 
m=3, nb=2 and d=2. The robustness of the new equaliser structures in FNN domain is 
confirmed from Figure 4.15, which illustrates   the BER curves after presentation of 
1000 samples during the training phase. The proposed TDFNN equaliser shows 
significant performance gain in terms of the minimum SNR to get a prefixed BER (16 
dB SNR against 18.5dB SNR to obtain an error probability level of 10–3). Application 
of the HKFNN equaliser results in an improvement of 1.4 dB in SNR level at a 
prefixed BER of 10-3. 
 

 
Example 8 : Channel H8(z)=0.407 - 0.815 z –1-0.407 z –2  

               

           Another three tap channel characterised by   H8(z)=0.407 - 0.815 z –1- 0.407 z –2  
[52] has been studied. Figure 4.16 depicts the significant BER performance 
enhancement by all the proposed equalisers when compared with a CFNN one {(2,1) 
structure} with parameters chosen as m=3, nb=2 and d=2 after being trained with 1000 
samples. While the OBFNN equaliser is a clear winner providing a significant gain of 
2.4dB in SNR level, the other proposed structures also result in gains of about 1.6 dB-
1.8 dB in SNR level at a BER of 10-4 over the CFNN equaliser. 
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  Further, other examples of typical four tap H9(z), H10(z) [29,74] and five tap 
channels models H11(z), H12(z) [29,112] are considered. Their zero locations and 
frequency responses are described in Appendix D and E respectively. Amongst these 
examples taken, channel H12(z) is  a deep-null communication channel with  
significant  inter symbol  distortion. The transfer functions of all these channels are 
characterised by  
H9(z) = 0.7255+0.584 z -1+0.3627 z -2+0.0724 z -3 

H10(z) = 0.35 + 0.8 z -1+ 1.0 z -2 + 0.8  z -3     

H11(z)= -0.2052 - 0.5131 z -1+ 0.7183 z -2 + 0.3695 z -3 +0.2052  z-4      

H12(z) = 0.9413 + 0.3841z -1+ 0.5684 z -2 + 0.4201 z -3  + z -4   

The BER performances of all the four proposed FNN based equaliser 
structures are compared with the CFNN equaliser after 1000 samples are shown 
during training phase and weights are frozen. In Figure 4.17, the proposed OBFNN 
and TDFNN structures provide better result over the two layer{2,1}CFNN equaliser 
for the channel H9(z) in terms of BER performance. For the channel H10(z), the 
proposed TDFNN, HKFNN and FZTUNFNN structures show significant 
improvement in BER performance when compared with a two layer {9,1}CFNN 
equaliser as shown in Figure 4.18. Further, all the proposed equalisers in FNN domain 
are able to provide performance improvement over the two layer{2,1}conventional 
FNN as described in Figure 4.19 for H11(z). In the BER performance comparison of 
proposed FNN based structures with a two layer {5,1}conventional FNN equaliser for 
channel H12(z) shown in Figure 4.20, the TDFNN structure is a clear winner though 
the HKFNN,  FZTUNFNN and OBFNN structures result gain in BER performance. 

In order to prove the robustness and consistency in performance of all the 
proposed neural structures, equalisation of nonlinear channels is simulated. Such 
nonlinear channels are frequently encountered in several places like the telephone 
channel, in data transmission over digital satellite links, especially when the signal 
amplifiers operate in their high gain limits and in mobile communication where the 
signal may become non-linear because of atmospheric nonlinearities. These typical 
channels encountered in real scenario and commonly referred to in technical 
literatures [32,49] are described by following transfer functions. 

 
 
 

H14(z)= (1+ 0.5 z -1) - 0.9 (1+ 0.5 z -1 )3  

and    
H15(z) = (0.3482 + 0.8704 z -1+ 0.3482 z -2 )+ 0.2 (0.3482+ 0.8704 z -1+ 0.3482 z -2)2

 

 
 

The simulation studies conducted on such channels for a 2-PAM signalling 
scheme have further confirmed that all the proposed FNN based equalisers are 
performance wise superior in comparison to conventional FNN structure as shown in 
Figure 4.21 and Figure 4.22 for the channels H14(z) and H15(z) respectively. 
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Figure 4.9: BER performance comparison of proposed FNN based equalisers  
            with conventional FNN for Channel  H1(z) 
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Figure 4.10: BER performance comparison of proposed FNN based  equalisers 

                                             with conventional FNN for Channel  H2(z) 
 

 
 

 
 

 
Proposed 

Structures 
 

 Gain in SNR 
over CFNN

at  
  BER of 10-4 

HKFNN 1.8 dB 
OBFNN 1.6 dB 
TDFNN 1.0 dB 
FZTUNFNN 1.8 dB 

 
Proposed 

Structures 
 

 Gain in SNR 
over CFNN 

at  
   BER of 10-5 

HKFNN 0.4 dB 
OBFNN 1.3 dB 
TDFNN 0.6 dB 
FZTUNFNN 0.7 dB 
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Figure 4.11: BER performance comparison of proposed FNN based equalisers  

             with conventional FNN for Channel  H3(z) 
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Figure 4.12: BER performance comparison of proposed FNN based equalisers 

                          with conventional FNN for Channel  H4(z) 
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at 
  BER of 10-4 

HKFNN 0.8 dB 
OBFNN 1.0 dB 
TDFNN 1.0 dB 
FZTUNFNN 0.3 dB 

 
Proposed 

Structures 
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over CFNN   

at 
  BER of 10-4  

HKFNN 0.6 dB 
OBFNN 0.6 dB 
TDFNN 0.8 dB 
FZTUNFNN 1.0 dB 
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Figure 4.13:  BER performance comparison of proposed FNN based equalisers 
              with conventional FNN for Channel  H5(z) 
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Figure 4.14: BER performance comparison of proposed FNN based equalisers  

             with conventional FNN for Channel  H6(z) 
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HKFNN 0.7 dB 
OBFNN 0.6 dB 
TDFNN 0.5 dB 
FZTUNFNN 0.5 dB 

 
Proposed 

Structures 
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over CFNN   

at 
  BER of 10-5 

HKFNN 1.3 dB 
OBFNN 0.8 dB 
TDFNN 1.1 dB 
FZTUNFNN 0.8 dB 
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Figure 4.15: BER performance comparison of proposed FNN based equalisers  

              with conventional FNN for Channel  H7(z) 
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Figure 4.16: BER performance comparison of proposed FNN based equalisers  

             with conventional FNN for Channel  H8(z) 
 
 

 

 
Proposed 

Structures 
 

 
Gain in SNR 
over CFNN   

at 
  BER of 10-3 

HKFNN 1.4 dB 
OBFNN 0.7 dB 
TDFNN 2.5 dB 
FZTUNFNN 0.6 dB 

 
Proposed 

Structures 
 

 
Gain in SNR 
over CFNN   

at 
  BER of 10-4 

HKFNN 1.8 dB 
OBFNN 2.4 dB 
TDFNN 1.6 dB 
FZTUNFNN 1.7 dB 



                                                                                                            CHAPTER -4:  Proposed FNN Based Equalisers 
 

 108

-7

-6

-5

-4

-3

-2

-1

0

2 4 6 8 10 12 14 16
Signal to Noise Ratio(dB)

lo
g 

10
(B

it 
Er

ro
r R

at
e)

CFNN
FZTUNFNN
HKFNN
OBFNN
TDFNN

 

 

 
 
 

 
Figure 4.17: BER performance comparison of proposed FNN based equalisers  

              with conventional FNN for Channel  H9(z) 
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Figure 4.18: BER performance comparison of proposed FNN based equalisers  

                                        with conventional FNN for Channel  H10(z) 
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Figure 4.19: BER performance comparison of proposed FNN based equalisers  

                with conventional FNN for Channel  H11(z) 
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Figure 4.20: BER performance comparison of proposed FNN based equalisers  

             with conventional FNN for Channel  H12(z) 
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Figure 4.21: BER performance comparison of proposed FNN based equalisers  

             with conventional FNN for Channel  H14(z) 
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Figure 4.22 : BER performance comparison of proposed FNN based equalisers  

                                        with conventional FNN for Channel  H15(z) 
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In all the above comparative studies used to evaluate BER, the number of 

training samples presented to all the proposed equaliser structures been restricted to 
1000 samples only as satisfactory BER performance is observed. Further, the 
advantage gained in terms of performance enhancement and faster training by the 
proposed FNN based equalisers can be clearly demonstrated by comparing their BER 
performance with a CFNN structure exposed to more number of samples in training 
phase. In Figure 4.23, it is observed that for examples of channels H7(z) and H10(z), 
the  CFNN equaliser needs to be trained with more samples (2000 samples) to achieve 
the BER performance level of the proposed HKFNN structure. For examples of 
channels H3(z) and H8(z) shown in Figure 4.24, the OBFNN equaliser is still found to 
be superior performance wise even if the conventional FNN equaliser is trained using 
2000 samples. Further, it is observed in examples of channels H7(z) and H10(z) from 
Figure  4.25 that the conventional FNN structure can not obtain the performance of 
the proposed TDFNN equaliser though the length of training phase is increased to 
2000 samples. Lastly, the gain in terms of training samples  and performance 
employing the proposed FZTUNFNN equaliser over the CFNN one is observed from 
Figure  4.26 by considering examples of channels H1(z) and H8(z). 

 
Finally it is concluded here that all the proposed equaliser structures in the 

FNN framework reported in this chapter yield superior results not only in terms of 
BER performance but also provide faster learning (i.e., exactly half the number of 
training samples in comparison to a conventional FNN based equaliser). Also all the 
proposed equalisers consist of reduced structures in comparison to their conventional 
FNN counterpart. 
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Figure 4.23: BER performance comparison of HKFNN equaliser with 
                                        CFNN w.r.t. training samples for(a) Channels  H7(z) and (b)H10(z) 
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Figure 4.24 : BER performance comparison of OBFNN equaliser  with 
                                         CFNN  w.r.t. training samples for Channels (a)H3(z) and(b) H8(z) 
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Figure 4.25 : BER performance comparison of TDFNN equaliser with 

                                         CFNN w.r.t. training samples for Channels (a) H7(z) and (b) H10(z)  
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Figure 4.26 : BER performance comparison of FZTUNFNN equaliser with 

                                     CFNN w.r.t. training samples for Channels  (a) H1(z)  and (b)H8(z) 



                                                                                      CHAPTER -4:  Proposed FNN Based Equalisers 

 116

 
4.6. Conclusion 

Various innovative approaches like the hierarchical knowledge reinforcement, 
the orthogonal basis function expansion technique using evolutionary concept, the 
transform domain based technique and the sigmiodal slope tuning using fuzzy logic 
control approach have been incorporated into an FNN framework for developing 
various efficient equaliser structures. The proposed structures based on FNN topology 
result significant improvement in BER performance in comparison to the 
conventional FNN equaliser.  Here the major advantage gained is that all the proposed 
equalisers are of reduced structural configurations and thus the basic goal of research 
is maintained. Although all the training algorithms are basically based on the 
conventional BP technique, suitable modifications have been introduced considering 
the structural changes. For the weight adaptation in the orthogonal basis function 
based FNN, a new concept has been developed to propagate the output error 
backwards considering the positioning of the OBF block in this structure in Section 
4.2.1. Again in the transform domain based FNN, the DCT block followed by power 
normalisation does not allow the application of error back propagation technique 
using the BP algorithm directly. Such inherent limitations of the proposed TDFNN 
equaliser has been overcome by considering the inverse discrete cosine transform in 
the learning algorithm as discussed in Section 4.3.1. Further concept of tuning the 
slope of the sigmoid activation function of a conventional FNN equaliser by fuzzy 
controller approach, utilised in FZTUNFNN equaliser results improved BER 
performance. Thus it is concluded that all the proposed structures show satisfactory 
BER performance after a training phase  with almost half the number of samples of 
that required for conventional FNN one. It has also been observed from the exhaustive 
simulation studies that though all the equalisers proposed have resulted in 
encouraging performances, the gains obtained are entirely channel dependent. For 
example, in channel H1(z), the proposed HKFNN, FZTUNFNN and OBFNN 
equalisers perform better, while in channel H12(z), the TDFNN equaliser  provides  
significant performance improvement over conventional FNN equaliser.  Similarly, 
the proposed OBFNN equaliser achieves a significant gain over the conventional 
FNN one for channel H8(z). 
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Recurrent Neural Networks have emerged as a potential tool in the recent past 
for solving adaptive channel equalisation problems [31,32,33,34]. In this proposed 
work, much emphasis has been given to the design of new hybrid structures [112] 
using RNN as an integral module (block) and FNN as its supplementary module 
(block). Here, the cascading technique is adopted to evolve new topologies based on 
various combinations of RNN and FNN. However, the basic objective of this research 
of developing  reduced network configurations remains and hence, while cascading is 
employed, it is ensured that under no circumstances this main purpose be defeated. It 
is a fact that cascading is responsible for structural growth and thus proper selection 
of number of nodes in both RNN and FNN modules becomes an extremely important 
criterion. In the light of above, these new hybrid networks possess low structural 
complexity. 

