13 research outputs found

    On the impact of the GOP size in a temporal H.264/AVC-to-SVC transcoder in baseline and main profile

    Get PDF
    Scalable video coding is a recent extension of the advanced video coding H.264/AVC standard developed jointly by ISO/IEC and ITU-T, which allows adapting the bitstream easily by dropping parts of it named layers. This adaptation makes it possible for a single bitstream to meet the requirements for reliable delivery of video to diverse clients over heterogeneous networks using temporal, spatial or quality scalability, combined or separately. Since the scalable video coding design requires scalability to be provided at the encoder side, existing content cannot benefit from it. Efficient techniques for converting contents without scalability to a scalable format are desirable. In this paper, an approach for temporal scalability transcoding from H.264/AVC to scalable video coding in baseline and main profile is presented and the impact of the GOP size is analyzed. Independently of the GOP size chosen, time savings of around 63 % for baseline profile and 60 % for main profile are achieved while maintaining the coding efficiency

    Enhanced Statistical Modelling For Variable Bit Rate Video Traffic Generated From Scalable Video Codec

    Get PDF
    Mereka bentuk rangkaian yang berkesan dan berprestasi tinggi memerlukan pencirian dan pemodela punca trafik rangkaian yang tepat. Tesis ini menyediakan satu kajian tentang penghantaran, pemodelan dan analisis video variable bit rate (VBR) yang merupakan asas reka bentuk protokol dan penggunaan rangkaian yang cekap dalam penghantaran video. Dengan ini, satu model trafik video VBR yang dikodkan oleh scalable video codec (SVC) telah dicadangkan. EDAR (1) dapat menjana siri video dengan tepat di mana siri ini bersifat seakan-akan trafik video yang sebenar. Model ini telah disahkan dengan menggunakan pelbagai statistik untuk membandingkan jejak simulasi da asal. Pengesahan ini telah dilakukan melalui pengukuran grafik (Quantile-Quantile plot) dan statistik (Kolmogorov-Smirnov, Jumlah Ralat Berganda (SSE), dan Kecekapan Relatif (RE)) serta pengesahan secara bersilang. Designing an effective and high performance network requires an accurate characterization and modelling of the network traffic. This work involves the analysis and modelling of the Variable Bit Rate (VBR) of video traffic, usually described as the core of the protocol design and efficient network utilization for video transmissions. In this context, an Enhanced Discrete Autoregressive (EDAR (1)) model for the VBR video traffic model, which is encoded by a Scalable Video Codec (SVC), has been proposed. The EDAR (1) model was able to accurately generate video sequences, which are very close to the actual video traffic in terms of accuracy. The model is validated using statistical tests in order to compare simulated and original traces. The validation is done using graphical (Quantile-Quantile plot) and statistical measurements (Kolmogorov-Smirnov, Sum of Squared Error, and Relative Efficiency), as well as cross-validation

    A parallel H.264/SVC encoder for high definition video conferencing

    Get PDF
    In this paper we present a video encoder specially developed and configured for high definition (HD) video conferencing. This video encoder brings together the following three requirements: H.264/Scalable Video Coding (SVC), parallel encoding on multicore platforms, and parallel-friendly rate control. With the first requirement, a minimum quality of service to every end-user receiver over Internet Protocol networks is guaranteed. With the second one, real-time execution is accomplished and, for this purpose, slice-level parallelism, for the main encoding loop, and block-level parallelism, for the upsampling and interpolation filtering processes, are combined. With the third one, a proper HD video content delivery under certain bit rate and end-to-end delay constraints is ensured. The experimental results prove that the proposed H.264/SVC video encoder is able to operate in real time over a wide range of target bit rates at the expense of reasonable losses in rate-distortion efficiency due to the frame partitioning into slices

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Get PDF
    In this paper we propose a novel variable bit rate (VBR) controller for real-time H.264/scalable video coding (SVC) applications. The proposed VBR controller relies on the fact that consecutive pictures within the same scene often exhibit similar degrees of complexity, and consequently should be encoded using similar quantization parameter (QP) values for the sake of quality consistency. In oder to prevent unnecessary QP fluctuations, the proposed VBR controller allows for just an incremental variation of QP with respect to that of the previous picture, focusing on the design of an effective method for estimating this QP variation. The implementation in H.264/SVC requires to locate a rate controller at each dependency layer (spatial or coarse grain scalability). In particular, the QP increment estimation at each layer is computed by means of a radial basis function (RBF) network that is specially designed for this purpose. Furthermore, the RBF network design process was conceived to provide an effective solution for a wide range of practical real-time VBR applications for scalable video content delivery. In order to assess the proposed VBR controller, two real-time application scenarios were simulated: mobile live streaming and IPTV broadcast. It was compared to constant QP encoding and a recently proposed constant bit rate (CBR) controller for H.264/SVC. The experimental results show that the proposed method achieves remarkably consistent quality, outperforming the reference CBR controller in the two scenarios for all the spatio-temporal resolutions considered.Proyecto CCG10-UC3M/TIC-5570 de la Comunidad Autónoma de Madrid y Universidad Carlos III de MadridPublicad

    3D video bit rate adaptation decision taking using ambient illumination context

    Get PDF
    3-Dimensional (3D) video adaptation decision taking is an open field in which not many researchers have carried out investigations yet compared to 3D video display, coding, etc. Moreover, utilizing ambient illumination as an environmental context for 3D video adaptation decision taking has particularly not been studied in literature to date. In this paper, a user perception model, which is based on determining perception characteristics of a user for a 3D video content viewed under a particular ambient illumination condition, is proposed. Using the proposed model, a 3D video bit rate adaptation decision taking technique is developed to determine the adapted bit rate for the 3D video content to maintain 3D video quality perception by considering the ambient illumination condition changes. Experimental results demonstrate that the proposed technique is capable of exploiting the changes in ambient illumination level to use network resources more efficiently without sacrificing the 3D video quality perception

    Adaptive-Truncated-HARQ-Aided Layered Video Streaming Relying on Interlayer FEC Coding

    Full text link
    corecore