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1 CHAPTER 1 

INTRODUCTION 

The Power Amplifier (PA) is one of the most commonplace devices in encountered in 

electrical engineering. Whether in audio and speech applications or in the front ends of 

communication transmitters, power amplifiers can be found in a large number of practical 

real-world circuits. 

 An amplifier performs its task of magnifying (scaling) an input signal by a constant 

factor fairly reliably until they are driven into their saturation regions; after  which point 

their gains become limited, producing saturation and clipping. 

Being such integral components of electronic systems, many attempts have been made to 

understand the behavior of power amplifiers. Many attempts have been made to model 

and compensate the behavior of such devices and identify their nonlinear characteristics 

using a variety of approaches to compensate for these nonlinearities using what is known 

as digital predistortion (DPD) ‎[1], ‎[2].  

A DPD is a digitally-implemented inverse function designed to counteract an amplifier's 

nonlinear behavior, making the design of a DPD essentially an inverse-system 

identification problem. To design the best possible pre-distorter, reliable and accurate 

methods for identifying the nonlinear characteristics of a power amplifier are needed 

since identifying a pre-distorter is conceptually the same as identifying a PA, and it is this 

identification process with which this work is chiefly concerned.  



2 

 

In this work, the use of adaptive filtering algorithms for this purpose is thoroughly 

investigated, the shortcomings of this approach clearly identified and subsequently, the 

use of Particle Swarm Optimization (PSO) is proposed ‎[3]-‎[7].  

The performance of PSO in this context is studied extensively and a novel PSO family of 

algorithms is developed to solve the dual problem of estimating the coefficients of a 

nonlinear PA model and the correct dimension of the model, given an oversized estimate 

of the model's size. 

1.1 Power Amplifier Nonlinearities 

With the recent developments in high-rate communication systems and the corresponding 

increase in demand for high-speed services, multi-user systems such as Orthogonal 

Frequency Division Multiplexing (OFDM) and Long-Term Evolution (LTE) have 

emerged as attractive standards for modern communication systems. While OFDM and 

similar systems are attractive choices for their many features such as resilience to noise, 

they suffer from the well-studied issue of having high Peak-to-Average-Power-Ratios 

(PAPR) (Figure ‎1.1) ‎[8],‎[9], i.e. they have rather high values of instantaneous peak-

signals in comparison to their average values. This is a result of the time-domain signal 

being composed of the sum of multiple signals which are multiplexed and transmitted 

simultaneously; which leads to the high peaks when multiple peaks occur at the same 

time. The PAPR problem in multiplexed signals is well-documented and has been 

thoroughly examined in the literature ‎[10], ‎[11].  
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Figure ‎1.1 Typical OFDM signal displaying high PAPR 

The implication of the PAPR issue is that the PAs used to amplify these signals will 

encounter large spikes in amplitudes which drive said PAs into their nonlinear regions of 

operation (Figure ‎1.2).  

This leads us to consider applying input-level reduction or using less power-efficient PA 

classes (Appendix A) -which corresponds to a reduction of efficiency -, or investigating 

methods to compensate for the amplifier's nonlinear behavior through what is known as 

Digital Pre-Distortion (DPD) ‎[1].   
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Figure ‎1.2 Example of Nonlinear amplifier characteristics‎[13] 

It is noteworthy that causes behind the nonlinear behavior of power amplifiers include 

memory effects, and impedance variations, among others ‎[13].  

1.1.1 Memory Effects 

Memory effects in a power amplifier can result from electro-thermal or electrical 

causes ‎[13],‎[14]. Electro-thermal effects are usually borne from the heat generated by a 

transistor, whereas electrical memory is caused by biasing and termination 

imperfections ‎[15],‎[16].   

1.1.2 Impedance Variations 

In an RF system, impedance matching is crucial to maximize the power transferred to the 

load . Usually, PAs are designed assuming a fixed load; which could potentially damage 

the amplifier's performance or even lead to physically damaging the device in some 

extreme cases, as reported in ‎[17]. One situation in which this can be of concern is when 

the load is dynamic or time-varying.  
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1.1.3 Frequency-Domain Nonlinearities 

When a signal is passed through a nonlinear PA, it suffers from distortions in its 

frequency content resulting from causes such as intermodulation effects, among others. 

To combat these nonlinearities, digital predistortion was developed ‎[1]. 

 An example of frequency-domain distortion is presented in Figure ‎1.3. This figure shows 

the effect a nonlinear Doherty PA has on the spectrum of a four-carrier (1001) 20MHz 

WCDMA signal. Note how there are significant spectrum components outside the 

bandwidth of the original signal.  

 

Figure ‎1.3 Example of distortion effects in the frequency domain 
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1.2 Digital Predistortion 

To compensate for a PA's nonlinear behavior and produce an output that is as close to 

linear as possible, a technique known as Digital Predistortion (DPD) is employed ‎[1],‎[2]. 

DPD is usually through what is known as the Indirect Learning Architecture (ILA) ‎[18]. 

In this architecture (Figure ‎1.4), the parameters of a predistorter are identified using the 

output obtained from a PA as input to an estimator (after normalizing it using its small-

signal gain) and the original signal ( )x n is used as the reference, or desired signal. 

After the estimation process is completed, the parameters obtained are then copied to the 

pre-distorter which is then placed between the input signal and the PA, to obtain a 

linearized output signal. 

Looked at in terms of system-identification, the problem of finding a pre-distorter is very 

similar to that of finding an inverse system and thus, the performance of the algorithms 

and techniques used to identify a PA's parameters would be analogous to that of 

identifying a DPD's parameters. 

 

Figure ‎1.4   Block diagram of the digital predistortion process using the Indirect Learning Architecture‎[18] 
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Digital predistortion attempts to mitigate the effects of a PA's nonlinearities as much as 

possible to produce an output that is linear. An example of the effect of using a DPD in 

front of the same PA from Figure ‎1.3. From this figure, it can be observed that the out-of-

band components have been suppressed significantly. 

 

Figure ‎1.5    Distortion-mitigation using DPD 

 

1.3 Problem Statement and Formulation 

After giving a brief summary of the types of nonlinearities present in power amplifiers, 

we now state our problem: Given a nonlinear power amplifier, we would like to find an 
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appropriate mathematical model which describes the amplifier's behavior, then develop 

an estimation technique that can best extract its parameters.  

To find the best technique, adaptive filtering techniques were thoroughly surveyed before 

settling on particle swarm optimization techniques.  

After finding a technique that can best estimate the parameters of the PA models, this 

work attempts to develop techniques which can estimate a model's dimension. This 

process is illustrated in Figure ‎1.6 below. 

 

Figure ‎1.6  Thesis flow 
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1. Performing an extensive survey of the use of adaptive filters in the area of real-

world PA modeling and identification and pre-distortion, then proposing some 

methods to improve their performance. 

2. Designing and implementing a variety of novel accurate PSO estimators that are 

capable of estimating the true dimensions of a PA model. 

1.5 Thesis Outline and Organization 

This thesis is organized into five chapters, including this one: Chapter 2 conducts a 

survey of power amplifier behavioral modeling. Chapter 3 studies the use of adaptive 

filtering for the identification of nonlinear power amplifiers and identifies the 

shortcomings of these techniques. Chapter 4 deals with the use of Particle Swarm 

Optimization (PSO) to identify nonlinear power amplifier model parameters, proposes a 

new family of PSO algorithms that can estimate the dimension of a model along with its 

coefficients. and discusses the results obtained and their implications. 

 Finally, Chapter 5 summarizes the  work done, outlines the main conclusions arrived at 

and offers some suggestions for future work. 

Equation Chapter (Next) Section 1Equation Chapter (Next) Section 1 
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2 CHAPTER 2 

BEHAVIORAL MODELING OF NONLINEAR POWER 

AMPLIFIERS 

After outlining the importance of modeling the behavior of nonlinear power amplifiers in 

the previous chapter, we discuss the mathematical models used to describe nonlinear 

power amplifiers and explain the approaches taken to identifying their parameters, 

concluding with the selection of a specific model for the remainder of this study. 

2.1 Introduction to Behavioral Modeling 

In its most general form, the output of a PA model can be written as 

( )fy x   (2.1) 

where the input vector x  is mapped to an output vector y  through some function ( )f x . 

The study of behavioral modeling is concerned with finding a function which best maps 

x  to y  in a manner that fits the operation of a real-world nonlinear PA.  

The motivation behind this effort is that in order to better understand the behavior of 

power amplifiers, one needs to know about the models, mathematical or otherwise, used 

to describe them. From simple, experimentally-derived Look-Up Table (LUT)-based 

models to the highly complex and accurate Volterra Series, a wide variety of models that 

attempt to best describe amplifier behavior are available and in the initial part of this 

study, a number of these models were surveyed in order to select the most appropriate 

one. In this work, the various models are classified into two broad groups: Memoryless 

models and those with memory. 
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2.2 Memoryless Models 

These models attempt to describe the nonlinear behavior of a power amplifier without 

taking the memory effects into account. They are usually simple to construct and analyze, 

but are limited in accuracy since memory effects can be significant in some situations. 

Among these models, the Look-Up Table (LUT) and memoryless polynomial models are 

discussed. Other models (such as the Saleh, Ghorbani and Rapp models) were 

investigated but are not included in this discussion. 

2.2.1 Look-Up-Table Model 

In this model, the experimentally-derived values of instantaneous gain of the amplifier is 

stored in a Look-Up-Table (LUT) ‎[1] . Mathematically, the output of this model can be 

written as 

 ( ) | ( ) | | ( ) |y n G x n x n  , (2.2) 

where  | ( ) |G x n  is the instantaneous complex gain associated with the particular value 

of the input magnitude.  

In essence, this model is a direct mapping that associates the values of input magnitudes 

with their corresponding values of gain. A drawback of this model is that it is constructed 

based on our knowledge of the amplifier in question; meaning that its accuracy depends 

heavily on the designer's knowledge. Despite these weaknesses, the LUT is one of the 

most commonly-used models due to its simplicity and ease of formulation ‎[20], ‎[21].  



12 

 

2.2.2 Memoryless Polynomial Model 

This model attempts to fit a polynomial to measured input and output signals. The 

polynomial used is of the form ‎[22] 

1

(n) (n)
K

k

k

k

y h x


   (2.3) 

which can be written in vector format as  

1

(n) (n) ( ) ( )
KT

K

h

y x n x n

h

 
   
  
  

x h   (2.4) 

where 1h   through Kh are the model coefficients. This model is simple to construct and 

estimate, but fails to account for the memory effects of a power amplifier, thus making it 

an unrealistic choice for modeling the PAs encountered in real life. 

2.3 Models with Memory 

In contrast to the simpler memoryless LUT- and polynomial-based models, these models 

attempt to account for the memory effects that affect the behavior of a power amplifier. 

These models fall under the class of nonlinear models with memory, which is a broad 

field of study studied by many researchers ‎[23]‎  ‎[30]. As one would expect, these models 

are more complex and (thus more expensive to compute) than the memoryless models 

discussed in the previous section. 

2.3.1 Volterra Series Model 

Named in honor of the Italian mathematician Vito Volterra, this model was first used in 

system theory by Norbert Wiener during the 1940's to describe the effect of noise in a 
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nonlinear receiver . Mathematically, the discrete-time version of this model is defined 

as ‎[23] 

 
1

1

1 0 10

( ) , , ( )
p

M kK M

p p j

k i ji

y n h i i x n i
  

    .(2.5) 

The above is a truncated version of the Volterra series where K   and M   have finite 

values. A way to intuitively understand the above expression is to view it as n  -fold 

convolution of the input signal ( )x n   with p   filters,  1, ,p ph i i  ‎   or as they are known 

in the literature, Volterra kernels ‎[31]  . 

 It can be seen from the above that for 1k   , (2.5) becomes the familiar linear 

convolution operation performed using multiple filters (kernels). 

 For any 1k   , the kernels  1, ,p ph i i  are known as higher-order impulse responses 

and describe the nonlinearity of the system with K   being the order of said nonlinearity. 

These kernels are known to be symmetric ‎[23]. A block diagram illustrating the structure 

of this model is shown in Figure ‎2.1 

 

Figure ‎2.1 Sample diagram representing a third-order Volterra series model 

h1(n)

h2(n)

h3(n)

X

x(n) y(n)
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Volterra series models are better suited to describing weakly nonlinear systems. These 

models have problems with convergence when the systems being modeled have large 

orders of nonlinearity, as the sum in (2.5) might not converge quickly for strongly 

nonlinear cases and as a result, very long computation times would be needed ‎[31]. 