The fundamental concept used here is that two sub-networks, RNN and FNN 
characterised as modules or blocks are cascaded in typical sequences as shown in 
Figures 5.1a-c. While the output of each node in each module is designated as an 
individual expert, the final output from these modules is termed as domain expert. 
Thus the opinion of a domain expert is formed as a collective measure of the opinions 
of the individual experts. Here, the original information (external input data) fed to a 
sub-network depending upon the cascaded configuration is pre-processed by the 
respective individual experts, giving rise to the opinion of the corresponding domain 
expert. Thereafter, the final decision of the given structure is obtained by suitably 
combining all the decisions from the various domain experts. It is logical to believe 
that decisions based on the judgment of a set of experts rather than individual ones 
can significantly improve the performance and this novel concept forms the basis of 
designing all the proposed equaliser structures in the present work.  

CHAPTER 5

Proposed  RNN Based Cascaded Equalisers
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This chapter highlights the development of some hybrid structures as 
discussed below. In Section 5.1, a cascaded network configuration consisting of a 
FNN module followed by RNN one has been proposed and suitable learning 
algorithm for the network is developed. The following Section 5.2 discusses another 
novel architecture which is basically the same as its predecessor, but with a structural 
change as the knowledge base of the domain responsible for the final decision has 
been enriched by reinforcing it with the original input information into it. The next 
Section 5.3 describes another variant of the cascaded configuration which is identical 
to hybrid structure, mentioned in Section 5.1 with the only exception that the FNN 
and RNN modules are swapped. The subsequent Section 5.4 deals with a novel idea, 
where even though cascading concept is used, it does not involve FNN module but is 
replaced by an orthogonal transform block. In Section 5.5, a fuzzy controller approach 
adopted to tune the slope of the sigmoid activation functions of all the nodes of the 
RNN module is presented and the technique employed is similar to the one already 
reported in Section 4.4. Simulation study and performance analysis of all the proposed 
equalisers are provided in Section 5.6. Lastly, this chapter is summarised in Section 
5.7. 

Output Input

(a)

(b)

(c)

Figure 5.1: Cascaded Configurations, where M    denotes

 Input

 Input

Output

Output

module 1 (FNN) and M    denotes module 2 (RNN)
1

2

 
 
 
 
 



                                                                       CHAPTER-5:  Proposed RNN Based Cascaded Equalisers 

 119

5.1   FNN – RNN cascaded (FRCS) equaliser 
The proposed architecture is a combination of two sub-networks, where FNN 

(module 1) is followed by RNN (module 2). Here, the knowledge base of module 2 is 
strengthened after pre-processing of the original information in module 1. The final 
output is the expert opinion from one of the RNN nodes as the equaliser structure has 
to be a single output system. It is evident from the network that as the RNN module is 
at the output end, an inherent decision feedback strategy (pseudo-decision feedback) 
has been incorporated into it, because RNN is by default a self-feedback network. The 
network has to be adapted during the training phase and then its performance 
evaluation is carried out. 

This structure being a hybrid one, the weight adaptation in different modules 
becomes a challenging task as no such direct algorithm exists to do so. In the 
cascaded configuration, the FNN module is placed at the input end while the RNN 
module is at the output end. Here the updation of the weights of the RNN module can 
be carried out straightforward using the RTRL algorithm. However the weight 
adaptation for the FNN module (at the input) cannot be accomplished by using the BP 
algorithm directly without the estimate of the local gradients at all the FNN nodes.  
This requirement necessitates the determination of the local gradients at the RNN 
nodes first because RNN module follows the FNN module. As the RTRL algorithm 
does not provide any explicit estimate of the local gradients of the RNN nodes 
(termed as pseudo-local gradient) directly, problem is encountered in updating 
weights of the FNN module using the BP algorithm. This lacuna has motivated the 
present research in developing a new strategy, discussed elaborately in the following 
subsection. 
 

 5.1.1 Description of the proposed structure 

The proposed structure, as shown in Figure 5.2, has nx external input 
connections, nf neurons in the FNN module and nr processing units (nodes) in the 
RNN module.  The  output vector z(n) of the FNN module and one step delayed 
output vector y(n) of the RNN module are concatenated to form an input vector u(n) 
to the RNN module, whose lth element at time index n is denoted by ul(n). Let  A 
denote the set of indices k for which yk(n) is  the output of kth  neuron of  the RNN 
module and let B denote the set of indices f for which zf(n) is  the output of  f th neuron 
of   the FNN module[06]. 

⎩
⎨
⎧

=∈
=∈

= },......,2,1{,   if   )(
},......,2,1{,   if   )()( nffnz

nrknynu
f

k
l BB

AA                                         (5.1) 

W denotes nr by (nf + nr) weight matrix of RNN module and V denotes nf  by  nx 
weight matrix of FNN module. 
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Figure 5.2: FNN-RNN cascaded equaliser structure
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The input signal to the proposed equaliser structure is represented by a m x 1 
vector given by 

[ ]( ) ( ), ( 1),...  ..., ( 1) Tn r n r n r n m= − − +x  (5.2) 

The response of   f th neuron in the FNN module at time index n is given by 

1
1( ) ( ) ( ) ,      { }nx

f fi i
i

f nfz n v n x n
=

= ⋅ ≤ ≤∑F            (5.3) 

The output of kth neuron of RNN module at time index n is evaluated as 
. ( )

. ( )
1( ) { ( )}
1

k k

c nk

c nk

ey n c n
e

−φ

−φ
−

= =
+

F           (5.4) 

 where the net internal activity of neuron k is given by 

  ( ) = ( ). ( )k kl l
l

c n w n u n
∈
∑

UA B
,       1≤ k ≤ nr            (5.5) 

UA B  is the union of sets A and B. Neurons with  sigmoidal activation functions 

with slope parameter φ are used in both FNN and RNN modules. C represents a set of 
visible neurons that provides externally reachable units. The output of  jth neuron of 
RNN module is yj(n),  which provides  the  estimated output  of the hybrid structure. 
The remaining neurons of the processing layer of RNN module are considered to be 
hidden. Let do(n) denotes the desired value of the equaliser output at time  index n and  
the error at this time index is calculated as 

ej(n) = do(n) – yj(n),       j∈C    (5.6) 

The cost function at time index n is defined as  

 J(n) = 21 ( )
2 j

j
e n

∈
∑

C
           (5.7) 

The objective here is to minimise the cost function i.e. to change the weights 
in the direction that minimizes J(n). 
 

5.1.2   Development of a novel concept proposed for network adaptation 

A new concept developed in this present work to update the weights of the 
cascaded configuration is based on an equivalence approach, which has been 
explained sequentially as mentioned below: 

(i) The change in connection weights of RNN module using RTRL algorithm is 
evaluated first.   

(ii) Then these changes in the connection weights are taken as reference. 

(iii) Assuming that the BP algorithm is applied to calculate these changes in 
weights, the evaluation of corresponding local gradient at nodes of RNN 
module is carried out. 
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In order to provide a better understanding, a mathematical treatment of the 
above concept has been discussed below. 

In this cascaded configuration while BP algorithm is applied to update the 
weights of the FNN module, the RTRL algorithm is used to update the weights of the 
RNN module. Application of RTRL algorithm involves primarily the evaluation of 

sensitivity parameter, a triply indexed set of variables { }j
klp  defined as [06] 

( )
( ) ,   

( )
jj

kl
kl

k
y n

p n
w n
∂

= ∈
∂

A  and l∈ UA B            (5.8) 

In the beginning, ( )np j
kl  is evaluated as follows. 

{ }( 1) ( ) ( ) ( ) ( )j i
kl j ji kl kj l

i
p n c n w n p n u n

∈

⎡ ⎤′+ = ⋅ + ∂ ⋅⎢ ⎥⎣ ⎦
∑F
A

          (5.9) 

with initial condition (0) 0j
klp =   and  F ′ {cj(n)} = {1-yj (n+1)2}(φ/2)  (5.10) 

and ∂kj is termed as Kronecker delta as given by, 

∂kj = 1 for j = k and zero otherwise. (5.11) 

The incremental change in connection weights of the RNN module is 
determined by the following expression. 

( ) λ ( ) ( )j
kl j klw n e n p n

j
Δ =

∈
∑
C

,  (5.12) 

where λ  is the learning-rate parameter.       

Now if BP algorithm would have been applied here, to obtain the same weight 
change Δwkl(n) (chosen as reference) for the RNN module, then the mathematical 
expression would have become 

( )   λ. ( ). ( )kl rnn node lk
w n n z nδ −Δ =  (5.13) 

Following the equivalence approach, the estimate of the pseudo-local gradient 
at node k of RNN module at time index n has been evaluated as 

( ) ( )
( )

( )

j
j kl

i
rnn node

l
k

e n p n
n

z n
δ −

∑
∈

⋅
= A  (5.14) 

The BP algorithm can now be used to update the connection weights of FNN module. 

Example: 

An example has been cited with detailed analysis as given below in order to 
provide a clear understanding about the development of the mentioned approach. 

A hybrid structure consisting of a single layer FNN module with two neurons 
cascaded with a RNN module with two recurrent units is shown in Figure 5.2.1. The 
node1 of the RNN module has been taken as the only visible unit with output y1(n).  
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Figure 5.2.1: An example of proposed FRCS equaliser
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 By comparing y1(n) with the desired value do(n) of equaliser output at time 
index n, error e1(n) is computed. Based on the estimate of e1(n)  connection weights of 
RNN  module are updated using RTRL algorithm. Implementation of the equivalence 
approach, as proposed, is initiated by choosing the incremental change in weight 
Δw23(n) as the reference where subscripts 2 and 3 denote node 2 of RNN module and 
node 1 of FNN module respectively.   

According to RTRL algorithm, 

 Δw23(n) =λ  . e1(n) . 1
23p (n)  (5.15) 

where in 1
23p (n) the superscript 1 represents only one output (j=1) w.r.t. Equation(5.8). 

