3,655 research outputs found

    Multilayer Architecture Model for Mobile Cloud Computing Paradigm

    Get PDF
    Mobile Cloud Computing is one of today's more disruptive paradigms of computation due to its effects on the performance of mobile computing and the development of Internet of Things. It is able to enhance the capabilities of devices by outsourcing the workload to external computing platforms deployed along the network, such as cloud servers, cloudlets, or other edge platforms. The research described in this work presents a computational model of a multilayer architecture for increasing the performance of devices using the Mobile Cloud Computing paradigm. The main novelty of this work lies in defining a comprehensive model where all the available computing platforms along the network layers are involved to perform the outsourcing of the application workload. This proposal provides a generalization of the Mobile Cloud Computing paradigm which allows handling the complexity of scheduling tasks in such complex scenarios. The behaviour of the model and its ability of generalization of the paradigm are exemplified through simulations. The results show higher flexibility for making offloading decisions.This work was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF), under Project CloudDriver4Industry TIN2017-89266-R, and by the Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under Project AICO/2017/134

    Using Machine Learning for Handover Optimization in Vehicular Fog Computing

    Full text link
    Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing
    corecore