In return for the Volterra series' accuracy, the computational complexity it imposes is 

usually very large, prohibitively so at times. Due to this, various simplifications of this 

model have been attempted to differing degrees of success and the use of the Volterra 

series is usually not preferred  ‎[26].  

2.3.2 Wiener Model 

The Wiener model is a two-stage representation that consists of a Finite Impulse 

Response (FIR) filter followed by a nonlinear filter which has no memory, which can be 

represented by an LUT ‎[23]. 

The output of a Wiener model can be written as 

  ( ) | ( ) | ( )y n G u n u n   (2.6) 

where the gain  | ( ) |G u n  is the result of the memoryless mapping of an input signal 

magnitude to its corresponding value of gain and ( )u n  is the output of the FIR filter 

( )H n  of length M  obtained through convolution 

 
0

( ) ( ) ( ) ( ) ( )
M

i

u n h i x n i h n x n


    . (2.7) 
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While relatively simple, this model does not take all kinds of nonlinear behavior into 

account. Another weakness of this model is that it is not linear with respect to its 

coefficients, making identification of the model difficult ‎[32] .To address some of these 

issues, the Augmented Wiener model was proposed in ‎[33]. This model attempts to 

include nonlinear effects not described by the standard Wiener model by applying 

another FIR branch with a second-order nonlinear function, making the pre-LUT output 

u(n) equal to  

 
1 2

1 2

0 0

( ) ( ) ( ) ( ) ( ) | ( ) |
M M

i j

u n h i x n i h j x n j x n j
 

        (2.8) 

where 1M  and 2M   are the  lengths of the two FIR filters 1( )h n  and 2 ( )h n , respectively. 

A block diagram representing the Wiener model is depicted in Figure ‎2.2. 

 

Figure ‎2.2 Wiener Model 

2.3.3 Hammerstein Model 

The Hammerstein model is an analogue of the Wiener model in which the LUT precedes 

the FIR filter ‎[34].  It corresponds to a simplification of the Volterra series. The output is 

now expressed as 

 
0

( ) ( ) ( ) ( ) ( )
M

i

y n h i u n i h n u n


    , (2.9) 

where 

Memoryless FunctionFIR

 

x(n)

2
()xn

 

y(n)
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  ( ) | ( ) | ( )u n G x n x n  , (2.10) 

As can be seen from the above equations, this model can be shown to be linear in its 

coefficients ‎[35]. Since it and the Wiener filter are analogues, they can function as each 

other's inverses if their respective FIR and nonlinear portions are inverses. As is the case 

with the Wiener model, an augmented version of this model exists as well, with the only 

difference in this version being that the LUT is applied in front of the FIR branches. 

2.3.4 Wiener-Hammerstein Model 

If we connect an additional FIR filter ( )g n  after the output of the nonlinearity of the 

Wiener model, we obtain what is known as the Wiener-Hammerstein model ‎[18] , shown 

in  Figure ‎2.3. 

 

 

Figure ‎2.3 Wiener-Hammerstein Model 

The output of this three-box model is expressed as 

 
1

0 1 0

( ) ( ) ( ) ( )
M K M

k

i k j

y n g i w h j x n i j


  

 
    

 
    , (2.11) 

The above is more general than either the Wiener and Hammerstein models, but is not 

linear in the set of coefficients; complicating its identification procedure and thus 

reducing its popularity among researchers. 

 h(n)

 

x(n)

 

y(n)

g(n)
Memoryless 
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2.3.5 Memory Polynomial Model 

This model can be considered to be a special case of the parallel Wiener formulation. 

This model has obtained good popularity in the field of PA modeling and pre-distortion. 

This model was proposed in ‎[18] and relates the output to the input through the equation 

 
1 1

0 0

( ) ( ) | ( ) |
K L

k

kl

k l

y n x n lh x n l
 

 

    . (2.12) 

The form of this model is a polynomial of order K   spanning a memory depth of L   time 

samples, hence its name. From the equation above, it can be seen that the output depends 

on the interaction of an input sample with polynomial versions of itself. The output can 

also be thought of as the output of K  linear FIR filters, each proceeded by a nonlinear 

polynomial function of order k  where 0 k K  .   

This model has the desirable characteristic of being linear in the set of parameters klh  

while achieving reasonable accuracy in its description of nonlinear behavior due to 

having two adjustable parameters K   and L   ‎[32].  

Another advantage of this model is its relative ease of modification, which has led to 

variations of it being developed ‎[36]-‎[39] with each attempting to improve performance 

through either adding more interaction between the different memory terms or through 

using a different set of basis functions. One such variant is the Augmented Moving 

Average Model (AMA), which attempts to improve on the accuracy of the memory 

polynomial model (MPM) by introducing an additional summation term allowing for the 

cross-interaction of a sample with those of time indexes other than its own, resulting in a 

model that can be expressed as ‎[40] 
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1 1 1 1

0 0 0 0

( ) ( ) | ( ) | ( ) | ( ) |
K L M P

k k

kl mn

k l m p

y n a x n l x n l b x n x n m
   

   

       . (2.13) 

The first term of  (2.13)  is the standard MP model ‎     ‎   ‎      ‎  ‎   ‎     -       ‎

    ‎           ‎   ‎     ‎       ‎     ‎             ‎        ‎   ‎  ‎       ‎            ‎

           ‎  ‎‎  1~2dB compared to the regular model in return for noticeable increase 

in processing time, which brings its viability into question. 

An issue facing the MP model is the ill-conditioned nature of its data matrixr, which has 

significant implications on the parameter-estimation process since the more conditioned a 

data matrix is, the more prone to errors the parameter-extraction process 

becomes ‎[41], ‎[42]. 

To combat this issue, a variant which uses orthogonal basis functions, known as the 

Orthogonal Memory Polynomial model, was developed in ‎[43].  

2.3.6 The Orthogonal Memory Polynomial Model 

In order to reduce the amount of correlation between the samples of the MP data vector 

( )nu , polynomial models that use basis functions orthogonal to one another were 

suggested by some researchers and subsequently investigated  ‎[43] ,‎[44]. The Orthogonal 

Memory Polynomial model (OMPM) is defined as 

    
1 1

0 0

( )
K L

lk k

k l

y n h x n l
 

 

    (2.14) 

which can then be written in matrix form as 

   ( ) Ty n nΨ h   (2.15) 
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where w  is the coefficient vector and ( )nΨ  is the 1LK  -sized vector 

    0 1( ) ( ) ( )Kn x n x n  
   Ψ  . (2.16) 

Each of the elements   k x n  is constructed using the summation ‎[43] 

     
 

     
   

1

1

!
1 x n

1 ! 1 ! !

k
jj k

k

j

k j
x n x n

j j k j







 

  
   (2.17) 

Since the elements of the data vector ( )nΨ  are orthogonal -as proven in ‎[43]-, the 

correlation displayed in the MPM data vector ( )nu  is no longer  as major an issue 

leading us to expect that adaptive identification of the OMPM model to achieve better 

performance, as it has indeed been shown to  result in an improvement of identification 

accuracy of around ~3dB ‎[43].  

 In return for this enhanced performance, OMPM requires a substantially greater amount 

of time and resources to generate  as one could surmise from equations (2.16) and (2.17) 

above. Comparing this to the relatively simple structure of the MPM data vector defined 

in (2.12). The amount of time required for the generation of OMPM in contrast to MPM 

and the proposed model for various model sizes is catalogued in Table ‎2.1. 
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Table ‎2.1 Comparison of time required for the generation of MPM and OMPM models (in seconds) 

Model 

Number of Coefficients 

15 21 27 39 

MPM .011 .0167 .0203 .0303 

OMPM 2.796 3.97 5.11 7.3751 

 

It can be seen from Table ‎2.1 above that the amount of time required to generate an OMP 

model is quite significant. For example, gene      ‎  ‎   ‎     ‎    ‎  ‎            ‎

     ‎  ‎     ‎   ‎    ‎      ‎  ‎     ‎  ‎  ‎     ‎  ‎    ‎   ‎   ‎  ‎   ‎    ‎     ‎  ‎

      ‎   ‎ ‎           ‎    ‎     ‎       ‎    ‎   ‎      ‎‎ ‎3~5dB (‎[43],‎[44]), OMPM 

was not used for this study. 

2.3.7 The Two-Box Twin-Nonlinear Model 

This model, recently proposed by Hammi, (‎[45]) is comprised of two parts as its name 

indicates: a memoryless nonlinearity and a low-order polynomial with memory, with the 

memoryless part being modeled by either a Look-Up Table (LUT) or a polynomial 

function. Depending on how the two components of the model are arranged, the model 

can be referred to as forward, reverse or parallel-TNTB. In Forward TNTB, the LUT 

precedes the MP block whereas in the reverse case, the MP comes first and in the parallel 

version, the output of both blocks is summed to produce the output, as shown in   

Figure ‎2.4. 
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Figure ‎2.4  Block Diagram of the various TNTB arrangements ‎[45]: a) Forward. b)Reverse. c)Parallel 

The TNTB model has been shown to require, on average, 50% less coefficients to 

achieve the same accuracy as the traditional MP model which results in significant gains 

in algorithm performance and speed that more than make up for the minor overhead 

required by the two-step identification process, as shown in ‎[46]. The performance of 

TNTB and the effect of its use on the identification process is investigated in the next 

chapter.  

2.4 Choice of Model Used and Challenges Facing Parameter-

Estimation 

After considering various aspects of the models presented above, the memory polynomial 

model was found to provide the best balance between modeling accuracy and 

computational load and thus was chosen as the basis for this work.  

The two main issues with the memory polynomial model is the correlated nature of its 

data vector and finding the correct size of the model. 
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2.4.1 Ill-conditioning of the Data Matrix 

 To see the role correlation plays in the identification and predistortion problem, we make 

a brief stop to investigate where it comes from. To do this, we take a look at the output of 

the memory polynomial model and rewrite it in vector form as follows: 

Assuming a memory-polynomial model of known order K  and memory depth L  , we 

rewrite equation (2.12)  in matrix form as follows:  

( ) ( ) Ty n n u h   (2.18) 

Where the the LK -length vectors w  and ( )nu   are defined as 

1 ,(1,0 1,( ) L 1, )0[ , , , ,, , ]K l Kh h h h    h   (2.19) 

0 1( ) [ ( ), , ( )]Ln n n u u u   (2.20) 

where 

0 1( ) | ( ) | , , ( ) | ( )( |) K

l x n l x n l x n l x n ln        u   (2.21) 

Alternatively, ( )nu can be written as 

11
( ) ( ), ( 1), , ( 1), , ( ) ( ) , , ( 1) | ( 1) |K

K
n x n x n x n L x n x n x n L x n L

            
 

u  

 (2.22) 

Rewriting (2.18) compactly gives us the input-output equation of the MP model in vector 

form 
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   

 
 
 

  (2.23) 

Examining Equation (2.23) above, which defines the output of a memory polynomial 

model, ( )y n   at time n ; we see that the data vector used as input, ( )nu   is of a particular 

structure where every data sample, ( )x n  , appears –  ‎     ‎     ‎   ‎      −‎ K   times. 

Even in the ideal case where each sample of ( )x n  is completely uncorrelated with all 

others, this means that the input data vector used for computation and identification of the 

MP model is block-correlated and in the more realistic situation where there exists some 

correlation between x(n)and its neighbors, the correlation becomes more prevalent. This 

leads to various issues relating to the identification of the model, especially for the more 

highly-nonlinear cases since a higher K means that a sample is repeated a larger number 

of times, since a correlated data vector means that the autocorrelation matrix will be ill-

conditioned; resulting in a larger eigenvalue spread and subsequently worse identification 

performance overall ‎[41],‎[42], as will be apparent when the simulation results are 

presented. To gain better insight into the inner workings of this issue, the autocorrelation 

matrix of an MPM data vector ( )nu is examined. 