If BP algorithm would have been used, to obtain the same weight change, the 
mathematical expression would have become  

223 1( ) λ. ( ). ( )rnn nodew n n z nδ −Δ =  (5.16) 

The application of proposed approach helps us to evaluate the pseudo-local gradient 
at node 2 of RNN module as given by  

2

1
1 23

1

( ) ( )( )
( )rnn node

e n p nn
z n

δ −

⋅
=          (5.17) 

Proceeding in the similar manner as mentioned above and taking incremental 
change in connection weight Δw24(n) as reference, where subscripts 2 and 4 denote 
node 2 of RNN module and node 2 of FNN module respectively, the pseudo-local 
gradient of node 2 of  the RNN module can be expressed as  

2

1
1 24

2

( ) ( )( )
( )rnn node

e n p nn
z n

δ −

⋅
=          (5.18) 

As only two nodes have been considered in the FNN module of the equaliser 
structure, the pseudo-local gradient at node 2 of the RNN module is estimated finally 
as the averaged one and is given by 

2

1 1
231 24

1 2

( )( ) ( )( )
2 ( ) ( )rnn node

p ne n p nn
z n z n

δ −

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 (5.19) 

Once the pseudo-local gradient at all nodes of the RNN module have been 
evaluated, the task becomes easier to estimate the local gradients at all nodes of FNN 
module by applying the BP algorithm directly. Hence the local gradient of node 1 of 
the FNN module is given by the equation          

      
1 1 2

2
1 13 23( ) {1 ( )} ( 2 ) ( ) ( ) ( ) ( )/fnn node rnn node rnn noden z n n w n n w nδ δ δ− − −⎡ ⎤= − ⋅ φ +⎣ ⎦  (5.20) 

The calculation of this local gradient helps in updating the weights connected 
to that particular node of the FNN module to the external inputs. For example, based 
on

1
( )fnn node nδ − , the incremental changes in connection weights are given by 
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111 1( ) η. ( ). ( )fnn nodev n n x nδ −Δ =   (5.21) 

 and  

112 2( ) η. ( ). ( )fnn nodev n n x nδ −Δ =   (5.22) 

            where η  is a learning-rate parameter for  updation of the  FNN structure. 

Further, generalized mathematical expression w.r.t. Equation (5.20) and 
Equation (5.21) is given by 

{ }2

1
( ) 1 ( ) ( / 2) ( ) ( )  

f k

nr

fnn node f rnn node kl
k

n z n n w nδ δ− −
=

⎡ ⎤= − ⋅ φ ⋅⎢ ⎥⎣ ⎦
∑ ,                                        

                                                               1 ≤ f ≤  nf  and l = nr+f    (5.23) 

( ) η ( ) ( ),
ffi fnn node iv n n x nδ −Δ = ⋅ ⋅               1 ≤ f ≤ nf   and 1 ≤ i ≤ nx   (5.24) 

5.1.3  Training algorithm 

In summary, the proposed algorithm for updating the connection weights in 
the hybrid structure, proceeds as follows: 

• The initial values of connection weights in the FNN and RNN modules are 
chosen from a set of uniformly distributed random numbers. The sensitivity 

parameters for the RNN module, { }j
klp are initialized to zero. 

• The final output of hybrid structure is computed using Equation (5.4). 

• The sensitivity parameters { }j
klp  for all appropriate j, k and l are evaluated as 

per Equations (5.8) and (5.9). 

• The error signal ej(n), which is the difference between the desired response 
do(n) and  the final estimated output  yj(n) is computed. 

• Then the local gradients at all nodes of the RNN module ( )rnn nodeδ −  are 

computed using Equation (5.14). 

• Further, the local gradients at all nodes of the FNN module ( )nodefnn−δ  are 

evaluated following Equation (5.23). 

• While the RTRL algorithm using Equation (5.13) computes the incremental 
weight changes Δwkl(n), the BP algorithm using Equation (5.24) evaluates the 
incremental weight changes Δvfi(n).  Finally, the connection weights in FNN 
and RNN modules are updated as follows. 

 wkl(n+1) = wkl(n) + Δwkl(n),     1≤ k ≤ nr and 1 ≤ l ≤ (nr + nf)   (5.25) 

vfi(n+1) = vfi(n) + Δvfi(n),          1≤ f ≤ nf         (5.26) 

• This process of weight updation is continued till the network is fully trained 
achieving a desired value of performance index. 
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5.2  Hierarchical knowledge reinforced FNN-RNN cascaded    
   (HKFRCS) equaliser    

A highly efficient structure is designed employing the hierarchical knowledge 
reinforcement to the cascaded network discussed in the Section 5.1. In the present 
cascaded framework the external inputs are also fed directly to the RNN module .The 
external inputs are already being fed to the FNN module for preprocessing as 
described in Section 5.1. It is expected that by feeding more information to the final 
processing layer RNN module (original information in addition to the output from the 
FNN module), its knowledge base is further strengthened which helps in improving 
the decision making capability. Hence, significant enhancement in the performance of 
the proposed equaliser is observed. The network has to be adapted during the training 
phase, then weights are frozen and its BER performance evaluation is carried out. The 
training algorithm for this neural structure is presented in the following section. 

5.2.1 Training algorithm 

The proposed structure, as shown in Figure 5.3 comprises of nx external 
inputs, nf neurons in the FNN module and nr processing units in the RNN module.  

The sequence of operation followed for the application of the training 
algorithm is given as below. 

• The initial values of all the synaptic weights of FNN and RNN modules are 
chosen from a set of uniformly distributed random numbers. The sensitivity 

parameters { }j
klp of the RNN module are initialized to zero. 

• The input signal to the proposed equaliser structure is represented by a m x 1 

vector [ ]( ) ( ), ( 1),...  ..., ( 1) Tn r n r n r n m= − − +x . First, the output of the  FNN  

module is calculated  and for the f th neuron at time index n, the output  zf (n) is 
given by, 

1
( ) ( ) ( ) ,             1{ }nx

f fi i
i

fz n v n x n nf
=

= ⋅ ≤ ≤∑F  (5.27) 

• Next the output vector z(n) of the FNN module, one step delayed output vector 
y(n) of the RNN module and the external input vector to FNN x(n) are taken 
together to form the input vector u(n) to the RNN module whose lth element is 
given by ul(n). 

( ),               1
( ) ( ),        1

( ),        

k

l f

i

k

f

i

y n nr
u n z n nr nf

x n nr nf nx

≤ ≤⎧
⎪= + ≤ ≤⎨
⎪ + ≤ ≤⎩

 (5.28) 

           The output of kth neuron of  the RNN  module at time index n is defined as,  

             
. ( )

. ( )
1( )
1

k

k
k

c n

c n
ey n
e

−φ

−φ
−

=
+

, (5.29) 
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Figure 5.4:  RNN-FNN cascaded equaliser structure
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        where the net internal activity 
1

( ) ( ). ( )k kl l
l

nr nf nx
c n w n u n

=

+ +
= ∑  (5.30) 

       Sigmoidal activation function (F ) with slope parameter φ  has been considered 

for the neurons of  both  the FNN and RNN modules.  

• The estimated output is yj(n), the output of jthneuron of RNN module, is 
compared with the desired value do(n) to calculate the output error at time index 
n  as given by      

              ej(n) = do(n) – yj(n)  (5.31) 

• The sensitivity parameter { }j
klp  is defined as          

( )
( ) ,     1

( )
jj

kl
kl

k
y n

p n nr
w n
∂

= ≤ ≤
∂

 and   1 ≤ l ≤ (nr+nf+nx) (5.32) 

The evaluation of this parameter is carried out as follows: 

{ }
1

( 1) ( ) ( ) ( ) ( )
nr

j i
kl j ji kl kj l

i
p n c n w n p n u n

=

⎡ ⎤′+ = ⋅ + ∂⎢ ⎥⎣ ⎦
∑F ,  (5.33) 

            where the  first derivative  is given by 

{ } 2( ) {1 ( 1) }( / 2)j jc n y n′ = − + φF  (5.34) 

            and ∂kj is termed as  Kronecker delta  which is already defined in (5.11)  

• Following the equivalence concept already explained in Section 5.1.2, the 
pseudo- local gradient of k th node in the  RNN module is given as  

1

( ) ( )( ) ,   1
( )k

j
j kl

rnn node
l nr

nf nr

l nr

e n p nn k nr
nf z n

δ −
−

+

= +

⎡ ⎤
= ≤ ≤⎢ ⎥

⎣ ⎦
∑  (5.35) 

• The local gradient at each node of  the FNN module is evaluated using the BP 
algorithm by propagating back the error through all the connections from the 
nodes of the RNN module to the corresponding node of the FNN module and is 
given by  

{ }2

1
( ) 1 ( ) ( / 2) ( ). ( )

f k

nr

fnn node f rnn node kl
k

n z n n w nδ δ− −
=

⎡ ⎤= − φ ⎢ ⎥⎣ ⎦
∑ ,                                                          

                                                     1 ≤ f ≤  nf  and l =(nr+f)  (5.36)          

• The connection weights of the FNN module are updated using BP algorithm and 
basic RTRL algorithm is utilised for updating the weights of the RNN module.  
The incremental change in the connection weights Δvfi(n) and Δwkl(n) of the 
RNN and FNN modules respectively are given by the  following mathematical 
expressions. 

( ) ( ) ( )
ffi fnn node iv n n x nδ −Δ = ⋅ ⋅η  ,       1 ≤  f ≤  nf and 1≤ i ≤ nx            (5.37) 



                                                                       CHAPTER-5:  Proposed RNN Based Cascaded Equalisers 

 129

( ) λ ( ) ( )j
kl j klw n e n p nΔ = ⋅ ⋅  ,         1 ≤ k ≤ nr and 1 ≤ l ≤ (nr+nf+nx)   (5.38) 

• Once the incremental weight changes have been estimated, the updated weights 
of both the FNN and RNN modules  are given by    

( 1) ( ) ( )fi fi fiv n v n v n+ = + Δ   (5.39) 

( 1) ( ) ( )kl kl klw n w n w n+ = + Δ  (5.40) 

where λ and η are the learning-rate parameters of weights adaptation in RNN 
and FNN modules respectively. 

• This process of recursion continues till a given performance index is achieved.  

 

5.3   RNN-FNN cascaded (RFCS) equaliser 
Another variant in the cascaded configuration has been proposed in this 

research work as shown in the Figure 5.4, which resembles that of the structure 
already discussed in Section 5.1 with the only exception that two modules (RNN and 
FNN) are being swapped. In this case, the output of the RNN module is fed to the 
input of an FNN module. If this proposed structure is investigated thoroughly, then it 
can be inferred that an intermediate decision feedback mechanism has been embedded 
into the network paradigm, because the RNN module exists at the input end of this 
heterogeneous combination. The proposed equaliser is to be trained first before its 
BER performance evaluation is done. In this network configuration the weight 
adaptation does not pose any problem as has been witnessed in Section 5.1. The 
connection weights of FNN module can be updated using the BP algorithm as the 
local gradients of the neurons at all its nodes are computed from the output error 
directly. Thus employing the estimates of those local gradients, the errors at the nodes 
of the RNN module can be directly computed utilising error back propagation 
approach. Thereafter, the existing RTRL algorithm can be applied directly to update 
the connection weights in the RNN module. The step by step procedure of the training 
algorithm employed here is explained in the following section. 

 

5.3.1  Training algorithm 

The proposed configuration is shown in Figure 5.4. It has nx external input 
connections, nr processing units in the RNN module and nf neurons in the FNN 
module. 

• The initial values of all connection weights of both the FNN and the RNN 
modules are chosen from a set of uniformly distributed random numbers. The 

initial value of the sensitivity parameters{ }j
klp  of the the RNN module are set to 

zero. 
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Figure 5.4:  RNN-FNN cascaded equaliser structure
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• The input signal to the proposed equaliser structure is represented by a m x 1 

vector [ ]( ) ( ), ( 1),...  ..., ( 1) Tn r n r n r n m= − − +x . An input vector u(n) applied to 

the  RNN module is formed  whose lth element,  ul(n) is defined as 

1

( ),          1
( )

( ),          1
k

k

k

k

y n nr
u n

x n nx
≤ ≤⎧

= ⎨ ≤ ≤⎩
         for   1 ≤  l ≤  (nx+nr) (5.41) 

• The output of the  kth neuron of the RNN module at time index  n is computed as 

( )

( )
1( )
1

k

k

k

c n

c n
ey n
e

−φ⋅

−φ⋅
−

=
+

, (5.42) 

         where the net internal activity of  the kth neuron                                                    

1
( ) ( ) ( )

nf nr

k kl l
l

c n w n u n
+

=
= ⋅∑ ,           1 ≤ k ≤ nr   (5.43) 

         where  W denotes nr by (nx + nr) weight matrix of the  RNN module. 

• In the cascaded framework of this hybrid configuration, the outputs from the 
RNN module are fed as the inputs to the FNN module. Here a single layer FNN 
module with nf neurons is considered only restricting the structural complexity. 

