1,032 research outputs found

    Robust preconditioners for PDE-constrained optimization with limited observations

    Get PDF
    Regularization robust preconditioners for PDE-constrained optimization problems have been successfully developed. These methods, however, typically assume that observation data is available throughout the entire domain of the state equation. For many inverse problems, this is an unrealistic assumption. In this paper we propose and analyze preconditioners for PDE-constrained optimization problems with limited observation data, e.g. observations are only available at the boundary of the solution domain. Our methods are robust with respect to both the regularization parameter and the mesh size. That is, the condition number of the preconditioned optimality system is uniformly bounded, independently of the size of these two parameters. We first consider a prototypical elliptic control problem and thereafter more general PDE-constrained optimization problems. Our theoretical findings are illuminated by several numerical results

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Fast iterative solvers for convection-diffusion control problems

    Get PDF
    In this manuscript, we describe effective solvers for the optimal control of stabilized convection-diffusion problems. We employ the local projection stabilization, which we show to give the same matrix system whether the discretize-then-optimize or optimize-then-discretize approach for this problem is used. We then derive two effective preconditioners for this problem, the �first to be used with MINRES and the second to be used with the Bramble-Pasciak Conjugate Gradient method. The key components of both preconditioners are an accurate mass matrix approximation, a good approximation of the Schur complement, and an appropriate multigrid process to enact this latter approximation. We present numerical results to demonstrate that these preconditioners result in convergence in a small number of iterations, which is robust with respect to the mesh size h, and the regularization parameter β, for a range of problems

    Multigrid Methods for Elliptic Optimal Control Problems

    Get PDF
    In this dissertation we study multigrid methods for linear-quadratic elliptic distributed optimal control problems. For optimal control problems constrained by general second order elliptic partial differential equations, we design and analyze a P1P_1 finite element method based on a saddle point formulation. We construct a WW-cycle algorithm for the discrete problem and show that it is uniformly convergent in the energy norm for convex domains. Moreover, the contraction number decays at the optimal rate of m1m^{-1}, where mm is the number of smoothing steps. We also prove that the convergence is robust with respect to a regularization parameter. The robust convergence of VV-cycle and WW-cycle algorithms on general domains are demonstrated by numerical results. For optimal control problems constrained by symmetric second order elliptic partial differential equations together with pointwise constraints on the state variable, we design and analyze symmetric positive definite P1P_1 finite element methods based on a reformulation of the optimal control problem as a fourth order variational inequality. We develop a multigrid algorithm for the reduced systems that appear in a primal-dual active set method for the discrete variational inequalities. The performance of the algorithm is demonstrated by numerical results

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    A fully discrete framework for the adaptive solution of inverse problems

    Get PDF
    We investigate and contrast the differences between the discretize-then-differentiate and differentiate-then-discretize approaches to the numerical solution of parameter estimation problems. The former approach is attractive in practice due to the use of automatic differentiation for the generation of the dual and optimality equations in the first-order KKT system. The latter strategy is more versatile, in that it allows one to formulate efficient mesh-independent algorithms over suitably chosen function spaces. However, it is significantly more difficult to implement, since automatic code generation is no longer an option. The starting point is a classical elliptic inverse problem. An a priori error analysis for the discrete optimality equation shows consistency and stability are not inherited automatically from the primal discretization. Similar to the concept of dual consistency, We introduce the concept of optimality consistency. However, the convergence properties can be restored through suitable consistent modifications of the target functional. Numerical tests confirm the theoretical convergence order for the optimal solution. We then derive a posteriori error estimates for the infinite dimensional optimal solution error, through a suitably chosen error functional. This estimates are constructed using second order derivative information for the target functional. For computational efficiency, the Hessian is replaced by a low order BFGS approximation. The efficiency of the error estimator is confirmed by a numerical experiment with multigrid optimization
    corecore