Starting from the definition of autocorrelation 

 ( ) ( ) ( )H

uu n n n R u u   (2.24) 

Expanding the above 
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 
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1

( )uu L
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u

n u u

u




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   
    

R  . (2.25) 

Inserting the complex conjugate operator into the column vector and multiplying, we 

have the autocorrelation matrix 

 

   
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* *

0 0 0 1

* *
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  
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   
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u u u u

 (2.26) 

The above is a block-Toeplitz matrix. Inspecting a single block more closely 

 

*
0

0 1*

1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

K

j m

K

x n j x n j
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x n j x n j




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   (2.27) 
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 (2.28) 

For the special case of j =m = p, the autocorrelation matrix becomes 

2 1

1 2

( ) ( )

( )

( ) ( )

K

uu

K K

x n p x n p

n

x n p x n p





  
 

   
 

   

R  . (2.29) 
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 Using the higher moments of the absolute value of a uniform random variable [0,1]  , 

the individual elements of (2.30) can be evaluated 

  1
( )

1

k j
x n p

k j


  

 
  (2.31) 

Looking at (2.31) above, we can see that the autocorrelation matrix (2.26) and the sub-

matrices that comprise it exhibit a degree of correlation; resulting in an increase of the 

condition number. To obtain an intuitive understanding of the behavior of the condition 

number, Figure ‎2.5 displays the relationship between the MPM model dimensions and the 

data matrix condition number in dB. Looking at the figure, we can see how even a 

moderately-sized MP model (e.g.: 3 branches and a nonlinearity order of 8), the value of 

the condition number would be rather high (108.1 dB).  
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Figure ‎2.5 Relationship between MPM dimensions and condition number. 

 

2.4.2 Determination of Model Dimensions 

Examining the input-output relationship in (2.23) once again, it can be seen that to 

generate the model and subsequently estimate its parameters, a priori knowledge of the 

parameters K  and L  is assumed.  

In practice, however, this information might not be available to the designer, who only 

has access to a PA and its practically-measured output signal and usually resorts to 

sweeping the model's parameters L  and K until an appropriate pair is found, which can 
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be rather cumbersome. As a result, educated guesses about the model's dimensions are 

often made, leading to oversized estimates. 

Since we have two parameters for this model, over-estimating the dimensionality of an 

MP model has three cases: 

1. Overestimating L only. 

2. Overestimating K only. 

3. Overestimating both parameters. 

Denoting the correct dimensions by ( , )L K  and the extra entries added as a result of over-

sizing by  ,o oL K , each of the three scenarios ‎ ‎  ‎        ‎  ‎   ‎         -     ‎    ‎ ‎is 

illustrated in Figure ‎2.6. In this figure, the shaded blocks indicate the entries resulting 

from over-sizing, with different shades being used for clarity. The data vector is 

constructed using the definition in (2.32). 
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Figure ‎2.6 Structures of correctly- and over-sized MP model dimensions: (a) Correct dimensions. (b) Oversized 

K  . (c) Oversized L  . (c) Both parameters oversized 

From the above figure, the implications of oversizing the model's dimensions even by 1 

can be seen, as every additional memory block adds  K   additional entries 

periodicallyand overestimating the nonlinearity order by 1   results in  L  extra entries, 

and so on. 
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It should be noted that even when the 'correct' dimensions of the model are known, not all 

of the entries corresponding to the nonlinearity order K  are actually required, as shown 

recently in ‎[48]. This further supports the argument that the MP model is prone to having 

'extra' coefficients which are not necessary, hence motivating the development of 

techniques tuned to handle such a case. Also, it should be noted that the value of K   is 

usually set to be equal to or larger than L  . 

In light of the above, we would like to have techniques which are capable of estimating 

the correct dimensions of a model given an oversized initial estimate, motivating the 

development of the PSO techniques proposed in Chapter 4. 

2.5 Metrics Used for the Evaluation of Behavioral Models and 

Predistorters 

2.5.1 Time-Domain Metrics 

The Normalized Mean Square Error (NMSE) is a time-domain metric that measures the 

difference between the measured and estimated output signals. Mathematically, NMSE is 

defined as 
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e n
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

e

d
  (2.33) 

As NMSE is dominated by the in-band errors, it is not a sufficient indicator of the 

performance of a behavioral model or its DPD. Thus, it is used in conjunction with 

frequency-domain metrics or plots. 
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2.5.2 Frequency-Domain Metrics 

There are many metrics used to evaluate the performance of behavioral models and DPDs 

in the frequency domain, among which are the Adjacent Channel  Power Ratio (ACPR) 

and the Normalized Absolute Mean Spectrum Error (NAMSE) ‎[49].  

The ACPR is defined as the amount of power contained in the bands neighboring that of 

our signal. ACPR is subjective since it depends on the definition of spectrum ranges. 

Another weakness of ACPR is that its calculation relies on integrating the power over 

some frequency range; meaning that some components can dominate the metric. 

NAMSE is analogous to the NMSE in the time domain and is defined by 

 

2

10 2
10log ( )

measured estimated

measured

NAMSE



Z Z

Z
  (2.34) 

 where measuredZ  and estimatedZ  are the power spectral densities of the measured output and 

the estimated out. In this study, NAMSE is modified to evaluate the performance of a 

DPD as follows  

 

2

10 2
10log ( )
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DPD

measured

NAMSE



Z Z

Z
 . (2.35) 

This metric is used in conjunction with spectrum plots to evaluate DPD performance.  
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2.6 Identification of Behavioral Model Parameters 

The parameter-extraction of PA behavioral model parameters can be carried out through 

a variety of techniques, ranging from the demanding Singular Value Decomposition 

(SVD) (Appendix B) and Least-Square (LS) methods to adaptive filtering techniques, 

neural networks and Particle Swarm Optimization (PSO).  

In this work, the use of adaptive filtering and Particle Swarm Optimization is investigated 

in depth as less-complex alternatives to SVD and LS. 

2.7 Conclusions 

After performing a comprehensive survey of a number of models, memoryless and 

otherwise, the memory polynomial was found to be the most appropriate for this study, 

due to  achieving a good balance between model accuracy, complexity and the flexibility 

(i.e. the ability to be modified) and thus, it was selected for the work done in this thesis. 

After presenting the model to be used, the identification of its parameters using adaptive 

filtering algorithms is discussed in the next chapter.Equation Chapter (Next) Section 1 
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Equation Chapter (Next) Section 1 

3 CHAPTER 3 

ADAPTIVE IDENTIFICATION OF NONLINEAR 

POWER AMPLIFIERS 

 

After studying the various behavioral models used, we would now like to develop 

techniques that estimate their parameters.  

Ideally, the Least-Squares (LS) method (‎[50]) is used for parameter estimation due to its 

high accuracy, but due to the computational load required by this method, adaptive 

filtering approaches are preferred ‎[50]-‎[52].  

 An adaptive filter is defined as a linear filter whose parameters are recursively adjusted 

according to a specific set of rules (i.e. algorithm) in order to fulfill a certain criterion, or 

performance goal, defined by the cost function from which said algorithm was derived. 

Figure ‎3.1 illustrates the basic concept of an adaptive filter used to identify a nonlinear 

system, where the filter's coefficients (weights) are updated to provide an output that 

most closely matches that of the unknown system whose coefficients we would like to 

identify. 
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Figure ‎3.1 Block Diagram of an adaptive PA-identification setup 

In this chapter, a quick introduction to the topic of adaptive filtering is given, followed by 

the introduction of a multitude of adaptive filtering algorithms and a comparison of them 

in terms of their performance where nonlinear systems are concerned. Each algorithm 

will be discussed in general, then its performance in the context of systems described by a 

memory polynomial models will be dissected, leading to the introduction of some 

methods which enhance performance. 

3.1 General Definitions 

An adaptive filter, as illustrated in Figure ‎3.1,  is an iterative estimator that progressively  

updates the coefficients of an FIR filter in search of the set of optimum coefficients, 0h    , 

which minimizes the difference between the filter output and some reference signal (also 

known as the desired signal) ( )d n . The variables involved in a typical adaptive filtering 

setup , as shown above, are: 

1. The input data ( )x n  , which in the nonlinear PA case is replaced by the 

appropriate nonlinear vector ( )nu corresponding to the model of choice, in this 

case the MPM vector defined in (2.21). 
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2. The filter output ( ) ( ) ( )Ty n n n u h  . 

3. The reference signal ( )d n  which is known beforehand. This signal is used to 

evaluate the quality of the fit by comparing the adaptive filter's output to the 

actual output of the PA. 

4. The error ( )e n , defined as 

 ( ) ( ) ( ) ( )Te n d n n n u h   (4.1) 

5. The adaptively-updated set of filter coefficients ( )nh   whose values are 

adjusted through some set of equations depending on the algorithm used .  

U      ‎ −    ‎     ‎        ‎           ‎     ‎   ‎      ‎         ‎           −‎         ‎

algorithms use a reference output signal, often referred to as the desired signal  in order to 

compare the output of the adaptive filter against it, and update the next set of filter 

coefficients to produce an output that most closely resembles the reference ‎[51] . 

A large number of adaptive algorithms are available in the literature from the simple 

LMS algorithms to the more complex RLS algorithms ‎[50]‎  ‎[57]. In this chapter, a quick 

introduction to the topic of adaptive filtering is given, followed by the introduction of a 

multitude of adaptive filtering algorithms and a comparison of them in terms of their 

performance where nonlinear systems are concerned. Each algorithm will be discussed in 

general, then its performance in the context of systems described by a memory 

polynomial model will be dissected. 
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Adaptive algorithms can be classified into two broad families: Stochastic Gradient (GS) 

and Least-Squares (LS) based adaptive algorithms ‎[50]. Stochastic Gradients are derived 

by direct differentiation of some cost function – usually a power of    ‎     ‎         −‎

and minimizing it to arrive at the optimal set of coefficients, whereas the Least Squares 

algorithms are based on iteratively solving the Least-Squares problem or some variant of 

it ‎[51]. In general terms, the SG-based algorithms are not as resource-intensive as their 

LS counterparts but in return, suffer from slower convergence and some issues with their 

performance when nonlinear systems are to be identified, as will be demonstrated 

through the results presented later on in this chapter.Equation Section (Next) 

3.2 Stochastic Gradient-Based Algorithms and their Variants 

This family of adaptive filtering algorithms is based on applying the stochastic-gradient 

method to a variety of cost functions ‎[50], giving us a multitude of adaptive filtering 

algorithms each having distinct benefits and drawbacks. These algorithms replace the 

expectation of the cost function with the instantaneous values of the variables involved, 

leading to performance limitations in the form of steady-state error. 

The cost function is usually of the form 

 ( ) | ( ) |LJ n e n  , (4.1) 

 where different values of L result in different algorithms. Note that the above definition 

of the cost function does not involve expectations. 
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3.2.1 The Least Mean-Square (LMS) Algorithm 

The LMS algorithm ‎[57]  is perhaps the most well-known adaptive filtering algorithm. 

By setting 2L   in (4.1) and applying the stochastic-gradient method, we arrive at the 

LMS recursion for the weight vector update, given as, 

 ( 1) ( ) ( )e(n)Hn n n  h h u  , (4.2) 

which is the recursive update equation defining the LMS algorithm. We can see from 

(4.2) that the LMS algorithm is relatively simple; requiring only a low number of 

computations per iteration. However, the LMS algorithm and its performance depend on 

the statistical characteristics of the input signal; showing worse performance if the input 

signal is correlated or has statistics of non-white nature. Due to the structure of the input 

signals inherent to the MP model used, this results in the LMS performance being 

affected, as the results presented in this chapter indicate.  

3.2.2 The Normalized Least Mean-Square (NLMS) Algorithm 

In order to enhance the performance of LMS for correlated input signals, the normalized-

LMS (NLMS) algorithm was proposed. This algorithm follows what is known as the 

minimal disturbance principle , which states that the variation of the weight vector 

between iterations should be kept to a minimum. Mathematically, this is stated as a 

constrained optimization problem of the form ‎[51]  

 2

(n 1)
min ( 1) ( )n n


 

h
h h‖ ‖   (4.3) 

subject to 
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 (n) ( 1) ( )
T

n d n u h  . (4.4) 

Using the method of Lagrange multipliers ‎[58] , the problem can be solved to yield the 

NLMS update equation 

 ( 1) ( ) ( ( )) ( )
( )

Hn n n e n
n


  

2
h h u

u‖ ‖
 . (4.5) 

In order to avoid dividing by zero for an input vector of zero, a small coefficient     is 

added to the denominator to give us the  -NLMS algorithm  

 ( 1) ( ) ( ( )) ( )
( )

Hn n e n n
n




  

2
h h u

u+‖ ‖
 . (4.6) 

The NLMS algorithm can be viewed as an implementation of LMS where the step-size is 

a variable quantity defined as 

 ( )
( )

n
n


 

2
u‖ ‖

 . (4.7) 

It has been shown that the NLMS algorithm converges better than LMS for correlated 

inputs ‎[59], ‎[60] but the improvement is not significant in the context of nonlinear system 

identification ‎[23]. The results presented in this chapter support this. 