• The output of  the f th neuron of the FNN module  at time index n is given by,  

1
( ) ( ) ( ) ,      1{ }nout

f fj j
j

z n v n y n f nf
=

= ⋅ ≤ ≤∑F   (5.44) 

where all the processing units of the RNN module are considered as externally 
reachable  units. Sigmoidal activation functions (F ) with slope parameter φ  are 

chosen for all the neurons of both FNN and RNN modules. Evaluation of final 
output of the hybrid structure yj(n) at time index n is carried out by providing a 
summing unit. 

1
( ) ( ) ( )

nf

j f f
f

y n g n z n
=

= ∑  (5.45) 

           where  g  denotes the  weight matrix at the output end.  

• The error ej(n) at the output is computed by comparing its estimated value with 
the desired one of the equaliser do(n) . 

ej(n) = do(n) – yj(n) (5.46) 

• With the knowledge of this error ej(n), the local gradient of error at each neuron 
of the FNN module is calculated.  

         2( ) ( ) ( ) {1 ( ) }( / 2),   
ffnn node j f fn e n g n z nδ − = − φ     1≤ f ≤ nf      (5.47) 
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• Thereafter the error at each node of the RNN module is evaluated as 

1

( ). ( )( ) ,   1
f

nf

fnn nodernn node j f
fj jn v nerr n nrδ −−

=
= ≤ ≤∑             (5.48) 

• Then updation of the sensitivity parameter is done as follows   

{ }
1

( 1) ( ) . ( ). ( ) . ( )
nrj i

kl j ji kl kj l
i

p n c n w n p n u n
=
∑⎡ ⎤′+ = + ∂⎢ ⎥⎣ ⎦

F                              (5.49) 

          where F ′{cj(n)}= {1 – yj(n+1)2}(φ/2)                                           (5.50) 

          and kj∂  is a Kronecker delta already defined in Equation (5.11) 

• The incremental change in weights of both the FNN and RNN modules are 
evaluated using BP algorithm and RTRL algorithms respectively and 
corresponding weight updation   is carried out. 

( ) ( ) ( ),    
ffj fnn node jv n n y nδ −Δ = ⋅ ⋅η    1≤ f ≤ nf   and 1 ≤ j ≤ nr        (5.51) 

( 1) ( ) ( )fj fj fjv n v n v n+ = + Δ                                                               (5.52) 

1
( ) λ . ( ) . ( )

j

n
j

kl rnn node kl
j

w n err n p n−
=

Δ = ∑ ,  1 ≤  k ≤ nr and 1 ≤ l ≤ (nx+nr) (5.53) 

( 1) ( ) ( )kl kl klw n w n w n+ = + Δ                                                           (5.54) 

( ) ( ). ( ),  f j fg n e n z nΔ = θ⋅                       1≤ f ≤ nf                                   (5.55) 

( 1) ( ) ( )f f fg n g n g n+ = + Δ                                                               (5.56) 

            where λ and η are the learning-rate parameters of the RNN and FNN 
modules respectively. θ  is the learning-rate parameter of the adaptable 
weights in the output layer. 

• This process of weight updation continues till the network is fully trained 

 

5.4   RNN –Transform cascaded (RTCS) equaliser 
 

The analysis carried out in detail in Section 4.3 with reference to the transform 
domain based FNN has motivated to extend this concept into the RNN framework. 
This cascaded configuration although similar as that reported in Section 5.3, is 
different in the sense that the FNN module is replaced with a transform block. Here, a   
discrete cosine transform followed by normalisation block is cascaded with an RNN 
module at the output end as given in Figure 5.5.  
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Figure 5.5: RNN-Transform cascaded equaliser structure
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As far as the choice of transform is concerned, discrete cosine transform 
(DCT) has come out a clear winner because of significant performance enhancement 
over its counterparts like DST, DHT etc., which has been observed during computer 
simulation. Power normalisation technique [102] is applied to the transformed signals 
as mentioned earlier in Section 4.3 of Chapter-4 and the final output of the proposed 
structure is evaluated as a weighted sum of all normalised signals by providing a 
summing unit. The equaliser has to be adapted during the training phase, then its 
weights are frozen and after that its BER performance evaluation is done. 

 In order to update all the connection weights of this cascaded framework 
during the training phase of the proposed equaliser, a novel idea has been developed 
based on propagation of the output error through the network in the light of the 
conventional BP algorithm, to obtain the estimate of the error at the output of the 
transform block. It is obvious that the transform block does not require any weight 
adaptation unlike the FNN module (as done in Section 5.3) as it consists of fixed 
weights, but the RNN module needs updation of the connection weights. Application 
of the standard RTRL algorithm necessitates the determination of errors at the nodes 
of the RNN module. But this estimate can not be accomplished directly by using the 
BP algorithm due to positioning of the transform block at the output end of the 
cascaded structure, so problem is encountered here in propagating the final output 
error backwards into the network. To circumvent this difficulty, an adhoc solution has 
been evolved. First the error estimation at the input end of the transform block is done 
from the knowledge of the error at its output by considering inverse discrete cosine 
transform. Then the connection weights in the RNN module are adapted based on the 
error calculated at its nodes. The mathematical expressions governing this concept are 
described in the subsequent section. 
 

5.4.1 Training algorithm 

The proposed structure shown in Figure 5.5 consists of nr processing units in 
the RNN module with nx external inputs and a transform block. A step by step 
procedure has been adopted to update the weights of the network as mentioned below.  

• The connection weights of the cascaded structure are set to small random 

numbers that are uniformly distributed. Sensitivity parameters { }j
klp of all RNN 

nodes are intialised to zero. 

• The input signal to the proposed equaliser structure is represented by a m x 1 

vector [ ]( ) ( ), ( 1),...  ..., ( 1) Tn r n r n r n m= − − +x . Input signal vector to the RNN 

module is defined as   u(n), lth element of which is 

( ),       1
( )

( ),        1
j

l
i

j

i

y n nr
u n

x n nx
≤ ≤⎧

= ⎨ ≤ ≤⎩
         for    1 ≤ l ≤ (nr+nx) (5.57) 
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          The output of jth neuron of the RNN module at time index n is given by 

. ( )

. ( )
1( )
1

j

j
j

c n

c n
ey n
e

−φ

−φ
−

=
+

                                              (5.58)       

where the net internal activity is described by 

1
( ) ( ). ( ),  1

nx nr

j kl l
l

c n w n u n k nr
+

=
= ≤ ≤∑                                    (5.59) 

where W denotes nr by (nx + nr) weight matrix of the  RNN module. Sigmoidal 
activation functions (F) with slope parameter φ for neurons of the RNN module 
have been considered. Input signal vector to the transform block can be 
expressed as z(n), whose jth element is denoted as, 

 zj(n) = yj(n),         j = nr                                              (5.60) 

         Here all the processing units of the RNN module act as visible units giving 
externally reachable outputs.The jth element of the output from the transform 
block is defined as   

{ }( ) ( ) ( )j jjz n DCT z n z n= =T T                                           (5.61) 

          where  the elements of the transform matrix T for the Discrete Cosine 

Transform (DCT) has been already explained in Equation (4.51). Transformed 
signal ( )jz nT are then normalised by the square root of their power B j(n)  as 

discussed in Section 4.3. 

         The jth  element of the normalised signal, 

( )jz nN   =  
( )

( )  
j

 j

z n

n ε+B
T                                                                (5.62) 

           and  B j (n)  =γ  B j (n-1)+ (1 - γ ) 2
jzT (n)                                         (5.63) 

The scaling parameterγ ∈ [ 0,1]. The small constant ε  is introduced to avoid 

numerical instabilities when signal power B j(n) is close to zero. 

The final output of the hybrid structure at time index n, yo(n) is expressed as the 
weighted sum of all normalised signals from the transform block. 

1
( ) ( ). ( )

nr

o j
j

jy n g n z n
=

= ∑ N                                                       (5.64) 

          where  g denotes  the weight matrix at the output end of the proposed network.  

• The error at the equaliser output at time index n is given by,  

 e(n) = do(n) – yo(n)                                                               (5.65) 
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With the knowledge of the output error, the errors at all the nodes of RNN 
module can be evaluated in order to facilitate the updation of weights using 
RTRL algorithm. But this is not possible directly as already explained before 
and hence an innovative technique has been employed to tackle this situation.  

• At first the error e(n) is back propagated through various connection paths. Then 
the error at the jth output of normalisation block is computed as given by 

( ) ( ). ( )jj
e n e n g n=N ,    1 ≤  j ≤ nr                         (5.66) 

• The error terms at the output of the transform block ( )j nδT  can be calculated 

using Equation (4.57) following the approach as explained in Section 4.3. 

        ( )j nδT = ( )
j

e nN  . 
( )

( )

n

n

∂

∂
j

 j

N

T

z

z
   

                              = eN k(n)  (zNk(n) / z Tk(n)) {1 – (1-γ ) 2 ( )k nzT }       (5.67) 

• Further, to propagate the error back through the transform block and to estimate 
the error magnitudes at the input side of the transform block, Inverse Discrete 
Cosine Transform ( IDCT ) is applied.  This provides an  estimate of the error at 
the input end of the transform block and the error at the jth processing unit of the 
RNN module at time index n is given by 

{ }( ) ( )
jrnn node jerr n IDCT nδ− = T                                                           (5.68) 

• The sensitivity parameters { }j
klp  are updated as follows      

{ }
1

( 1) ( ) ( ). ( ) ( )
nr

j i
kl j ji kl kj l

i
p n c n w n p n u n

=

⎡ ⎤′+ = + ∂⎢ ⎥⎣ ⎦
∑F ,              

             1≤  j ≤  nr, 1 ≤ k ≤ nr   and   1 ≤ l ≤ (nr + nx)  (5.69) 

      where F ′{cj(n)} is given in Equation (5.50)  and ∂kj is defined in Equation (5.11). 

• While the incremental weight change Δgj(n) is calculated using BP algorithm, 
RTRL algorithm  computes the incremental weight change Δwkl(n). 

      Δgj(n) =θ .e(n).zN j(n),              1 ≤ j ≤ nr   (5.70) 

     
1

( ) . ( ). ( )
j

nr
j

kl rnn node kl
j

w n err n p n−
=

Δ = λ ∑ ,     1 ≤ k ≤ nr and 1 ≤ l ≤ ( nr+nx)  (5.71) 

where λ andθ  are the learning-rate parameters of the RNN module and  the              
output layer respectively. 

         The connection weights are updated as given below: 

gj(n + 1) =gj(n) + Δgj(n)                                       (5.72) 

wkl(n+1) = wkl(n) + Δwkl(n) (5.73) 
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• The recursion process of updating weights of the cascaded network continues 
till a predefined condition is achieved as mentioned earlier. 

 
5.5   Fuzzy tuned recurrent neural network (FZTUNRNN) equaliser  

A concept is evolved using fuzzy controller approach to tune the slope of 
sigmoidal activation function of the RNN nodes so that the network is made adaptive. 
The entire methodology adopted here is exactly identical to the approach already 
discussed in Section 4.4 of Chapter 4, where a fuzzy logic controller technique is 
employed to adjust the slope parameter φ  of the sigmoidal activation function based 
on the knowledge of the local gradient of the node in the conventional RNN 
framework.  

5.5.1   Details of proposed method 

The role of slope (φ) of the sigmoidal activation function used in each of the 
processing unit of RNN is extremely important as it contributes to decision making 
ability of that node. As the value of slope is changed, the decision of expert node is 
altered as the nonlinear mapping changes. The proposed structure is built around this 
concept of tuning the slope parameter. The proposed equaliser has to be adapted 
during the training phase, then weights are frozen and its BER performance 
evaluation  is done.  While the basic RTRL algorithm updates the network weights, 
the sigmoid slope tuning by fuzzy logic controller approach [106,107], already 
explained in Section 4.4, adjusts the slope of the sigmoidal activation function at the 
same time index. Significant performance improvement and faster learning are 
observed using this new technique in a conventional RNN equaliser.  