3.2.3 The Sign-LMS Algorithm 

The cost function used to derive this algorithm is 

 ( ) | ( ) |J n e n   (4.8) 

whose optimization yields the sign-error LMS update recursion 
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 ( 1) ( ) ( )sign(e(n))n n n  h h u   (4.9) 

where sgn( )x  is the complex signum function defined as 

 csgn(x)=sign(real(x))+jsign(imaginary(x))   (4.10) 

 with 

 sign( ) 1x     (4.11) 

 depending on the sign of the input ‎[61]. In the tests performed, this algorithm performed 

rather poorly.  

3.2.4 The Leaky-LMS Algorithm 

Defining a different cost function 

 ( ) ( ) (| |)J n n e n 2 2
h‖ ‖   (4.12) 

where  is a positive constant which controls the contribution the traditional LMS 

algorithm makes to the optimization process. By minimizing the above cost function, it is 

possible to get what is known as the Leaky LMS algorithm ‎[50], ‎[53]:  

 ( ) (1 ) ( 1) ( ) ( )Hn n n e n    h h u   (4.13) 

In essence, Leaky LMS is a weight-controlled algorithm that attempts to combine 

traditional LMS and other algorithms. Setting the parameter   to zero would transform 

this algorithm into the regular LMS.  
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In ‎[62], the Leaky-L S‎          ’ ‎            ‎         ‎    ‎     ‎      ‎   ‎       ‎

greatly on the amount of correlation between the input samples, explaining its extremely 

poor performance in the simulations performed. 

3.2.5 The Least Mean-Fourth (LMF) Algorithm 

The Least-Mean Fourth (LMF) algorithm, as can be inferred from its name, is derived by 

minimizing the fourth power of the error, instead of the second power used in LMS, 

giving us the following cost function ‎[63] 

 4( ) | ( ) |J n e n   (4.14) 

 Optimizing the above function, leads to the LMF recursion 

        
2

n n 1 (n)H e n e n  h h u   (4.15) 

 Note that the step-size parameter     is a different coefficient than the one present in 

LMS and usually has much smaller values. 

It is well-known that the LMF algorithm outperforms the LMS algorithms in applications 

where the noise is non-Gaussian distributed or the systems involved are nonlinear ‎[64], 

leading to expect that one might be better off using it instead of the LMS algorithm in 

this application. However, the simulation results presented later in this chapter suggest 

otherwise, as the LMF algorithm is more prone to exhibiting divergent behavior, as 

reported in ‎[65]. in the literature, variants of the LMF algorithm have been proposed ‎[66]. 
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3.2.6 The Normalized Least Mean-Fourth (NLMF) Algorithm 

Similarly to the LMS algorithm, one can develop a normalized version of the LMF 

algorithm, expressed as ‎[66]  

    
  2

2
n n 1 μ ( ) ( )

( )

n
e n e n

n
  

u
h h

u

H

  (4.16) 

As one would expect, it shares the same input-whitening characteristic with its mean-

square brethren, leading to somewhat better performance than the LMF algorithm both 

during convergence and in the steady-state when identifying PAs of a highly nonlinear 

nature ‎[66].  

3.2.7 The Least-Mean Mixed-Norm (LMMN) Algorithm 

In this algorithm, the cost-function to be optimized with respect to the weight vector 

coefficients is chosen to be ‎[67]  

  
2 41

( ) ( ) 1 ( )
2

J n e n e n     . (4.17) 

The cost function in this case is equal parts LMS and LMF, with the 'contribution' each 

algorithm makes being controlled by the parameter   ; which takes values between 0 and 

1. A value of 1 sets the algorithm to LMS whereas setting it to 0 gives us a pure LMF 

implementation. Use of this cost function leads to the development of what is known as 

the Least-Mean-Mixed-Norm (LMMN) algorithm, defined as ‎[67]  

        
2

1 ( ) 1 ( )n n n e n e n       
 

h h u
H   (4.18) 



41 

 

Instead of manually setting this coefficient, one can allow it to change conditionally or 

recursively to better optimize the performance of the mixed-norm algorithm, as was done 

in ‎[68]. The variable-coefficient LMMN algorithm has been found to be prone to 

instability when the identification of nonlinear PAs is concerned, so care should be 

exercised when implementing it within this context. 

3.2.8 The Affine Projection Algorithm (APA) 

If we chose a different approximation for the auto- and cross-correlation matrices present 

in some of the underling derivations, we reach at what are collectively known as Affine 

Projection (AP) algorithms. The AP algorithm can be considered as a batch-processing-

based version of LMS that uses S  data blocks instead of data samples as its input. 

Consequently, the definitions for the desired and input data variables are changed to 

reflect this batch-based nature ‎[50]. Let   nd   and  nU   be defined, respectively, as: 

  

( )

n

( 1)

d n

d n S

 
 


 
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  (4.20) 

Taking the above into account, the expression for the AP algorithm weight update can be 

written as 

             
1

(n) n( nn 1) n n 1n n


       h h U U U d U h
H H

  (4.21) 
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The definition of the quantities  nd  and  nU  are what distinguish the AP algorithm 

from the rest of the stochastic-gradient algorithms as being a batch-processing algorithm 

where        ‎      ‎  ‎    ‎−‎    ‎      ‎  ‎      ‎          ‎  ‎    ‎         ‎S−‎   ‎

collected and then used by the algorithm in an attempt to estimate the optimum weights. 

The parameter   is a small-valued variable used to prevent division by zero. 

Since APA is a batch-based processing algorithm, one needs to account for the time delay 

needed to collect the required data blocks when evaluating AP algorithm's speed and 

such, it tends to be somewhat slower than the simpler algorithms as assessed in the 

simulation results section. APA-based identification of nonlinear PAs has been found to 

outperform the LMS algorithm and some of its variants when an impulsive perturbation 

is present, supporting the findings in ‎[70]  

3.3 The Least-Squares (LS) Family 

These algorithms eschew the simpler stochastic-gradient approach in lieu of the least-

squares approach. As a result, these algorithms have different formulations and behave 

differently from their SG-based counterparts. The most well-known member of this 

family of algorithms is the Recursive Least-Squares algorithm ‎[50]-‎[52].  

In contrast to the SG-based algorithms, Least-Squares-based algorithms such as the well-

known Recursive Least Squares (RLS) and its derivative algorithm, the QR-RLS 

algorithm, are derived through attempting to solve the Least-Squares problem in a 

recursive manner rather than performing the matrix inversions one would usually need to 

do otherwise. These algorithms tend to outperform the members of the SG family, albeit 

at the cost of greater computational complexity ‎[50].  
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3.3.1 The Recursive Least-Squares Algorithm (RLS) 

The well-known Recursive Least Squares adaptive algorithm ‎[50], based on the method 

of recursive least-squares, is defined by the following set of equations  

  0 Q I   (4.22) 

      1n n n  Q u   (4.23) 

 
( )

( )
( ( ) ( ))H

n
n

n n



 



k

u
  (4.24) 

where  0Q is the initial estimate of the autocorrelation matrix,     is a parameter set by 

the algorithm designer which can take either small values for high-SNR signals and high 

values when the signal SNR is high and affects the behavior of the algorithm in its initial 

stages, I is the identity matrix and   is known as the forgetting-factor and also helps to 

avoid division by zero, usually taking small values below 1.  Continuing, 

 e(n) (n) (n) (n)Td u h   (4.25) 

      *n 1 n (n) ne  h h k   (4.26) 

          1 1 1n n n n n       Q Q k u Q
H

  (4.27) 

This algorithm converges in a lower number of iterations than the SG-based algorithms 

and achieves a better steady-state error. The simulation results support this argument. The 

reason for this is that the LS-based methods are known to not be affected by the nature of 

the input vector as severely as their SG counterparts; explaining why they perform better 
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for nonlinear PA identification as the formulation used here is not dependent on the 

nature of the error surface or data vector as is the case with the SG algorithms. Finally, it 

should be noted that RLS can be susceptible to some numerical instabilities since it 

directly evaluates the inverse of the autocorrelation matrix; as it diverges if ( )nQ  loses 

its positive definitiveness, a problem which the QR-RLS algorithm, discussed next, 

attempts to solve ‎[50]. 

3.3.2 The QR Decomposition-based Recursive Least-Squares Algorithm 

(QR-RLS) 

A version of the RLS algorithm obtained through directly computing the product of the 

input vector with the autocorrelation matrix through use of the QR decomposition ‎[50]. 

This algorithm is more numerically stable than RLS but differs from it in how it is 

implemented, as QR-RLS operates on blocks of data instead of working with samples. 

Additionally, QR-RLS has the advantage of being implementable using systolic arrays 

and enhanced numerical stability when operating under limited precision ‎[52]‎[56].  

The QR-RLS algorithm's stability results from its use of an orthogonal similarity 

transform known to find the QR-decomposition with various methods for performing the 

decomposition being available, such as the Gram-Schmidt procedure and the Givens 

rotation. The Givens rotation is the preferable method since it manipulates the available 

data matrix, as opposed to creating a new one.  Essentially, the Givens rotation attempts 

to extract the desirable part of some matrix by 'zeroing out' the parts which are not 

needed. This procedure is what  equation (4.28)  below describes. The QR-RLS algorithm 

is given as  
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    
1

2( )n n n


h p
H H Φ   (4.32) 

Where  nu is the data vector defined earlier ,    is a regularization parameter,   nΘ  is 

the Givens matrix, (n)p  is an intermediary vector used in to calculate the coefficient 

vector (n)w , which is updated at each iteration according to (4.33). The constant   is the 

exponential weighting parameter ‎[71] and xx  represent elements whose values are 

disregarded. 

QR-RLS is, essentially, a version of RLS that emphasizes numerical stability at the cost 

of speed and its performance does not stray far from that of its source of inspiration. In 

terms of computational cost, QR-RLS requires more operations (on the order of 3( )LK  , 

as shown in Table ‎3.3), where LK is the number of coefficients) per iteration and even 

when faster versions of it are implemented, the cost remains high in comparison to RLS. 

QR-RLS's numerical stability comes from its use of the decompositions explained above. 
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3.4 Shortcomings of the Available Adaptive Filtering Algorithms and 

Some Solutions 

As the simulation results presented in this chapter will confirm, traditional SG-based 

adaptive filtering techniques perform inadequately when used to estimate the parameters 

of a nonlinear memory polynomial model, due to the high degree of correlation inherent 

in its data vector ( )nu , as it is well-known that the performance of SG-based algorithms 

depends on the structure of the input data signal. 

This suggests that one should use the LS-based algorithms but as these algorithms have 

high computational cost, we would like to develop some methods to improve the 

performance of SG-based estimators. Techniques investigated throughout this work 

include the widely-used data-centering and scaling techniques ‎[40] and the proposed use 

of the lattice proposed in ‎[72] to whiten the MP data vector ( )nu  before passing it to an 

adaptive filter. 

3.4.1 Pre-processing Using Normalization and Data-centering 

To reduce the conditioning of the MP model's data vector (Section 2.4.1 and Figure ‎2.5), 

it was proposed in ‎[40] to remove the mean from the original input data ( )x n and 

normalize it by its standard deviation before passing it to the MPM generator, giving us a 

new input signal of 

 
( )

( ) x

x

x n
x n






   (4.34) 

which is then used to construct the MP model's data vector. Use of this technique was 

found to reduce the condition number but has the drawback of requiring that the entire set 
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of training data be available to us, and that the statistical properties of the signal do not 

fluctuate with time. To attempt to address these shortcomings, use of a lattice filter was 

considered instead. 

3.4.2 Use of Whitening Lattice 

In ‎[72], a nonlinear lattice structure (First introduced in ‎[73]) was used to whiten a 

correlated input signal before passing it to a neural network-based decision-feedback 

equalizer (DFE), resulting in significant improvements in both NMSE and convergence 

speed. Here, the same concept is used to 'whiten' the MP model's data vector (n)u before 

passing it to adaptive estimators to enhance their performance. 