The recurrent node error term ( )rnn nodek
nδ − , as evaluated in Equation (5.14), is 

referred to because direct estimate of the node error in RNN is not available and the 
error term change corresponding to the kth node of the RNN block 

 Δ ( )rnn nodek
nδ − = ( )rnn nodek

nδ −  - ( 1)rnn nodek
nδ − −          (5.74) 

are fed into the fuzzy controller block (FLC) as shown in Figure 5.6. 

Figure 5.6: Fuzzy logic approach for tuning sigmoid slope  
 



                                                                       CHAPTER-5:  Proposed RNN Based Cascaded Equalisers 

 138

             The fuzzy controller evaluates the control action required based on the past 
information of error and rate of change at the process output. Here depending on the 
inputs fed, the output generated from the FLC block is the change of slope Δφ(n). 
Then the slope of the activation function is updated using the mathematical expression 
in Equation (4.66) and its new value is incorporated in the next time index for the 
output calculation. 

Here also for fuzzification seven categories of linguistic variables are declared 
namely LP, MP, SP, ZE, SN, MN and LN for both the inputs ( ( )rnn nodek

nδ − and 

Δ ( )rnn nodek
nδ − ) and the output Δφ(n). The membership functions are assumed to have 

Gaussian type distribution [108] and have fixed centres and widths. The fuzzified 
inputs are used to construct the rule base from the IF conditions [109] and the final 
output is obtained from the defuzzification of the THEN conditions. 

 

5.6 Simulation study and the performance analysis of  the proposed 
RNN based equalisers  
 

          Equalisation of different types of channel models (both linear and non-linear 
type) are attempted in order to establish the efficacy of the proposed equaliser 
structures based on RNN topology and to prove their robustness. It has been already 
reported in the literatures [32,34],  that a two-unit, one input, one output RNN is a 
non-linear IIR model which is sufficient to model many communication channels. 
Considering this aspect, all the proposed cascaded equalisers in RNN framework are 
compared with a conventional RNN equaliser (CRNN) with two recurrent units and 
one external input sample from the channel output.  

The configurations of all the proposed RNN based equalizers, illustrated in 
Figures 5.7a-e, indicate that their structural complexities have been kept low 
purposefully to maintain the basic objective of the research work. Table 5.1 gives a 
comparison between the various proposed configurations with the conventional RNN 
one. All the equalisers chosen have one external input only. In the proposed FRCS 
configuration, one neuron in the FNN module and one neuron in RNN module are 
considered. The proposed HKFRCS structure is the same as the previous one with the 
exception that the external input is also fed directly to the RNN node alongwith the 
output from the FNN node. The proposed RFCS structure also has one node in FNN 
module and one node in RNN module. Further the RTCS structure has two nodes in 
RNN module followed by a 2x2 DCT block with power normalisation and a summing 
unit at the output end. The proposed FZTUNRNN equaliser has the same structure as 
a conventional RNN one and provided with two nodes, having slope parameter 
adapted using the fuzzy logic control technique. 
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Figure 5.7c: Proposed HKFRCS structure

Output Input

Output Input

Output Input

Output 

Input

w
ith

N
O

R
M

A
LI

SA
TI

O
N

D
C

T

Figure 5.7a: Conventional RNN / Proposed FZTUNRNN structure
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SL. 
No. 

Equaliser 
structures 

No. of 
Neurons 

No. of 
Summing 

units 

No. of 
Adaptable 

weights  

No. of 
Fixed 
weight

Other 
Adaptable 
parameters 

Figure 
No. 

1. CRNN 2 - 6 - - 5.7a 
2. FRCS 2 - 3 - - 5.7b 
3. HKFRCS 2 - 4 - - 5.7c 
4. RFCS 2 - 3 - - 5.7d 
5. RTCS 2 1 8 4 - 5.7e 
6. FZTUNRNN 2 - 6 - Slope(•) 5.7a 

 
 

Table 5.1: Structural configuration comparison of the proposed RNN based  equalisers 
with the conventional RNN, Feedforward  order  of all equalisers ‘m’= 1. 
 
 
For a comparative study and analysis purpose the number of training samples 

presented to all the proposed equalisers considered here are restricted to 200 samples 
only as it is observed that their performances are quite satisfactory. The BER 
performance comparison of the proposed equaliser structures based on RNN topology  
has  been carried  out  after  all the structures  have undergone a training phase (200 
samples)  in accordance with  the training algorithms  already discussed in Sections 
5.1.3, 5.2.1, 5.3.1, 5.4.1 and 5.5.1 of this chapter. The weight vectors of the equalisers 
are frozen after the training stage and then the test is continued. The BER 
performances for each SNR are evaluated, based on 107 more received symbols (test 
samples) and averaged over 20 independent realisations. The parameters used for 
adaptation of all proposed equalisers for various linear and nonlinear channels under 
study are provided in Table 5.2. 
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      Table  5.2:    Learning Parameters of Proposed RNN Based Equaliser Structures 
 
 
 
 
 

 CHANNEL      
PARAMETERS 

CRNN FRCS HKFRCS RFCS RTCS FZTUNRNN 

λ     0.5    4    6    0.5     4      0.8  
H1(z) 

η    1    0.01    0.01   0.5    0.01      1 

λ     0.5    8    3   0.5    8      0.5  
H2(z) 

η    1    0.01    0.01    0.5    0.01      1 

λ     0.5    6     4    1    4      0.5  
H3(z) 

η    1    0.01    0.01    1    0.01      1 

λ     0.5    4    8   0.5     4      0.3  
H5(z) 

η    1    0.01    0.01   0.5    0.01      1 

λ     0.5    6     6   0.2     4      0.8  
H6(z) 

η    1    0.01    0.01   0.2    0.01      1 

λ     0.5    4    4   0.5     4      2  
H7(z) 

η    1    0.01    0.01   0.5    0.01      1 

λ     0.5    0.1    3   0.5     3      0.8  
H8(z) 

η    1    0.01    0.01   0.5    0.01      1 

λ     0.5    4    4   1     4      0.3  
H9(z) 

η    1    0.01    0.01   0.2    0.01      1 

λ     0.5    4    8   0.5     4      0.8  
H11(z) 

η    1    0.01    0.01   0.5    0.01      1 

λ     0.5    4    4   0.5     4      1  
H13(z) 

η    1    0.01    0.01   0.5    0.01      1 

λ     2    4    4   0.3     4      0.8  
H14(z) 

η    1    0.01    0.01   0.5    0.01      1 
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Example 1: Channel H1(z) =1+0.5z-1  
 

  Figure 5.8 shows the the BER performance plots using the proposed RNN 
based equalisers for a channel characterised by H1(z). For this minimum phase 
channel, the proposed FRCS, HKFRCS and FZTUNRNN equalisers show a SNR gain 
of almost 0.7 db at a  prefixed BER of 10-4  over  the conventional RNN one. 
 
Example 2: Channel H2(z) =1+0.7z-1  
 

 Figure 5.9 depicts the simulation results of equalisation of a channel model 
H2(z) using all the proposed structures based on RNN topology. The proposed FRCS, 
HKFRCS and RTCS equalisers show better BER performances over the conventional 
one by providing 1.3-1.7dB gain in SNR level at a prefixed BER of 10-4.  
 
Example 3: Channel H3(z) =1+0.95z-1  
 

 For this typical channel (zero close to the unit circle), it is observed in Figure 
5.10 that the conventional RNN equaliser provides a poor performance (it yields a 
BER of 10-2 at 18 dB SNR condition), where as all the proposed RNN based structures 
exibit significant improvement in BER performance (a  BER level of 10-4 can be 
achieved at almost 15-17dB SNR condition). 
 
Example 4: Channel H5(z) =0.3482+0.8704z-1 +0.3482z-2  
 

 For this non-minimum phase channel model H5(z), Figure 5.11 demonstrates 
that all the proposed equalisers have an edge over the conventional RNN structure 
performance wise at realistic SNR levels( >16 dB) though not in high noise conditions 
by providing about 1.5-1.8 dB SNR gain at a prefixed BER level of 10-5. 
 
Example 5: Channel H6(z) =0.4084+0.8164z-1 +0.4084z-2 

 

 Figure 5.12 demonstrates the enhancement in BER performances offered by 
proposed   structures  when applied to equalise a three tap channel with a coincident 
state, defined by H6(z). An impressive gain of almost 3.4 dB at a BER level of 10-4 is 
noticed if the proposed RFCS structure is employed. Application of the HKFRCS, 
RTCS and FZTUNFNN equalisers demonstrate SNR gains of more than 1 dB at a 
prefixed BER level of 10-4 over the conventional RNN one. 
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Example 6: Channel H7(z) =1 - 2z-1 + z-2 
 

 Further, equalisation of a partial response channel characterized by H7(z) has 
been attempted  employing all the proposed structures in the RNN framework and the 
corresponding BER plots shown in Figure 5.13 prove the supremacy of the proposed 
equaliser  structures in terms of improvement in SNR level. 
 
Example 7: Channel H8(z) =0.407-0.815z-1 -0.407z-2  
 

 Further, all the proposed structures reported in this chapter are compared with 
the CRNN structure for equalisation of a channel H8(z) in Figure 5.14. Though the 
proposed RFCS and FRCS equalisers exhibit almost the same performance as that of 
a conventional RNN one, the HKFRCS, RTCS and FZTUNRNN equalisers show 
distinct SNR gains of about 4-5 dB at a prefixed BER level of 10-4 which is quite 
encouraging. 
  
Example 8: Channel H9(z) =0.7255+0.584z-1 +0.3627z-2 +0.0724z-3 
 

 Figure 5.15 presents the BER performance comparison of all the proposed 
RNN based equaliser structures with a conventional RNN one for a four tap channel 
described by H9(z). For high noise conditions the performances of all the proposed 
structures are similar to the conventional RNN one. At a 16dB SNR condition, the 
proposed RTCS, HKFRCS and FRCS  equalisers  can  reach  a  BER of  10-5 in 
comparison with a BER of 10-3 obtained using the conventional RNN one.  
 
Example 9: Channel H11(z) = -0.2052-0.5131z-1 +0.7183z-2 +0.3695z-3+0.2052z-4 
 

 Figure 5.16 shows a performance comparison of all the proposed equalisers 
based on RNN topology considering a channel defined by H11(z). All the proposed 
equalisers performances are similar to that of the CRNN one except the RTCS 
equaliser structure. It offers better performance by attaining a prefixed BERof 10-4.5 at 
18 dB SNR condition. 
 