In this arrangement, the signal (n)u is passed through the multi-stage lattice shown in 

Figure ‎3.2. The lattice output error ( )nb  is then used as the input to an adaptive filtering 

algorithm such as LMS, which is de-correlated due to the lattice's properties. 

 

Figure ‎3.2. Structure of the lattice filter 

 The whitening effect comes from the well-known orthogonality property of lattice errors; 

which states that a lattice filter outputs signal components which are orthogonal to one 

another ‎[51].  

This lattice is composed of L  stages ‎[73], each having the structure in Figure ‎3.3. 

1 2 3 M
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Figure ‎3.3.  Structure of a single stage of the lattice 

The variables involved in the lattice are as follows: 

( )x n is the input sample at time n. 

( )mb n  is known as the backward prediction error, which is obtained by estimating the 

value of a sample using its past values.    

( )mf n is the forward prediction error, obtained by using the M-1th most recent values of 

the input to estimate a past sample. 

( )mk n is the reflection coefficient associated with each stage of the lattice. These 

coefficients can be obtained through a number of methods such as the Levinson-Durbin 

algorithm and the Schurr method ‎[51]‎[50]. 

The lattice can combined with the memory polynomial model by placing it either before 

the model or afterwards, producing configurations termed the pre- and post- MPM 

lattices.  The structure of each of these configurations is outlined next: 
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I. Pre-MPM Lattice 

In this configuration, every L samples of the input signal ( )x n  are filtered through the L-

1 scalar stages of the lattice to generate L-1 samples which are as uncorrelated as 

possible. Subsequently, the outputs of the lattice are then used as inputs to the MP model 

generator. Upon implementation, this approach was found to produce lower 

improvements than the post-MPM lattice; which can be explained by the fact that most of 

the correlation in the model comes from the structure of the model itself, as opposed to 

the data signals used.  

II. Post-MPM Lattice 

In this approach, a vector lattice having L-1 stages and of size 1K   each is used to de-

correlate each MPM sub-block ( )k nu individually. This approach is more costly to 

implement, due to the fact that the reflection coefficients of each stage is now a K K

matrix, as opposed to a scalar sample. As a result, the computational load of this version 

of the lattice combined with MPM was found to be slightly superior to OMPM for a 

lower implementation cost. 

Table ‎3.1 and Table ‎3.2 show the effect of implementing the lattice on the conditioning 

and coefficient-dispersion of the MP model of dimensions 5, 9L K  , respectively. 

From these tables, it can be seen that the post-MPM lattice has the superior performance 

at the cost of high computation time, and that L stages are required. The high amount of 

time required by the Post-MPM lattice can be explained by its need to find L reflection 

coefficient matrices of size K K at each time step. 
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Table ‎3.1  Effect of using the lattice with the MP model 

Modeling Method Condition 

Number 

Dispersion CPU Time (Sec)  

MPM 126.89 10   101.5 10  0.41 

OMPM 98.81 10  45.60 10  47.70 

Pre-MPM Lattice 102.70 10  92.5. 10  3.81 

Post-MPM Lattice 84.79 10  62.61 10  34.62 

 

Table ‎3.2  Effect of the number of stages on post-MPM lattice performance 

# of    Stages Condition 

Number 

Coefficient 

Dispersion 

CPU Time (Sec) 

M= 2 126.89 10   94.68 10  24.01 

M= 3 101.57 10  83.91 10  28.91 

M=4 92.67 10  71.38 10  30.50 

M= 5 84.79 10  62.61 10  34.62 

 

 

Figure ‎3.4.  Possible arrangements for implementing the lattice whitener (a)pre-MPM (b)post-MPM 

L-Stage Lattice MPM Generator

x(n) b(n) z(n)
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(b)

MPM Generator

K-Stage Lattice

x(n) w(n)

(c)

K-Stage Lattice

K-Stage Lattice

Parallel-to-Serial 

Converter



51 

 

The lattice above has been modified implemented as a whitening device in conjunction 

with the LMS, NLMS and LMF algorithms and tested in section 3.6. Further details 

regarding the implementation of lattice filters can be found in ‎[72] and ‎[73].  

As a result of implementing the post-lattice, improve     ‎  ‎      ‎‎  6dB in NMSE for 

LMS performance and better convergence were obtained in an amount of time slightly 

higher than that needed by RLS, with comparable improvements observed for the other 

SG algorithms, as the results in Section 3.7 show. 

3.5 Performance Metrics for Adaptive Filters 

In order to decide which algorithm to use for the identification of a particular model, one 

needs to have a set of criteria by which the performance of adaptive estimators can be 

evaluated and compared. The criteria used were the normalized mean-square error 

(NMSE) and the speed of convergence . 

3.5.1 Normalized Mean-Square Error (NMSE) 

The normalized Mean-Square Error is a direct measure of how closely the output of an 

adaptive filter matches the reference signal and usually ‎ ‎     ‎       ‎− 0‎~‎−40‎ B‎  ‎

indication of acceptable performance ‎[1]. 

Recalling the definition in Chapter 2 Section 5, NMSE is mathematically defined as 
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where N  is the total length of the desired and error vectors. 
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3.5.2 Convergence Speed 

The convergence speed of an adaptive filter is measured by the amount of time-steps 

(iterations) an algorithm takes to reach a value of NMSE close to the optimum and settles 

within its vicinity. In general, SG-based algorithms tend to have slower convergence in 

comparison to their RLS counterparts ‎[50],‎[51].  

3.5.3 Computational Complexity 

 the complexity of an adaptive estimator is often measured by the number of operations 

that need to be performed in every iteration. Taking into account that some operations are 

more costly than others, the number of multiplications per iteration is the metric used in 

this work to give a general idea of how complex an algorithm is. The importance of 

complexity comes into view when one wishes to move from simulations into an 

implementation using FPGAs or on-device predistortion chips; as power consumption 

becomes an issue of great significance in such situations. 

Table ‎3.3 summarizes the different algorithms and their corresponding computational 

complexity for a data vector of length LK  ‎[50], keeping in mind that S  is the number of 

data blocks used by the AP algorithm in each iteration.  

From the expressions in this table and the numerical results presented in this chapter, it 

can be seen that the LS-based algorithms have a high computational cost, especially QR-

RLS.  Examining the table, we can see that the lattice pre-whitener is less demanding 

than QR-RLS and RLS as the vector size increases, which makes it quite suitable for 

estimating an MP model with a large number of parameters. 
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It can also be seen that SVD has the highest computational requirement in return for its 

superior performance. 

Table ‎3.3 Computational cost of the various adaptive algorithms tested 

Algorithm Number of Multiplications Per 

Iterations 

LMS 8 ( LK ) +1 

NLMS 8 ( LK ) +1 

Leaky-LMS 10 ( LK ) +3 

LMF 8 ( LK ) +5 

NLMF 8 ( LK ) +5 

LMMN 8 ( LK ) +6 

APA ( S 2
+2 S )( LK )+ S 3

+ S  

RLS 4( LK )
2
+16( LK )+1 

QR-RLS 9( LK )
3
-3( LK )

2
+28( LK )-1 

SVD  4( LK ) + 22(
3LK ) 

Lattice-filtered LMS 18( LK  )+ 39 ( )LK  

 

 

3.6 Comparative Study of Adaptive Identification of Nonlinear Power 

Amplifier Parameters 

The Device Under Test (DUT) is a Symmetrical Doherty PA (Appendix A) built using 

C   ’ ‎ 0W‎        ‎G N‎       ‎ (CGH4000 0)‎    ‎ ‎       ‎       ‎    q     ‎  ‎

operation of 2.425GHz. The carrier amplifier is biased for class AB operation with 

IDS=200mA and Vds=28V. The peaking amplifier is biased for class C, with both carrier 

and peaking amplifiers being harmonically tuned. The input signal is a complex 4-carrier 

WCDMA signal (1001) with a total bandwidth of 20 MHz, sampled at 92.6MHz. 
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 The measured AM-AM and AM-PM characteristics of the device under test are reported 

in Figure ‎3.5 and Figure ‎3.6. 

 

Figure ‎3.5  AM/AM Characteristics of the DUT 
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Figure ‎3.6 AM/PM Characteristics of the DUT 

To validate the performance of adaptive filtering algorithms, the PA was modeled once 

using a memory polynomial with a memory depth of L=3 and a nonlinearity order of 

K=6, chosen after performing an extensive sweep analysis.  

The nonlinear PA model was identified using a variety of adaptive algorithms under 

using the  MATLAB R2012a software on an Intel Core i7 CPU, E8400 1.73GHz 

computer.  

For simplicity, the learning curves of only the six most prominent algorithms (NLMS, 

Lattice LMS, APA, LMF, RLS, QR-RLS) were chosen in order to avoid cluttering, with 

the rest of the algorithms having their performance recorded in Table ‎3.4.  Figure ‎3.7 

shows the convergence behavior of the adaptive algorithms when estimating the 
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coefficients of a nonlinear MP model, with an observation period of 200 iterations. In 

these experiments, the algorithms were initialized with coefficients that are not close to 

the actual values to test for a realistic scenario where the designer has no prior 

information about the PA parameters. 

 

Figure ‎3.7 Convergence behavior of the different adaptive algorithms when estimating the parameters of an 

MPM-based predistorter 
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 The results presented in the figures and table given show that among the SG-based 

algorithms, there wasn’ ‎     ‎          ‎   ‎      ‎   ‎       -state performance, 

convergence speed and complexity (with the notable exception of the batch-based AP 

algorithm); with all of them exhibiting generally poor performance in terms of estimation 

      ‎       ‎    ‎‒ 7   ‎     ‎‒ 4 B ‎   ‎      ‎   ‎    ‎    ‎           ‎  ‎   ‎    ‎

level of correlation introduced into the input data vector ( )nu  by the MP model. Note 

that since SVD is implemented in a different fashion than adaptive filters, its performance 

is gauged in terms of NMSE and frequency-domain linearization. 

When the lattice was applied to LMS, a gain in performance of almost −10dB was 

obtained, achieving performance similar to RLS while requiring less than one third the 

CPU time and one tenth the time needed by QR-RLS, the best algorithm in terms of 

NMSE. 

As for the LS-based algorithms, both the RLS and QR-RLS algorithms outperform their 

SG counterparts in terms of performance, with QR-RLS having achieved a better NMSE 

than RLS, at the cost of requiring a very large amount of time to implement and having a 

high computational cost. Of particular interest is the fact that in terms of the number of 

total operations required to achieve convergence, RLS actually requires less 

multiplications to converge than the SG algorithms, since it converges to a much better 

estimate much more quickly than all of them.  

Looking at the frequency-domain plot given in Figure ‎3.8, the performance of DPDs 

implemented using adaptive algorithms can be inferred. Among the algorithms tested, 

NLMS was found to perform rather poorly in terms of error, linearization and sidelobe-
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suppression. In contrast, the Lattice-filtered LMS and RLS algorithms had the best 

performance, noting that applying the lattice to NLMS and LMF did not provide smaller 

improvements than those obtained in the LMS case. 

Overall, none of the adaptive algorithms were capable of competing with SVD and QR-

RLS, performance-wise. 

Table ‎3.4 Comparison of the performance of the various adaptive identification algorithms  

Algorithm NMSE(dB) NAMSE(dB) 

LMS −20.76 −7.11 

NLMS −23.33 −9.88 

LMMN −23.90 −9.21 

Leaky LMS -16.18 −5.64 

Sign-Error LMS −15.35 −5.01 

LMF −18.81 −6.83 

NLMF −21.12 −7.92 

APA −22.03 −8.18 

Lattice LMS ‎  26.11  −12.52 

Lattice NLMS ‎  25.61  −12.22 

Lattice LMF   24.01  −11.87 

RLS −29.83 −12.82 

QR-RLS −34.02 −14.81 

SVD −35.82 ‎  15.77 
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Figure ‎3.8 Predistortion performance of the various adaptive algorithms and SVD 

 

3.7 Results and Conclusions 

After introducing the various adaptive algorithms, this chapter illustrated the differences 

between them in terms of accuracy, convergence, behavior under perturbation, and speed 

of convergence. As a result of this study, the following observations were made: 

1- Stochastic-Gradient-based adaptive estimators, in general, perform poorly when 

identifying highly-nonlinear models when compared to the LS-based algorithms  by a 

margin of 8 to 10dB. 
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2- Among RLS and QR-RLS, QR-RLS performs better but takes a much longer 

amount of time to converge to its optimal coefficient estimate. 