Example 10: Channel H14(z) = (1+0.5z-1) - 0.9 (1+0.5z-1)3 
  

 Lastly, Figure 5.17 show performance curves for the equalisation performed 
on a nonlinear channel, H14(z). For this example the proposed FRCS, HKFRCS, 
FZTUNRNN and RTCS equalisers result significant 1.7dB gain in SNR level at a 
prefixed BER of 10-5 over the CRNN equaliser which clearly justifies their 
application for such type of channel.  
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                      Figure 5.8 : BER performance comparison of  proposed RNN based 

         equalisers with conventional RNN for Channel  H1(z) 
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Figure 5.9 : BER performance comparison of proposed RNN based 

                 equalisers with conventional RNN for Channel  H2(z) 
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Figure 5.10  : BER performance comparison of proposed RNN based 
           equalisers with conventional RNN  for Channel  H3(z) 
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Figure 5.11: BER performance comparison of proposed RNN based  

                                                 equalisers with conventional RNN for Channel  H5(z) 
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Figure 5.12: BER performance comparison of proposed RNN based  

                                                 equalisers with conventional RNN for Channel  H6(z) 
 
 
 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Signal to Noise Ratio(dB)

lo
g 

10
(B

it 
Er

ro
r R

at
e)

CRNN
FZTUNRNN
FRCS
HKFRCS
RFCS
RTCS

 

 
 

 
Figure 5.13: BER performance comparison of proposed RNN based  

                                                 equalisers with conventional RNN for Channel  H7(z) 
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Figure 5.14: BER performance comparison of proposed RNN based  

                                                 equalisers with conventional RNN for Channel  H8(z) 
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Figure 5.15: BER performance comparison of proposed RNN based  
                                                  equalisers  with conventional RNN for Channel  H9(z) 
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Figure 5.16: BER performance comparison of proposed RNN based 

                                                 equalisers with conventional RNN for Channel  H11(z) 
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Figure 5.17: BER performance comparison of proposed RNN based  

                                                 equalisers with conventional RNN for Channel  H14(z) 

 
Proposed 

Structures 
 

Gain in SNR 
over CFNN 

at  
BER of  10-4  

FRCS 0   dB 
HKFRCS 0.7 dB 
RFCS 0.5 dB 
RTCS 1.5 dB 
FZTUNRNN 0.7 dB 

 
Proposed 

Structures 
 

Gain in SNR 
over CFNN 

at  
BER of  10-5 

FRCS 1.7 dB 
HKFRCS 1.7 dB 
RFCS 0.9 dB 
RTCS 1.7 dB 
FZTUNRNN 1.7 dB 



                                                                       CHAPTER-5:  Proposed RNN Based Cascaded Equalisers 

 149

All the proposed equalisers in RNN domain require fewer samples in training 
phase for satisfactory BER performance. Simulation results demonstrate this 
advantages offered by these structures. Figure 5.18 shows the effect of change of 
length of training sequence on the BER performance obtained using the conventional 
RNN  equaliser. It is observed that in channel H3(z), the CRNN equaliser (trained with 
1000 samples) is able to attain the BER performance level of the proposed FRCS 
equaliser (trained using 200 samples only), where as for channel H6(z) its 
performance is still inferior. In Figure 5.19, the BER performance of proposed 
HKFRCS equaliser (exposed to 200 training samples) is compared with conventional 
one. It is shown for channels  H3(z) and H8(z) that increasing the length of learning 
phase from 200 to 1000 samples, the CRNN equaliser still could not achieve the BER 
performance level of the HKFRCS equaliser. Further, the proposed RFCS equaliser 
(trained with 200 samples) BER performance is compared in Figure 5.20 with that of 
a conventional RNN equaliser (increasing the training samples to 1000). Though the 
CRNN equaliser is able to provide the same performance level as that of RFCS 
structure for channel H7(z), no significant improvement in case of channel H6(z) is 
observed. The proposed RTCS equaliser (trained using 200 samples) shows better 
performance even if the CRNN based equaliser is presented  with 1000 training 
samples for channel H8(z) and H9(z) as shown in Figure 5.21. It is noticed in Figure 
5.22 that the conventional RNN based equaliser can achieve the BER performance 
obtained using the proposed FZTUNRNN equaliser (trained using 200 samples) by 
increasing the length of the learning phase sequence to 1000 samples for examples of 
channels H3(z) and H9(z).  

Thus it is concluded from the exhaustive simulation study that BER 
performances of the proposed equalisers in RNN domain are superior and all these 
structures learn much faster in comparison with the conventional RNN one. Several 
types of channel models, used as examples, also demonstrate the robustness of the 
proposed equaliser structures and verify the efficacy of the new techniques applied. 
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Figure 5.18 : BER performance comparison of FRCS equaliser with 

                                           CRNN w.r.t. training samples for Channels 
                                           (a)H3(z) and (b) H6(z) 
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Figure 5.19 : BER performance comparison of HKFRCS equaliser with 

                                 CRNN w.r.t. training samples for Channels(a)H3(z) and (b)H 8(z) 
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Figure 5.20: BER performance comparison of RFCS equaliser with 

                                          CRNN w.r.t. training samples for Channels(a)H7 (z) and (b) H6(z) 
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Figure 5.21 : BER performance comparison of RTCS equaliser with 

                                           CRNN w.r.t. training samples for Channels (a)H8(z) and (b)H9(z) 
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Figure 5.22 : BER performance comparison of FZTUNRNN equaliser  

                                         with CRNN w.r.t. training samples for Channels 
                                         (a)H3(z)and (b) H 9(z) 
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5.7 Conclusion 
In this chapter hybrid configurations using cascaded modules of RNN and 

FNN have been proposed. Further the FNN module is replaced with a transform block 
in the hybrid structure of RNN-FNN cascaded equaliser and a new configuration has 
been proposed. As the sole aim of this research work is to develop reduced network 
configurations for ease of real time implementation in all practical applications, the 
overall structural complexities have been kept within limits by restricting the selection 
of number of nodes in both RNN and FNN modules while the cascading technique is 
employed. Different training algorithms have been developed for the weight 
adaptation in the proposed equalisers looking into their hybrid structural 
configurations. The equivalence approach based weight updation developed in this 
present work is a novel concept for such hybrid structures as discussed in Section 
5.1.2 and helps to employ the existing RTRL and BP algorithms. Also the technique 
followed in the training algorithm given in Section 5.4.1 to back propagate the output 
error through the transform block, proves to be highly efficient from the performance 
point of view. Further, tuning of the sigmoid slope of the neurons in conventional 
RNN equaliser using fuzzy logic concept explained in Section 5.5.1 helps to improve 
performance noticeably by increasing the network adaptability, although there is no 
visible structural modifications. It is observed from the exhaustive simulation study 
that while all the equalisers proposed have resulted faster learning and encouraging 
BER performances, the gains obtained are entirely channel dependent. For example, 
for channel H3(z), all the proposed RNN based cascaded equalisers perform better 
than a conventional RNN where as for H6(z), only the proposed RFCS equaliser yields  
improved BER performance. For channel H8(z), the HKFRCS and RTCS and 
FZTUNRNN equalisers perform better, but FRCS and RFCS equalisers achieve the 
same BER performance in comparison to conventional RNN one. 
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 The work described in the thesis is primarily concerned with the development 
of novel adaptive equalisers for communication channels using ANN techniques. In 
particular, the main focus of this research work is to design novel neural equalisers of 
reduced structural complexity based on both conventional FNN and RNN topologies. 
Further, certain modifications in the existing Back-Propagation and Real-Time-
Recurrent-Learning algorithms have been incorporated to update the connection 
weights of the proposed structures. The training algorithms, developed to adapt the 
Orthogonal basis function based FNN equaliser structure and Transform domain 
based FNN equaliser structure, are important contributions of this thesis work. 
Especially the concept of the proposed equivalence approach employed in the RNN 
based cascaded structures for weight adaptation adds a new dimension to research. 
This thesis work also has contributed to the proper selection of the key parameters 
associated with the equaliser structures. Along with the design of efficient structures, 
a different approach has been suggested to choose the key parameters involved with 
the equalisers for optimising the BER performance. However, in this study the major 
thrust is given in comparing the performances of the proposed equalisers with their 
conventional counterparts (either FNN or RNN based equaliser), considering the 
examples of various linear and nonlinear communication channel models.  
 In Section 6.1 a summary of the undertaken research is presented, followed by 
highlighting the specific achievements accomplished in this work. Section 6.2 
discusses the limitations of the present work and new direction for future work is 
proposed in Section 6.3. 
 
 

6.1 Summary and achievement of the thesis  
  

The work presented in this thesis can be divided into two distinct parts. In the 
first part, the factors influencing the performance of optimal symbol-by-symbol 
equalisers are discussed and the importance of proper selection of the key design 
parameters (feedforward order ‘m’, feedback order ‘nb’ and decision delay ‘d’) is 
analysed, which has led to the formulation of certain empirical relations. Secondly, 
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efficient equaliser structures in FNN and RNN domains with reduced structural 
complexity are proposed. Particularly, some contributions have also been made in the 
development of training algorithms for faster convergence. Even though the BP 
algorithm remains as the backbone of the proposed FNN based equaliser structures, 
certain modifications have been incorporated for evolving new training algorithms to 
adapt the proposed structure. Specific emphasis has been provided to suitably alter 
the conventional BP algorithm for adapting the connection weights of the proposed 
OBFNN and TDFNN based equalisers due to the positioning of the OBF block and 
transform block in the conventional structures respectively. 
 Chapter-3 of the thesis provides a detailed study on various factors 
influencing the performance of an optimal symbol by symbol (Bayesian) equaliser. In 
case of an ideal channel (no ISI), even though the optimal decision boundary is linear, 
the BER performance degrades at high additive noise level as evident from Figure 
3.1e. Further, the influence of ISI makes the optimal decision boundary nonlinear as 
can be seen in Figure 3.3c for channel H1(z) and the severity of additive noise level 
also plays a major role in misclassification of received symbols. Hence, it is inferred 
from the simulation study that both ISI and additive noise level in a channel influence 
the BER performance of  the equalisers  appreciably  only in  realistic SNR range, as 
illustrated in Figure 3.4. The number of noise-free channel states close to the optimal 
decision boundary varies with decision delay significantly and if it is more, then the 
probability of misclassification of observed samples increases when noise is present 
in the communication system. It is observed that increasing feedforward order of the 
equaliser improves the performance, but certain drawbacks are encountered as the 
structural complexity increases. However, the feedforward order has been restricted 
to the length of channel impulse response, maintaining a trade-off between 
performance and complexity, as discussed in Section 3.3. There has been an 
interesting observation that in a channel having coincident channel states, even if the 
feedforward order is increased to a large value, BER performance gain obtained is not 
satisfactory at all as seen in Figure 3.8d for a channel defined by H6(z). This 
necessitates the inclusion of decision feedback technique, which eliminates the 
existence of coincident states while reducing the number of channel states. 
Improvement of BER performance in the DFE structures is observed only if all the 
parameters like feedforward order ‘m’, feedback order ‘nb’ and  decision delay ‘d’ are 
properly chosen, otherwise  equalisers without decision  feedback and with a proper 
decision delay yield better BER performance as shown in Figure 3.16a-e. An 
exhaustive analysis regarding the selection of the key design parameters has given an 
insight for developing a new approach. For equalisers without decision feed back, 
empirical relations and logical explanations have been presented for optimal selection 
of the delay order in Section 3.2.1. For equalisers with decision feedback, Section 
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3.2.2 provides a procedure and its interpretation for the proper selection of the key 
design parameters. Separate studies and BER plots for examples of various channel 
models (both symmetric and asymmetric types) prove the accuracy of the derived 
mathematical relationships. This approach opens up a new direction for selecting the 
parameters directly from the channel tap coefficients.  
 Chapter-4 is entirely devoted to one of the major components of the 
contributions of the work undertaken relating to the design of novel equaliser 
structures in the FNN domain along with the development of suitable training 
algorithms to adapt the network weights during the learning phase. The extensive 
simulation study shows that the proposed equaliser structures are superior in 
performance and require less number of training samples for satisfactory BER 
performance in comparison with the conventional FNN equalisers. The justifications 
behind the performance enhancement using the proposed equalisers have been 
emphasised below.  
• Section 4.1 discusses about the hierarchical knowledge reinforced FNN (HKFNN) 

equalisers. The improvement in results for such equalisers can be attributed to the 
fact that the information is fed from one layer to the next layer for consolidation 
of the knowledge base and hence this equaliser configuration yields improved 
performance. The proposed structure has been designed with only one node per 
layer restricting the structural configuration. The opinions of the experts (node 
outputs) are passed on hierarchically to the subsequent experts so that the 
knowledge base gets more refined at the output node due to sequential processing 
operation in each node layer by layer. Thus in HKFNN structure, the output node 
is fed with more information (the original information from the input layer and the 
expert opinions of all the preceding nodes) in comparison to the Conventional 
FNN. The performance improvement of the proposed HKFNN structure in 
comparison to a conventional one can be seen in the Table 6.1. Further, it is 
observed from Figure 4.23 that even exposing the CFNN structure to a sequence 
of 2000 training samples instead of 1000 samples, the performance improvement 
is not significant w.r.t. HKFNN for channels H7(z) and H10(z). 

 

Sl.No. Channels  Gain in SNR over 
conventional FNN 

Figure No. 

1. H1(z) 1.8 dB at BER of 10-4 4.9 
2. H6(z) 1.3 dB at BER of 10-5 4.14 
3. H7(z) 1.4 dB at BER of 10-3 4.15 
4. H8(z) 1.8 dB at BER of 10-4 4.16 
5. H10(z)      2.7 dB at BER of 10-2.5 4.18 
6. H11(z) 1.4 dB at BER of 10-4 4.19 
7. H12(z) 1.7 dB at BER of 10-4 4.20 
8. H14(z) 1.1 dB at BER of 10-5 4.21 
9. H15(z) 1.0 dB at BER of 10-5 4.22 

 
 

Table 6.1 : Performance analysis of  proposed HKFNN equaliser 
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• Another FNN based equaliser termed as the orthogonal basis function (OBFNN) 
equaliser based on self-breeding genetic framework, is presented in Section 4.2. 
Such an equaliser has resulted in encouraging BER performances in comparison 
to Conventional FNN. The gain in performance is basically due to the evolution 
concept, where the decision at a node (expert’s opinion) instead of being directly 
conveyed to the next node undergoes a two dimensional orthogonal expansion. 
While one output preserves the information of the current generation to take part 
in the final decision, the other one is allowed to pass on the information to the 
next generation to generate a new expert opinion. Such configuration generally 
reinforces the information base of the final decision node to yield a better estimate 
as compared with a conventional FNN structure. The performance gain of this 
equaliser excited by 1000 training samples is shown in Table 6.2. And it is also 
observed from Figure 4.24 in channels H3(z)  and H8(z) that increasing the length 
of learning phase to 2000 samples, though a CFNN equaliser has resulted an 
improved BER performance but the proposed OBFNN equaliser trained with 
1000 samples only is still superior. 

 
 

Sl.No. 
 
 

Channels  Gain in SNR over 
conventional FNN 

Figure No. 

1. H1(z) 1.6 dB at BER of 10-4 4.9 
2. H2(z) 1.3 dB at BER of 10-5 4.10 
3. H3(z) 1.0 dB at BER of 10-4 4.11 
4. H8(z) 2.4 dB at BER of 10-4 4.16 
5. H10(z)       1.5 dB at BER of 10-2.5 4.18 
6. H11(z) 1.0 dB at BER of 10-4 4.19 
7. H15(z) 1.2 dB at BER of 10-5 4.22 

 
Table 6.2 : Performance analysis of  proposed OBFNN equaliser 

 

• The TDFNN equaliser employing a DCT block with power normalisation in 
cascade with a FNN module comprising of a single layer is another example of a 
new variant of equaliser based on FNN topology and is described in Section 4.3. 
So far as the choice of real-valued transform is considered, DCT is a clear winner 
over its competitors like DHT, DST, etc. based on performance study. The gain 
achieved with such hybrid configuration in comparison with a simple two layer 
CFNN is primarily due to the fact that the transform block at the output end 
performs further de-correlation of the already preprocessed information from the 
FNN module. Table 6.3 provides the performance gain attained by this equaliser 
for various channels. Further, it is observed for channels H7(z) and H10(z) shown 
in  Figure 4.25 that if the CFNN equaliser is presented with 2000 training samples 
instead of 1000 samples, then its BER performance improved but the result 
remained inferior in comparison to that of the proposed TDFNN equaliser. 
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Sl.No. Channels  Gain in SNR over 

conventional FNN 
Figure No. 

1. H1(z) 1.0 dB at BER of 10-4 4.9 
2. H3(z) 1.0 dB at BER of 10-4 4.11 
3. H6(z) 1.1 dB at BER of 10-5 4.14 
4. H7(z) 2.5 dB at BER of 10-3 4.15 
5. H8(z) 1.6 dB at BER of 10-4 4.16 
6. H10(z)       2.9 dB at BER of 10-2.5 4.18 
7. H11(z) 1.2 dB at BER of 10-4 4.19 
8. H12(z) 2.7 dB at BER of 10-4 4.20 
9. H14(z) 1.2 dB at BER of 10-5 4.21 

10. H15(z) 1.1 dB at BER of 10-5 4.22 
 

Table 6.3 : Performance analysis of  proposed TDFNN equaliser 
 
 
• Section 4.4 presents Fuzzy tuned FNN (FZTUNFNN) equaliser designed on an 

FNN platform which is a conventional FNN structure with a reduced structure, 
where  fuzzy logic concept is employed to tune the slope (φ) of the sigmoid 
activation functions at all the nodes. The adaptation of the slope parameter 
increases the degrees of freedom in the weight space of the conventional FNN 
configuration and thus provides a better non-linear mapping between the input 
and output. Application of this technique makes the existing CFNN structure 
more adaptable and hence significant performance gain can be expected from 
such situations even though the proposed structure has not undergone any 
structural modifications. The performance enhancement of the proposed structure 
is presented in Table 6.4. However, it is inferred from Figure 4.26 for channels 
H1(z) and H8(z) that if 2000 training samples are provided to a CFNN structure 
instead of 1000 samples, its BER performance certainly improves, but still the 
proposed FZTUNFNN equaliser (trained with 1000 samples only) shows better 
BER performance. 

 
 

Sl.No. Channels  Gain in SNR over 
conventional FNN 

Figure No. 

1. H1(z) 1.8 dB at BER of 10-4 4.9 
2. H4(z) 1.0 dB at BER of 10-4 4.12 
3. H8(z) 1.7 dB at BER of 10-4 4.16 
4. H10(z)       2.2 dB at BER of 10-2.5 4.18 
5. H11(z) 1.0 dB at BER of 10-4 4.19 
6. H12(z) 1.5 dB at BER of 10-4 4.20 
7. H15(z) 1.1 dB at BER of 10-5 4.22 

 
Table 6.4 : Performance analysis of  proposed FZTUNFNN equaliser 
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The sole objective of the proposed research work is focussed on the development 

of reduced structure based efficient neural equalisers, so the Recurrent Neural 
Network (RNN) platform has emerged as an attractive alternative in this research 
work. Although in RNN framework many hybrid configurations have been chosen 
employing cascading technique, it is ensured that under no circumstances the main 
objective of developing equalisers on reduced structure framework be defeated. 
Analysis of such configurations in RNN platform and their training algorithms has 
been presented in Chapter-5.  
 

• The first structure proposed in Section 5.1 is FNN-RNN cascaded (FRCS) 
equaliser, which consists of two modules, a FNN module is followed by an RNN 
one. Both the FNN and RNN modules have one processing unit each, in contrast 
to the conventional RNN having two processing units constraining the structural 
complexity. A novel ‘equivalence approach’ has been applied in RNN framework 
to evaluate its node errors, which cannot be explicitly defined if alone the RTRL 
algorithm is used. The development of new training algorithms of the cascaded 
structures is mainly based on this technique. The enhancement in BER 
performance using the proposed equalisers over the existing conventional RNN 
equaliser is given in Table 6.5. The improvement in result of the proposed 
structures in comparison to a conventional RNN based one, is due to the self 
pseudo-decision feedback strategy which is an inbuilt phenomenon within an 
RNN framework. Here, the signal is pre-processed in the FNN block before being 
fed to the RNN module cascaded to it and hence gain in the BER performance is 
achieved.  
 
 
 

Sl.No. Channels  Gain in SNR over 
conventional RNN 

Figure No. 

1. H2(z) 1.4 dB at BER of 10-4 5.9 
2. H3(z) 6.0 dB at BER of 10-2 5.10 
3. H5(z) 1.5 dB at BER of 10-5 5.11 
4. H7(z) 1.9 dB at BER of 10-3 5.13 
5. H9(z) 3.2 dB at BER of 10-4 5.15 
6. H14(z) 1.7 dB at BER of 10-5 5.17 

 
Table 6.5 : Performance analysis of  proposed FRCS equaliser 

• The concept of hierarchical reinforcement in HKFRCS structure is mentioned in 
Section 5.2. Basically, this structure is identical to the previous one (FRCS), 
except that  the RNN nodes are fed with the original input information in order to 
strengthen the knowledge base  of the RNN processing units (refining expert 
opinions), which deliver the final output. Thus it seems logical that such a 
structure will yield a better performance in comparison to Conventional RNN due 
to strengthing of knowledge base at the output node. The BER performance 
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improvement using the proposed equaliser over the existing CRNN is observed in 
Table 6.6.  

Sl.No. Channels Gain in SNR over 
conventional RNN 

Figure No. 

1. H2(z) 1.7 dB at BER of 10-4 5.9 
2. H3(z) 6.0 dB at BER of 10-2 5.10 
3. H5(z) 1.7 dB at BER of 10-5 5.11 
4. H7(z) 2.4 dB at BER of 10-3 5.13 
5. H8(z) 4.7 dB at BER of 10-4 5.14 
6. H9(z) 3.5 dB at BER of 10-4 5.15 
7. H14(z) 1.7 dB at BER of 10-4 5.17 

 

Table 6.6 : Performance analysis of  proposed HKFRCS equaliser 
 

• The structure FRCS explained earlier has motivated to develop another hybrid 
configuration by swapping the FNN module with the RNN and vice-versa and has 
been explained in Section 5.3. The number of processing units and the external 
input in both remain the same. The RFCS structure provides an intermediate 
decision feedback while the FRCS one employs a pseudo decision feedback 
concept. The superiority in the performance of the proposed one over the CRNN  
equaliser is shown in Table 6.7. 

Sl.No. Channels  Gain in SNR over 
conventional RNN 

Figure No. 

1. H3(z) 6.0 dB at BER of 10-2 5.10 
2. H5(z) 1.5 dB at BER of 10-5 5.11 
3. H6(z) 3.4 dB at BER of 10-4 5.12 
4. H7(z) 2.1 dB at BER of 10-3 5.13 
5. H9(z) 2.4 dB at BER of 10-4 5.15 

 

Table 6.7 : Performance analysis of  proposed RFCS equaliser 
 

• For the RTCS structure as mentioned in Section 5.4, the number of processing 
units remains the same as the CRNN equaliser.  After the input signal is 
preprocessed in the RNN module, it is fed to the DCT transform block for further 
processing. As expected, such a proposed structure performs better than a CRNN 
due to the further signal de-correlation in the transform block followed by power 
normalisation as illustrated in Table 6.8. 

Sl.No. Channels  Gain in SNR over 
conventional RNN 

Figure No. 

1. H2(z) 1.3 dB at BER of 10-4 5.9 
2. H3(z) 6.0 dB at BER of 10-2 5.10 
3. H5(z) 1.8 dB at BER of 10-5 5.11 
4. H6(z) 1.2 dB at BER of 10-4 5.12 
5. H7(z) 1.5 dB at BER of 10-3 5.13 
6. H8(z) 4.4 dB at BER of 10-4 5.14 
7. H9(z) 3.6 dB at BER of 10-4 5.15 
8. H11(z) 1.5 dB at BER of 10-4 5.16 
9. H14(z) 1.7 dB at BER of 10-5 5.17 

                  Table 6.8 : Performance analysis of  proposed RTCS equaliser 
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• In the RNN framework another configuration has been discussed in Section 5.5 
which employs fuzzy logic technique to a conventional RNN structure to tune the 
slope of the sigmoid activation function of the RNN nodes. This is basically aimed 
at incorporating another degree of freedom, thus increasing the adaptability of the 
conventional RNN and hence the proposed one is expected to perform better as 
observed in Table 6.9. 

 
Sl.No. Channels Gain in SNR over 

conventional RNN 
Figure No. 

1. H3(z) 6.0 dB at BER of 10-2 5.10 
2. H5(z) 1.8 dB at BER of 10-5 5.11 
3. H5(z) 1.0 dB at BER of 10-4 5.12 
3. H7(z) 2.0 dB at BER of 10-3 5.13 
4. H8(z) 4.0 dB at BER of 10-4 5.14 
5. H9(z) 2.8 dB at BER of 10-4 5.15 

 
Table 6.9 : Performance analysis of  proposed FZTUNRNN equaliser 

 
• In the simulation study for analysing hybrid structures in RNN framework less 

training samples (200 only) have been used for training those networks. It has 
been observed from Figure 5.18, Figure 5.19, Figure 5.20, Figure 5.21 and Figure 
5.22 that even if the CRNN based equaliser is trained using 1000 samples (exactly 
five times that of the training samples employed for all the proposed equalisers) 
its BER performance is almost comparable with the proposed ones, for which 200  
training samples  are required only.  