3- The use of a lattice enhances SG-based adaptive filtering (especially LMS) 

greatly in terms of convergence and error performance, giving an NMSE improvement of 

around 8dB. Additionally, the whitening lattice was found to be well-suited to estimating 

large models such as the model at hand. 

4- Even with the use of various pre-processing techniques such as lattices and 

centering, the performance of adaptive filtering still leaves much to be desired when it 

comes to estimating the parameters of nonlinear amplifier models, as none of the 

algorithms was capable of approaching the performance of SVD, even ones as complex 

and demanding as QR-RLS. 

As such, it was found that adaptive estimation of nonlinear PA models proves to be of 

less-than-desirable performance due to the many issues associated with its use; 

motivating the investigation of alternative methods such as Particle Swarm Optimization 

and its variants, which is the topic of the next chapter. 

 Equation Chapter (Next) Section 1 
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4 CHAPTER 4 

DIGITAL PREDISTORTION USING PARTICLE 

SWARM OPTIMIZATION 

As we have seen in the previous chapter, the use of adaptive filtering for identifying 

nonlinear power amplifiers is faced with some serious shortcoming and challenges in 

return for its flexibility and relatively low computational cost in contrast to methods such 

as the method of least squares (LS) and singular-value decomposition. As a result of 

these issues in conjunction with recent developments in the field of parallel processing, 

consideration has been given to techniques such as Particle Swarm Optimization 

(PSO) ‎[3], as viable means of implementing robust, efficient pre-distorters that have been 

found to perform reasonably well ‎[74],‎[75].  

However, most of the attempts to use PSO for the identification and pre-distortion of 

nonlinear PAs tends to either focus on PA models that are either memoryless ‎[74] or use 

multiple-box models that describe weakly-nonlinear systems with a low number of 

parameters such as the Wiener model used in  ‎[75]. 

Another shortcoming of the aforementioned attempts is that they make the assumption 

that the correct dimension of the model to be estimated is known in advance whereas in 

reality, this information is often not available to a designer who only has access to input-

output signal pairs. To deal with this issue, this work proposes a variant of the PSO 
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algorithm that can better estimate the coefficients of a nonlinear model with memory 

when there are zero-valued coefficients. 

In light of the above, this work investigates the use of the PSO algorithm for the 

identification of a highly-nonlinear Doherty PA exhibiting memory effects  modeled with 

an instance of the well-known Memory Polynomial (MP) model that uses a high number 

of parameters. After introducing the basic PSO and using it to identify the 

aforementioned PA, variants of the algorithm are introduced and their performance is 

compared with the available algorithms 

4.1 Basic Structure of the PSO Algorithm 

The biologically-inspired Particle Swarm Optimization (PSO) algorithm was first 

developed by Kennedy and Eberhart in their seminal 1995 paper ‎[3]. 

PSO utilizes a group (swarm) of agents known as particles that cooperate with one 

another and share information to achieve some goal or other, similar to how a school of 

fish would move in a coordinated manner to find food or evade a threat. Using this 

concept, PSO can be used to solve a variety of optimization problems. In this study, PSO 

is used to minimize the NMSE.  

The basic version of PSO progresses in two stages: initialization and computation. In 

PSO, each particle has a position ip  which is updated at each iteration step n  by adding 

the particle's current position to a velocity term iv  whose definition depends on the 

algorithm in use. Each position vector represents a possible solution and an 

implementation of PSO can be thought of as having a group of agents scan a vector space 

to find the optimum solution that minimizes the cost function at hand. 
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1- Initialization Stage: 

In the initialization stage, each particle is assigned a random starting position  0ip  

within the boundaries of the problem space as defined by the user. The velocities are 

similarly given initial values for each particle  0iv , that lie within the velocity 

boundaries. Usually, the velocity boundary is taken to be half that of the position 

    0   ,min maxip p p   (5.1) 

    0   ,i min maxv v v  . (5.2) 

In this work, the boundaries were intentionally set to be large; since it is assumed that the 

user does not have much advance knowledge of the device to be tested. This has the 

effect of increasing the amount of time required for the initial convergence stage; since 

the particles are now searching a broader solution space. A large search space reflects the 

lack of a priori information about the problem at hand and results in slower 

convergence ‎[3]. 

After randomly initializing the locations of the particles, a fitness (or objective) function 

is evaluated for each particle using its parameter vector to determine which of them has 

the best position corresponding to the lowest value for the fitness function ‒ denoted as 

the global best ‒, which is then stored in its own vector. The objective function 

commonly used is the normalized mean squared error (NMSE), rewritten here for 

convenience 
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noting that since PSO is a batch-based technique, the fitness function is evaluated for 

different data blocks and then averaged. In this work, 100 data blocks of size LK  each 

were used. 

Finally, the position of each particle by the end of the initialization process is designated 

as its 'local best' up to that point and saved.  

2- Iterative computation stage : 

 

 

Following the conclusion of the initialization phase, the algorithm then moves into the 

main iterative computation stage. In this stage, the position of each particle is updated 

according to the following equation   

 ( )   ( 1)    ( )i i in n n  p p v   (5.4) 

where the velocity of the ith particle, iv , is determined by: 

          *   1    *  *i i i i in n b n c n     v pbest p gbest pv  . (5.5) 

The variables involved in the above update equation are: 

The inertia weight  : which is usually assigned values that decrease with the passage of 

time. This facilitates fast exploration of the solution space initially and more steady 

convergence later on. 
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The cognitive coefficient b : which determines how much influence a particle's best 

position is allowed to have on updating the particle's new position. 

The social acceleration constant c : this parameter fulfills the same role as b  but for the 

global best estimate.  

Since the performance of the PSO algorithm depends on the values chosen for its 

parameters, a sensitivity analysis must be conducted beforehand to choose the best 

parameters . 

The next step in the PSO computational stage would be the evaluation of each particle's 

fitness function to determine whether the particle's current position results in a better fit 

than the previously recorded ipbest  and if so, whether the current position produces a 

better fit than the swarm's global best position, gbest  .If a particle's position gives a 

better fit than  ipbest  or gbest , it is used in their place.  

This process is repeated until the PSO is run for the maximum number of allowable 

iterations or the PSO reaches or exceeds the performance threshold set in advance. 

Figure ‎4.1 below describes the general flow of the PSO algorithm  
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Figure ‎4.1 Block Diagram illustrating the flow of the PSO algorithm 

The simulations performed in this work show that the PSO algorithm and its variants 

greatly outperform most of the  adaptive algorithms tested in terms of performance and  

To improve the performance of the basic PSO algorithm, variants of it algorithm were 

developed throughout the literature ‎[76]-‎[78]. Equation Section (Next) 
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4.2 Some of the PSO variants in the literature 

Since PSO is a flexible technique that is tailor-made to each specific problem, many 

variants of PSO were developed and investigated in the literature since its inception, each 

tailored to some specific application or other. In this section, some of the better-known 

PSO variants will be discussed. 

4.2.1 Constriction-Factor PSO 

In ‎[78],‎[79], it was suggested and subsequently shown that the introduction of a 

constricting factor to the velocity update term could enhance convergence stability and 

improve performance. Taking this factor into account, the velocity term is now defined as 

          *   1    *    *i i i i in K n b n c n       pbest p gbest pv v .  (5.1) 

Where K is the constriction factor calculated using the following equation  

     
2

2 4

k
K

c b c b c b



     
  (5.2) 

In ‎[77], the constriction factor K was made to be time-varying; decreasing in value with 

every iteration. This was achieved through defining the numerator k in the following 

manner:  

   ( )
1

min max min

m n
k n k k k

m


  


  (5.3) 

Where m   is the maximum number of iterations. The effect of this definition of K   is 

further improvements in stability, leading to the use of this factor through the various 

PSO implementations studied in this work. In the same work, the variable-constriction 
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factor PSO was found to outperform both the basic and constant-constriction factor PSO 

algorithms and was thus chosen over the both the basic and constant constriction-factor 

PSO for this study.  

In general, PSO and its variants outperform adaptive algorithms in terms of NMSE when 

used to identify nonlinear power amplifiers, as the results in Figure ‎4.2 show for the 

identifying the same model used in the previous chapter.  From these results, we see that 

the PSO algorithms achieve an improvement in performance over RLS of about 2~3dB 

when run with a swarm of size 200. The detailed analysis and performance comparison 

which will be given in the next chapter support these results. 

It should be noted that since PSO methods have the advantage of using multiple agents in 

parallel, a direct comparison with adaptive filtering based on NMSE alone might not be 

fair so the amount of time required should be looked at when making a comparison. 

Nevertheless, the  advantage of PSO algorithms over adaptive techniques is evident in 

when it comes to both the estimation of DPD coefficients and reducing frequency-domain 

nonlinearities (Figure ‎4.2 and Figure ‎4.3.). Numerical results for this experiment are 

given in Table ‎4.1. 
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Figure ‎4.2 Comparison of PSO algorithms 
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Figure ‎4.3 DPD performance of RLS and PSO algorithms 
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Table ‎4.1 Numerical results comparing adaptive algorithms and PSO 

Algorithm NMSE (dB) NAMSE 

(dB) 

Number of 

Multiplications/Iteration 

NLMS   22.70 −9.88 8( 1)LK    

RLS   29.95 −12.82 24( ) 16( ) 1LK LK   

PSO   27.01   13.09 3 ( )S LK  

VCF-PSO   32.82   13.28 3 ( )S LK  

 

Where S  here is the size of the swarm. It should be noted that since PSO is a parallel 

technique which can be implemented using parallel processing, the time required to run it 

is significantly less than what would be expected, furthering its advantage over RLS and 

QR-RLS, especially as the size of the vector LK  increases . The results above show the 

potential of PSO techniques when used for developing DPDs. 

4.3 Shortcomings of available PSO techniques 

While they generally achieve good performance gains, as seen above, there remains some 

room for improvement in the implementation of PSO techniques to identifying DPD 

coefficients, since these methods are blind to the particular structure of the model used 

and simply try to populate all the entries of a weight vector without taking the actual 

dimensionality and nature of the model into consideration. 

For example, consider the case of the MP model. Even if the 'correct' dimensions of an 

MP model are known in advance, some of the model's coefficients are un-necessary, 

more so if the model dimensions are overestimated (Chapter 2, Section 4). When 
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identifying such a model, the available PSO techniques simply ignore this structure and 

try to populate their estimated vector in a way that minimizes the cost function. This 

results in situations where PSO estimates an MP model of size LK  and produces a fully-

populated coefficient vector whereas the actual vector has zero entries in it.  

To illustrate, such a situation is demonstrated in Figure ‎4.4; where PSO is used to 

estimate a coefficient vector having a length of 30 taps with only 15 nonzero entries. 

Note how PSO produces an estimate of the vector that has many samples of nonzero 

magnitude, even though the actual coefficient vector has zeroes in those positions. 

 

 

Figure ‎4.4 Actual and PSO-estimated coefficients of an oversized model 
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The above leads to a situation in which we obtain an estimated set of coefficients that 

produces an output signal which is very close to the desired one, but is longer than the 

actual coefficient vector. This has practical implications since we would ultimately like to 

implement our estimators on Field Programmable Gate Arrays (FPGAs) or use them to 

estimate digital pre-distorters (DPDs) to compensate for PA nonlinearities. In such 

applications, having a larger number of coefficients would require additional 

computational time and more operations to implement and thus we would like to have as 

short a coefficient vector as possible, motivating the investigation of PSO techniques that 

can perform the function of model-dimension estimation.  

4.4 Proposed PSO techniques 

4.4.1 Cluster-based PSO (C-PSO) 

Since PSO is a population-based technique that uses a large number of particles to solve 

an optimization problem, this work investigated the feasibility of utilizing this feature to 

estimate the size of an oversized MP model by emulating the parameter-sweeping 

procedure a designer would use to find the correct dimension, albeit in a parallel manner. 

The objective in this approach is two-fold: finding the best NMSE performance using the 

smallest possible model. 