                Finally, the general inference derived from the simulation study carried out 
on various communication channels clearly indicates that the proposed neural 
equaliser structures are highly efficient in terms of structural complexity, BER 
performance and faster learning in comparison to their conventional counterparts 
(FNN and RNN based structures).  
 

6.2   Limitations of the work 
  
This section highlights some of the limitations of the proposed work reported in this 
thesis.  

This thesis is generally concerned with the development of novel equaliser 
structures in neural domain for  communication systems. In all the proposed structures 
the equaliser feedforward order ‘m’ has been restricted to the channel order ‘na’. Even 
though it was observed that increasing ‘m’ to a higher order can result in enhancement 
of BER performance, the selection of ‘m’ is constrained to a specific value such that 
the objective of the proposed work is preserved. Further, it is observed that because of 
such limitation on the value of ‘m’, the optimal performance is not achieved. In this 
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research work achieving the optimal Bayesian performance is not the major criterion, 
but development of novel neural equalisers with reduced structural complexity has 
been the main emphasis all along, even though it results in some performance loss. 
However, minimal performance degradation is noticed and a trade-off between 
structural complexity and performance is maintained in all the proposed structures.     
             The other limitation of the work pertains to analysis of stationary channel 
models only and time-varying channels and multi-channels have not been analysed in 
the present simulation study. Further, all the proposed equaliser structures and 
training algorithms developed in this research work are tested for applications using 
2-PAM signalling only. 
  

6.3   Scope of future work 
 

To conclude the thesis, following are some pointers for further work.  
            The first suggested area in which research can be undertaken follows from the 
limitation of the work presented in this chapter. Efforts can be put for utilizing the 
proposed equalisers developed in the present research work for time-varying channels 
and multipath fading channels. Attempts can be made to apply the proposed neural 
equalisers in FNN and RNN framework for blind equalisation of mobile 
communication channels and their suitability for combating co-channel interference 
can be found. New architectures based on ANN techniques and fuzzy techniques can 
be attempted even in a reduced structural complexity frame work to achieve near 
optimal performance for real-time applications. As bit error rate is the performance 
criterion of equalisation, more efficient training algorithms minimising an error 
function, which is a direct measure of BER, can be tried instead of the common 
gradient-based approaches used in either conventional BP or RTRL algorithms for 
faster convergence as well as optimal weight adaptation for improving the 
performance. This research work also can be extended to other efficient modulation 
schemes like 4-level PAM, QPSK etc., to increase transmission speed with limited 
channel bandwidth.  
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APPENDIX-A 

 
This appendix presents the Back-Propagation (BP) [06] algorithm.   

 

A :  Description of the Training Algorithm 

The weights and thresholds of a feedforward neural network are generally 
updated by using the Back-Propagation (BP) training algorithm, which is a stochastic 
gradient descent optimization procedure. The BP algorithm is an iterative algorithm 
and adjusts the weights so as to minimize any differentiable cost function such as the 
mean square error (MSE).  In back propagation, the output value is compared with the 
desired output, resulting in an error signal.  The error signal is fed back through the 
network connections and the weights are adjusted so as to minimise the error. The 
increments used in updating the weights, Δwij and threshold levels, Δthj of the lth layer 
can be accomplished by the following rules. 

 Δwij
(l) (n+1) = η δj

(l)(n) yj (l-1)(n) + α Δwij
(l) (n)                             (A.1) 

 and  

Δthj
(l) (n+1) =β δj

(l)(n)                                                     (A.2) 

where η is the learning-rate parameter, α is the momentum parameter, β is the 
threshold level adaptation gain and layer l ∈ [1,2,…..L].  

 The error signal δj
(l)(n) for layer l is calculated starting from the output layer L 

δj
(L)(n)  = 2)}(1)}{()({ )(2)( nynynd L

j
L

jj −−                                            (A.3) 

and recursively back propagating the error signal to the lower layers 

δj
(l)(n) =  ( 1)2( ) ( 1){1 ( )} ( ) ( ) 2l

qj
l l

jy n n w nqq
δ ++− ∑                                     (A.4) 

where  l ∈ [1,2,…..,L-1], q is  the overall neurons in the layer above neuron j and dj(n) 
is the desired output. 
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APPENDIX-B 

 
This appendix presents the Real-Time-Recurrent-Learning (RTRL) algorithm [55].   

 

B :  Description of the Training Algorithm 

The Recurrent neural network chosen here has nx external inputs and  nr fully 
interconnected recurrent processing units.  Thus  input  of  RNN  is  a  vector u(n),  lth 
element of which ul(n) is defined as 

 
⎩
⎨
⎧

≤≤
≤≤= nx  k    ,nx

nr  k    ,nynu
k

k
l 1)(

1)()(       for     1 ≤ l ≤ (nx+nr)                                (B.1) 

The output of kth neuron of RNN at time n 
( )

( )
1( )
1

k

k

k

c n

c n
ey n
e

−φ⋅

−φ⋅
−

=
+

, where  ∑
+

=
⋅=

nrnx

l
lklk nunwnc

1
)()()( ,    1 ≤ k ≤ nr   (B.2) 

Sigmoidal activation function with slope parameter φ has been considered for each 
processing unit of RNN structure.  W denotes nr by (nx + nr) weight matrix of RNN. 

The final output of the proposed equaliser structure is taken from the output of 
jth neuron of RNN.  By comparing yj(n) with the desired value d(n), the error ej(n) is 
calculated. 

ej(n) = d(n) – yj(n)                                                                  (B.3) 

The instantaneous sum of squared error at time n 

J(n) = ∑
=

nr

j
j ne

1

2 )(
2
1                                                                        (B.4) 

 The objective here is to minimise a cost function, obtained by summing J(n) 
over all time n; that is, 

 ∑=
n

nJJtotal )(                                                                            (B.5) 

To accomplish this objective the method of steepest descent is used, which 
requires knowledge of the gradient matrix, written as 

( )
w total

n

J nJ ∂
∇ =

∂∑ W
                                                                     (B.6) 

In order to develop a learning algorithm for training the network in real time, 
an instantaneous estimate of the gradient is necessary following an approximation to 
the method of steepest descent. 

For the case of a particular weight wkl(n),the incremental change Δwkl(n) 
made at time index n 
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Δwkl(n)  =  
)(

)(
nw

nJ

kl∂
∂

λ− ,                                                       (B.7) 

where λ  is a  learning -rate parameter of RNN. 

From Equations (B.6) and (B.7) 

 ∑
= ∂

∂
−=

∂
∂ n

j kl

j
j

kl nw
ny

ne
nw

nJ
1 )(

)(
)(

)(
)(                                                      (B.8) 

Since )(ne j  is known at all times, determination of the partial derivative is required to 

implement RTRL algorithm. 

A sensitivity parameter is described by a triply indexed set of variables{ }j
klp , where                             

,
)(
)(

)(
nw
ny

np
kl

jj
kl ∂

∂
=          1≤  k ≤ nr  and  1 ≤  l ≤  (nr+ nx)           (B.9) 

The evaluation of this partial derivative is carried out as follows. 

{ }
1

( 1) ( ) ( ) ( ) ( )
nr

j i
kl j ji kl kj l

i

p n c n w n p n u n
=

⎡ ⎤′+ = ⋅ + ∂⎢ ⎥⎣ ⎦
∑F                   (B.10) 

with initial condition 0)0( =j
klp  

The derivative { } 2( ) {1 ( 1) }( / 2)j jc n y n′ = − + φF                                 (B.11) 

∂kj is a Kronecker delta  defined as 

∂kj = 1 for k = j                                                      

      = 0, otherwise.                                                                    (B.12) 

Updation of the connection weight )(nwkl  is carried out as per the following 

expressions. 

)().(.λ)(
1

npnenw j
kl

nr

j
jkl ∑

=
=Δ ,     1 ≤  k ≤  nr  and  1 ≤  l ≤  (nx+nr)    (B.13) 

Finally, )()()1( nwnwnw klklkl Δ+=+                                                (B.14) 
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APPENDIX-C 
 
 

A fuzzy controller block [107] chosen to adapt the slope of the sigmoid is represented 
by a network consisting of five layers with two inputs and a single output is discussed 
in this appendix. 
 
 
 

C : Fuzzy Controller Structure 
      The construction of a five layer network given in Figure C.1 is described below. 
 
 

Figure C.1:  A fuzzy controller structure
 

   
 
                
 
        The first layer is an input layer with one node for each controller variable.  The 
node output is given by 

y i
1 = x i1                                                                                                                           (C.1) 

for i = 1,….., n1, where n1 is the total number of nodes in layer 1. The interconnecting 
weights between the first and the second layer are all unity. The second layer is made 
up of nodes representing Gaussian membership function. The total number of nodes is 
equal to the total number of fuzzy sets associated with the input variables. The node 
output of this layer is given by the expression 

yi
2 = exp (- ( (y i

1 – cn i) / σ i)2 )                                         (C.2) 
for  i = 1,…., n2, where  n2 is the total number of nodes in layer 2.  
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            The interconnecting weights between the second and the third layer are all 
unity. The third layer consists of nodes implementing fuzzy AND operator. Each node 
in this layer represents a fuzzy rule and the output is given by 

y i
3 = min (y j

2)                                                                            (C.3) 
for  i =1,…., n3, and  j = 1,…., n2, where n3 is the total number of nodes in layer 3.  
The interconnecting weights between the third and fourth layer are all unity. 
           The fourth layer consists of nodes realising the bounded sum form of the fuzzy 
OR operator.  The number of nodes is equal to the number of fuzzy sets representing 
the controller variable output.  The node output is given by 

y i
4 = min (1, ∑yj

3)                                                                       (C.4) 
for i = 1,……., n4, where n4 is the total number of nodes in layer 4. The fifth layer 
comprises of nodes implementing a centre-of-area (COA) defuzzification algorithm.  
The weights of interconnection between the nodes in the fourth and fifth layers are the 
products of the centre and width of the membership function associated with the fuzzy 
set for the controller output variables, which are given by 

 y i5  =  

4
4

1
4

4

1

n

j j j
j

n

j j
j

cn y

y

σ

σ

=

=

∑

∑
                                                                   (C.5)  

for   i = 1,….., n5, where  n5  is the total number of nodes in layer 5. 
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APPENDIX-D 
  
 
Following channels have been used as examples for BER performance evaluation of 
proposed   FNN based and RNN based cascaded equalisers in the simulation study. 
 

            

                    

No. Transfer functions of channels 

H1(z)  1  +  0.5 z –1 

H2(z)  1  +  0.7 z –1 

H3(z)  1  +  0.95 z –1 

H4(z)  0.5 + 1 z –1 

H5(z) 0.3482 + 0.8704 z -1 + 0.3482 z –2 

H6(z) 0.4084 + 0.8164 z -1 + 0.4084 z –2 

 

H7(z) 
 

1 - 2 z -1 + 1 z -2 
 

 

H8(z) 
 

0.407 - 0.815 z -1 - 0.407 z –2 

H9(z) 0.7255 + 0.584 z -1 + 0.3627 z –2 + 0.0724 z –3 

H10(z) 0.35 + 0.8 z –1 + 1 z -2 + 0.8 z –3 

H11(z) -0.2052 –0.5131 z -1 + 0.7183 z –2 + 0.3695 z -3 + 0.2052 z –4 

H12(z) 
 
0.9413 + 0.3841 z -1 + 0.5684 z -2 + 0.4201 z -3 + 1 z –4 
 

H13(z) 
 

0.227 + 0.46 z -1 + 0.688 z -2 + 0.46 z -3 + 0.227 z –4 

H14(z) (1+0.5 z -1) - 0.9 (1+0.5 z -1) 3 

H15 (z) (0.3482 + 0.8704 z -1 + 0.3482 z -2) + 0.2 (0.3482 + 0.8704 z -1 + 0.3482 z -2) 2 
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APPENDIX-E 
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