In this approach, the swarm is divided into C  groups (referred to as clusters) of particles 

and each cluster is made to test a different pair of ( , )l k . This is carried out by forcing 

some of the entries of a cluster's position vectors to be zero and only updating those 

which correspond to the chosen ( , )l k  pair.  
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The updating of the positions of particles is done in the same manner as the traditional 

PSO algorithm with the gbest  used being that of the cluster a particle belongs to, 

meaning that the behavior of a particle belonging to a cluster is isolated from that of 

particles in other clusters. The reason for such isolation is perhaps evident, as each cluster 

occupies its own 'corner' of the search space, defined by the ( , )l k  pair it is assigned to 

and hence, the particles of a cluster need to be confined within that part of the search 

space. 

After assigning to each cluster an ( , )l k  pair,  initializing the positions of its particles and 

computing their fitness functions, the algorithm then enters its iterative stage. 

This stage proceeds similarly to that of the familiar PSO except for one point: here, a 

cluster is given a grace period of a few iterations in which it is left to operate normally. 

After this period, the cluster's gbest  is then compared with those of the other clusters to 

decide whether it should be allowed to continue its search or whether it should be 

disbanded. To better improve the speed of convergence, the members of a disbanded 

cluster are distributed between the remaining clusters or can simply be removed from the 

swarm if they are not needed (e.g. if the targeted performance had already been achieved 

by another cluster).  

The flow of this version of PSO is illustrated in Figure ‎4.5, with the index of the clusters 

being denoted by c . 
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Figure ‎4.5 Flow of the cluster-based PSO algorithm 
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As can be inferred from the above discussion, C-PSO's performance depends on a 

number of factors in addition to those affecting a traditional PSO implementation. These 

factors are: 

i. Cluster size: The number of particles allocated to each cluster has an important 

effect on overall performance, since each cluster is essentially a PSO 

implementation of its own. One way to reduce the size of the clusters needed is to 

quickly disband swarms of unfavorable performance after a few iterations and 

distributing their members. 

ii. Grace period: the amount of time a cluster is allowed to operate before a decision 

is made on whether it should be kept or discarded directly affects convergence 

speed and overall performance since allowing clusters of subpar performance to 

continue functioning denies access to particles which could otherwise be better 

utilized by assigning them to other clusters instead. 

iii. Method of handling the members of disbanded swarms: the allocation can be 

either blind, preferential or proportional. In blind allocation, the particles freed 

up by the termination of their cluster are distributed evenly among the remaining 

clusters whereas preferential clustering assigns all of them to the best-performing 

cluster. Weighted clustering attempts to achieve a middle ground between the 

two by distributing particles in proportion to a cluster's performance. This can 

either be directly proportional to concentrate resources into improving the 

performance of 'good' clusters, or inversely proportional to give lagging clusters a 

second chance of sorts for a few iterations. The simulations performed indicate 
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that directly proportional allocation is the preferable approach, as would be 

expected. 

The main shortcomings of this method are as follows: 

i. Large swarm size: Since each cluster is an independent implementation of PSO, 

implementation of this method would require using swarms of much larger size 

than what is usually required by the other methods. To somewhat mitigate this, a 

sub-optimal cluster size can be used initially with a shortened grace period to 

quickly eliminate 'bad' clusters and transfer their particles elsewhere, creating a 

'dummy' initial phase, noting that the choice of the length of this phase can affect 

the algorithm's performance. 

ii. The need for additional tweaking: since there are more factors impacting the 

performance of this approach than in the case of the other PSO algorithms, more 

attention needs to be paid to the fine-tuning of this algorithm.   

As direct implementation of this method was found to require swarms of extremely large 

sizes (> 700 particles), it was abandoned in favor of a simpler technique combining the 

clustering method with the use of the 0l  norm, as discussed next. 

4.4.2 0l ‎ ‎Penalized PSO  

In  this group of PSO algorithms, the cost function to be optimized by PSO is modified to 

reward (or penalize) the particle based on its dimensionality, measured by the number of 

nonzero elements it has. The modified cost function is expressed as   
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where  i 0
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where D  is the dimension of a particle's position vector. From this definition, we see that 

the zero norm essentially counts the number of non-zero elements in a vector. Using this 

feature, the fitness function is now modified through the second term to reward the 

particles of smaller dimensions by endowing their fitness functions with a 'bonus' that 

grows in value the more zeros a particle has in its position vector, with the size of this 

bonus being controlled by the designer-set parameter a . 

 In this study, the best performance was obtained when using a function  i 0
f p of the 

form 

   0

i 0
i 0 110log ( )f

D


p
p   (5.6) 

The cost function in (5.4) now modifies the behavior of PSO by making the particles try 

to find the solution having the highest possible number of zeroes within the search space 

that fulfills the NMSE criteria. After finding the shortest possible solution among the 

available candidates and choosing said position to be the new gbest , the positions of the 

zeroes in that vector are checked to see if they have been 'off' for more than one iteration 
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before forcing the corresponding coordinates of the remaining particles to zero in 

subsequent evaluations and the algorithm continues its operation as normal. The 

implementation of the proposed PSO algorithm proceeds in two stages: The 

implementation of the proposed PSO algorithm is carried out over two stages: The initial 

exploration and clustering stage, and the dimension-finding stage. 

1. Initial exploration and clustering stage: 

In the initial exploration stage, the particles are randomly distributed in a dispersed 

manner and every particle is allowed to freely roam the search space, without it getting 

drawn to the global best position. This is accomplished by setting the parameters c  and 

  to low values without picking them as zero, which eliminates the effect of the global 

best and the zero-norm condition on the algorithm behavior. This turns the algorithm into 

a parallel optimizer that does not utilize social interaction. 

In this stage, the trends among particles are monitored and if any clustering is observed, 

the locations around which the particles converge are recorded.  

Following the initial exploration stage, the social functions of the swarm are gradually 

restored by progressively increasing c for a few iterations without completely centralizing 

the swarm in order to allow for some diversity. In this phase, if any particle finds a 

solution that is slightly inferior to that of the global best particle, its position is saved. 

Additionally, promising search directions are considered and some particles are allocated 

to search over them. This stage continues for iN  iterations in total. In this study, 4 

iterations were found to be sufficient for this phase. 



80 

 

2. Dimension-finding stage: 

In this stage, the zero-norm condition is activated and the multiple competing solutions 

are sorted in terms of the error they produce. If a solution among that set is found to have 

a lower number of significant coefficients while being close enough in terms of NMSE, it 

is chosen as a viable candidate for being a member of the 'global' best group. Each 

particle then picks the global best it pursues from the group based on its distance from it 

and searches only in the coordinates not equal to zero. In  [86], it was suggested that 

carrying out the picking process at random could provide better results while maintaining 

diversity in the search process. In this work, closest-neighbor based selection was found 

to improve the dimension-estimation capabilities of the algorithm.  

An additional aspect of this stage is that if the swarm settles on a global best and exhibits 

stagnation, some particles are retained to search within the vicinity of this solution while 

the remaining members of the swarm are re-scattered throughout the search space to find 

a better solution if one exists. This modification ensures that local minima are avoided 

and that alternative solutions can be investigated. 

The steps involved in the implementation of the proposed PSO algorithm are summarized 

in Figure ‎4.6. 
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Figure ‎4.6 Flow of the 0l -PSO algorithm 
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The balancing between the two requirements of minimizing the NMSE using the shortest 

possible vector is governed by the parameter a . In intuitive terms, one can think of a  as 

an indicator of how much importance one places on the dimension of the coefficient 

vector compared to the accuracy of the estimation. The effect of changing the value of 

this parameter is studied further on 

Effectively, the use of the 0l  norm creates a zero-attractor which 'draws' the values of the 

coefficients to zero; with its effect being more pronounced on taps of lower values. This 

idea of using the 0l ‎  norm has been implemented for adaptive filtering algorithms in ‎[82] 

to improve their performance when estimating systems which are known to have zeroes. 

The minimization of the 0l   norm in  (5.4) is challenging when attempted using traditional 

optimization techniques; as it represents what is known as a Non-Polynomial Hard 

problem . However since PSO techniques are independent of the cost function used, they 

can be used to solve this problem. 

 The use of the cost function in  (5.4) was found to enable PSO  to reduce the number of 

nonzero coefficients for an oversized system, as indicated by the results presented later in 

this chapter. The significance of this is that it allows us to know which coefficients are 

necessary and which aren't; which in turn saves us a large number of operations when 

carrying out an implementation. 

To give consideration to alternative approaches, a PSO algorithm inspired by the recent 

developments in the area of Compressed Sensing ‎[87]‎[88] is proposed next. 
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4.4.3 
1l ‎ ‎Penalized PSO  

Building on the findings in compressed sensing theory that minimization of the 1l  norm 

can be utilized to improve system-identification when the models are oversized ‎[89], a 

version of the PSO algorithm incorporating this norm into its cost function is developed. 

In this algorithm, the cost function becomes 
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where 
1ip  is the 1l  norm of the vector ip  defined as 
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Minimizing the 1l norm has the advantage of being simple to implement; since all we 

need to do is to include the norm into the cost function minimized by PSO and zero-

forcing the least significant taps. In return for this simplicity, however, this version of 

PSO is incapable of estimating the actual dimensions of a model since it does not utilize 

the model structure in any way. This can be observed from Figure ‎4.7, which shows the 

coefficients found by this algorithm when estimating the same PA in earlier experiments 

and utilizing an oversized model of dimensions 5, 6L K  when the actual size is 

3, 5L K  . By examining the figure, it can be seen that this algorithm finds a 

coefficient vector which does not obey any particular structure. Similarly to the previous 

proposed algorithm, VCF-PSO is used as the basis for this algorithm. 
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Figure ‎4.7 Actual and 1l   PSO-estimated coefficients of an oversized model 
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In all experiments, the swarm size was fixed to 200 particles and the identification 

experiments were run for 100 times independently on MATLAB R2010a using an Intel 

Core i7 CPU, 1.73GHz computer.  

Prior to performing the experiments, however, an extensive sensitivity analysis was 

carried out to determine the effect of each of the parameters used in the proposed PSO 

algorithms on performance, with the results presented in the next section. 

4.6 Sensitivity analysis of the PSO algorithms 

To choose the best combinations of parameters for each algorithm, an extensive 

sensitivity analysis was performed and the results were documented in this section. The 

analysis consists of sweeping the swarm size, inertia weight, social and local parameters, 

in addition to the common parameter a  and the parameters unique to each variant.  

To avoid repetition, the results of the sensitivity analysis for the proposed algorithms 

were plotted, whereas the parameters selected for the traditional PSO algorithms are 

given numerically in Table ‎4.2. 

For all of the algorithms tested (whether traditional or 0l ‎  penalized), a swarm size of 200 

for the algorithms produced the best NMSE results.  As for the number of iterations to be 

observed, it was found that 20 iterations were sufficient to study the behavior of the 

various algorithms, as all of them reached their steady-state within this window. 
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Table ‎4.2 Parameter Selection for the traditional PSO Algorithms 

Algorithm Swarm Size Inertia 

Weight 

b   c 
min max,k k   

PSO 200 1.1 4 2 N/A 

VCF-PSO 200 N/A 4 4 4, 6 

 

4.6.1 Sensitivity analysis for the 0l  -VCFPSO algorithm 

A sensitivity analysis for the parameters of the 0l -VCFPSO algorithm was carried out, 

with the results as given in Figure ‎4.8 through Figure ‎4.11 and numerically in Table ‎4.3.  

Table ‎4.3 Parameter Selection for the 0l -VCFPSO Algorithm 

Swarm Size b   c 
min maxk ,k   a   

200 4 4 4,6 0.75 
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Figure ‎4.8 Effect of the swarm size on the performance of 0l -VCFPSO 
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Figure ‎4.9 Effect of the choice of the parameters ,b c    on the performance of 0l -VCFPSO 
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Figure ‎4.10 Effect of the choice of the parameters min max,k k    on the performance of 0l -VCFPSO
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Figure ‎4.11 Effect of the choice of the parameter a    on the performance of 0l -VCFPSO 
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Table ‎4.4 Parameter Selection for the 1l -VCFPSO Algorithm 

Swarm Size b   c 
min maxk ,k   a   

200 4 4 4,6 0.5 

 

 

Figure ‎4.12 Effect of the swarm size on the performance of 1l -VCFPSO 
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Figure ‎4.13 Effect of the choice of the parameter a    on the performance of 1l -VCFPSO 
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computation process, the number of nonzero coefficients in their estimates and DPD 

performance. 

 

Figure ‎4.14 Learning curves for the PSO algorithms when estimating a correctly-sized model 
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Figure ‎4.15 DPD performance of the PSO algorithms 
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Table ‎4.5 Numerical results for the first identification experiment 

Algorithm NMSE 

(dB) 

NAMSE 

(dB) 

Model Dimensions 

L K 

PSO   28.25   13.09 3 5 

VCF-PSO   32.82   13.28 3 5 

0l -VCFPSO   31.08   13.09 3 5 

1l -VCFPSO   29.94   13.80 3 5 

 

Examining Figure ‎4.14 and Table ‎4.5 above, we see that the available and proposed 

algorithms are close in terms of performance. This is somewhat expected, as the proposed 

algorithms are designed to take advantage of the oversizing of the model. Similar 

conclusions can be made by examining the frequency-domain results in Figure ‎4.15. 
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4.7.2 Results for experiment B : Oversized model with 3, 8L K    

In this instance, the PSO algorithms were used to identify an MP model with 24 

coefficients ( 3, 8)L K  . The numerical results of this experiment are recorded in 

Table ‎4.6 without the corresponding learning curves.  Figure ‎4.16 displays the 

coefficients estimated by the traditional and proposed PSO algorithms. Examining this 

figure, it can be seen that 0l -PSO finds a coefficient vector whose structure corresponds 

to a model of dimensions 3, 5L K  ; as the majority of the entries associated with 

5K   are populated with zero entries. Conversely, 0l -PSO finds a coefficient vector that 

has coefficients of reduced magnitude without reducing the size of the model. 

 Table ‎4.6 Numerical results for the second identification experiment 

Algorithm NMSE 

(dB) 

NAMSE 

(dB) 

Model Dimensions 

L K 

PSO   27.05   13.09 3 8 

VCF-PSO   31.31   13.28 3 8 

0l -VCFPSO   31.66   13.09 3 5 

1l -VCFPSO   33.94   13.80 3 8 
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Figure ‎4.16 Coefficients estimated by PSO and 0l -VCFPSO  
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issue since they have a built-in capability to 'know' what the correct dimension is and are 

thus more robust in this situation. 

Among the proposed algorithms, 0l -VCFPSO    ‎    ‎    ‎       ‎N S ‎            ‎

         ‎ ‎      -     ‎N S ‎  ‎‎ ‎31.94 in less time and a smaller number of iterations 

than the other  algorithms. By comparison, 1l  VCFPSO fails to achieve comparable 

performance, as its ste   -     ‎N S ‎  ‎‎   27.71dB.  

 

Figure ‎4.17 Learning curves for the adaptive algorithms and PSO variants for the oversized model 
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Figure ‎4.18 DPD performance of the PSO algorithms 
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Table ‎4.7 Numerical results for the third identification experiment 

Algorithm NMSE 

(dB) 

NAMSE (dB) Model 

Dimensions 

L K 

PSO   27.45   12.59 5 8 

PSO-VCF   29.15   13.38 5 8 

0l -VCFPSO   31.02   13.99 4 6 

1l -VCFPSO   27.42   14.19 3 8 

 

When the PSO algorithms estimators were deployed to identify a heavily oversized MP , 

the value of the 0l -PSO algorithms becomes more apparent.  In this case, the 0l -PSO 

algorithm outperforms the traditional algorithms by a margin of 2~3dB. This can be 

explained by the fact that 0l -PSO 'guesses' the correct size of the coefficient vector and 

attempts to estimate a vector of that size, as opposed to using the full-length coefficient 

vector as the other algorithms do.  This means that while the traditional PSO algorithms 

use 100 particles to find a solution of dimension 40, the proposed algorithms use the 

same number of particles to search a space of smaller size. 

Figure ‎4.19 shows the coefficients estimated by the PSO and 0l -PSO algorithms for the 

5, 8L K   case. The results in this figure support the earlier findings that 0l -PSO can 

closely guess the correct dimensions of an MP model, even when both parameters are 

oversized. In contrast, the 1l -PSO performs quite poorly in terms of NMSE, suggesting 

that its tendency to uniformly 'compress' the magnitudes of all of the coefficient taps 

degrades its estimation accuracy. 
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Figure ‎4.19 Coefficients estimated by PSO and 0l -VCFPSO  
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estimated here are not of a particular structure but also happen to have many low entries. 

However, it should be remembered that the use of this algorithm produces an estimation 

of lowered accuracy compared to the other algorithms (by a margin of 3~4 dB), so these 

coefficients do not represent a reliable estimate. 
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Figure ‎4.20 Actual and 1l -VCFPSO-estimated coefficients of an oversized model 

4.8 Summary of Results and Conclusions Reached 

In this work, the use of particle swarm optimization in the area of nonlinear PA 

identification was investigated. After identifying the main issues facing the application of 

conventional adaptive filtering approaches, PSO and some of its variants were used and 

their performance was compared with that of the adaptive filters. 

After obtaining initial results confirming that PSO techniques outperform adaptive 

filtering, their population-based nature was utilized to solve the problem of estimating a 

model's coefficients more efficiently when the model is oversized.  

To solve this problem, a 0l ‎  penalized PSO algorithm was developed and its performance 

was extensively studied. 
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After performing sensitivity analyses on each of the algorithms used and extensively 

verifying the performance of the proposed algorithms in both estimating a correctly-sized 

model and an oversized one, it was found that the proposed techniques outperformed the 

algorithms available in the literature in both error performance and the number of 

significant coefficients, thus alleviating the burden of figuring out the correct dimension 

of the model and enabling a designer to focus on the design of the PA system itself. 

Equation Chapter (Next) Section 1 
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5 CHAPTER 5 

THESIS CONCLUSIONS AND FUTURE WORK  

5.1  Summary of Work Done and Conclusions 

In this thesis, the topic of identifying the parameters of nonlinear power amplifier 

behavioral models and predistorters using adaptive filtering and PSO techniques was 

thoroughly investigated; starting with surveying of behavioral modeling, then moving on 

to adaptive filtering and concluding with the study of the use of PSO techniques and 

proposing a novel PSO algorithms were designed for the efficient estimation of Memory 

Polynomial model coefficients. 

Ultimately, the proposed PSO techniques were found to perform well when estimating 

the parameters of nonlinear PA models in the case of oversized models having zero 

entries, thus enabling a designer to begin with a rough estimate of model dimensions and 

obtain a good estimate of both the model's parameters and their its size.  

5.2 Future Work 

The results obtained for the proposed PSO algorithms suggest that there is potential for 

further research in the following areas: 
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I. Utilizing information about the structure of nonlinear models in the development 

of enhanced 0l -PSO variants by either including this information into the cost 

function used, or utilizing it as a constraint. 

II. Utilizing PSO to develop improved pre-distorters by solving multi-objective 

optimization problems, such as optimizing across the time- and frequency-

domains. 

In conclusion, the results obtained indicate that PSO and its variants have the potential to 

be of further value in the area of nonlinear PA design and predistortion due to their 

accuracy and ability to perform auxiliary functions such as guessing a model's 

dimensions.  
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6 APPENDIX A 

POWER AMPLIFIER BASICS 

6.1 Classes and Types of Power Amplifiers 

Amplifiers are usually constructed with a complementing pair of transistors (e.g.CMOS), 

where each transistor operates in one half of an input signal while some amplifiers use 

the same transistor to pass both the positive and negative halves of an input signal 

(Figure ‎6.1). Power amplifiers are grouped into classes (A,B,..etc) based on the 

          ‎  ‎   ‎    ‎    ‎       ‎  ‎“  ”‎      

 

Figure ‎6.1 Typical Amplifier Circuit Configuration 
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6.1.1 Class A Amplifiers 

A class-A‎         ‎   ‎       ‎  ‎      ‎         ‎  ‎“  ”‎     ‎            ‎       ‎

current. In this configuration, input signal magnitudes are kept small to avoid going into 

the cut-off region of the amplifier. Class A amplifiers are the most linear, yet the least 

efficient of the various classes, their efficiency being around 50% , limiting their 

usefulness.  

The operating point of a class A amplifier is placed somewhere around the center of the 

load line, as can be seen in Figure ‎6.2 ‎[13],‎[83].  

 

Figure ‎6.2 Class A Amplifier Operation‎[83]. 

6.1.2 Class B Amplifiers 

C       ‎   ‎    ‎      ‎ A‎           ‎    ‎      ‎ B‎   ‎ “  ”‎    ‎     ‎     ‎   ‎    ‎      ‎   ‎  ‎

sinusoidal input (i.e. it passes either the positive or negative part of the input signal). In 

return of the higher efficiencies (upwards of 75%) they provide, they produce harmonics 

and are much less linear in their behavior ‎[83]. 
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Figure ‎6.3 Class B Amplifier Operation‎[83]. 

6.1.3 Class AB Amplfiers 

As its name indicates, amplifiers belonging to this class are a middle-of-the-road 

compromise between amplifiers of classes A and B ‎[13].  

The efficiency and conduction-time percentage of AB-class amplifiers is somewhere in 

between those of A and B-class amplifiers. The nonlinearities in this class are mainly due 

to saturation effects. Also, AB amplifiers have the most observable memory effects ‎[83].  

 

Figure ‎6.4 Class AB Amplifier Operation‎[83]. 
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6.1.4 Class C Amplifiers 

As the general trend thus far would lead us to expect, the Class C amplifier operates for 

under half the cycle time of an input signal, as shown in Figure ‎6.5 ‎[13]. These amplifiers 

achieve high efficiencies at the cost of suffering from high distortion  ‎[83]. 

 

Figure ‎6.5 Class C Amplifier Operation‎[83]. 

6.1.5 Class D Amplifiers 

Constructed from transistor-based switching circuits, a class-D amplifier can achieve an 

efficiency of 100% in theory but they remain unrealizable in real life, due to the existence 

of real-world effects such as switch resistances and parasitic capacitances ‎[83].  

 

Figure ‎6.6 Class D Amplifier Operation‎[83]. 
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6.1.6 The Doherty Amplifier 

This popular amplifier, first invented by William H. Doherty in 1936, is built by a 

modifying a class-B amplifier ‎[84]. This amplifier is constructed by connecting two 

amplifiers as shown in Figure ‎6.7, with one of them being an AB-class amplifier and the 

other a class-C. The amplifiers are configured in such a way that the class-C amplifier 

operates when the input signal is high, and the AB amplifier comes into play when the 

input signal power falls below a certain threshold. This configuration results in high 

efficiency, making the Doherty amplifier a popular choice for most of the modern 

communication systems such as CDMA and LTE, with a number of variations on the 

design being available ‎[85], ‎[19]. The data sets used in this project were obtained from a 

Doherty amplifier.  

 

Figure ‎6.7 Typical configuration of a Doherty PA[85]. 
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7 APPENDIX B 

SINGULAR VALUE DECOMPOSITION AND THE 

METHOD OF LEAST SQUARES 

7.1 Introduction 

Singular value decomposition (SVD) is a well-known method which factorizes an N M  

matrix A  in the following manner ‎[50] 

 * A U V  (7.1) 

U  is an M M  matrix,  is an M N  matrix with positive real numbers on the diagonal 

and *
V  is an N N  unitary matrix. It should be noted that for every A , only   is 

unique. Another point to keep in mind is that U and *
V  are composed of orthonormal 

columns 

7.2 Application to System Identification 

If we have a system whose input-output relationship can be written in the form 

 y Ah   (7.2) 

with A  being a non-square matrix of dimensions N M , the coefficient vector h  can be 

estimated by using the pseudo-inverse to compute them as follows ‎[50] 

 h A y   (7.3) 
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The computation of the pseudo-inverse is carried out through SVD as follows 

 *  A V U   (7.4) 

with 
 being the pseudo-inverse of  . Since   is a rectangular diagonal matrix, its 

pseudo-inverse can be directly obtained by reciprocating the matrix and then transposing. 

7.3 Limitations of Using SVD 

The main limitation of using SVD in real time comes from the fact that SVD requires the 

full data matrix A  to be constructed before implementing it; meaning that SVD can only 

be used offline after the entire data set has been collected. This prevents its use in real-

time predistortion systems where the identification procedure needs to be carried out 

often to track any changes in PA behavior. 
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