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Abstract Regularization robust preconditioners for PDE-constrained optimization
problems have been successfully developed. These methods, however, typically
assume observation data and control throughout the entire domain of the state equation.
For many inverse problems, this is an unrealistic assumption. In this paper we propose
and analyze preconditioners for PDE-constrained optimization problems with limited
observation data, e.g. observations are only available at the boundary of the solution
domain. Our methods are robust with respect to both the regularization parameter and
the mesh size. That is, the condition number of the preconditioned optimality system
is uniformly bounded, independently of the size of these two parameters. The method
does, however, require extra regularity. We first consider a prototypical elliptic control
problem and thereafter more general PDE-constrained optimization problems. Our
theoretical findings are illuminated by several numerical results.
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1 Introduction

Consider the model problem:

min
f, u

{
1

2
‖u − d‖2L2(∂Ω)

+ α

2
‖ f ‖2L2(Ω)

}
, (1)

on a Lipschitz domain Ω ⊂ R
n , subject to

−Δu + u + f = 0 in Ω, (2)

∂u

∂n
= 0 on ∂Ω. (3)

This minimization task is similar to the standard example considered in PDE-
constrained optimization. But instead of assuming that observation data is available
everywhere inΩ , we consider the casewhere observations are only given at the bound-
ary ∂Ω of Ω , that is d ∈ L2(∂Ω), see the first term in (1). For problems of the form
(1)–(3), in which the objective functional is replaced by

1

2
‖u − d‖2L2(Ω)

+ α

2
‖ f ‖2L2(Ω)

(4)

very efficient preconditioners have been developed for the associated KKT system. In
fact, by employing proper α-dependent scalings of the involved Hilbert spaces [14],
or by using a Schur complement approach [13], methods that are robust with respect
to the size of the regularization parameter α have been developed. More specifically,
the condition number of the preconditioned optimality system is small and bounded
independently of 0 < α � 1 and the mesh size h. This ensures good performance
for suitable Krylov subspace methods, e.g. the minimum residual method (Minres),
independently of both parameters. These techniques have been extended to handle
time dependent problems [12] and PDE-constrained optimization with Stokes equa-
tions [17], but the rigorous analysis of α-independent bounds always requires that
observations are available throughout all of Ω .

For cases with limited observations, for example with cost-functionals of the
form (1), efficient preconditioners are also available for a rather large class of PDE-
constrained optimization problems, see [10,11]. But these techniques do not yield
convergence rates, for the preconditioned KKT-system, that are completely robust
with respect to the size of the regularization parameter α. Instead, the number of pre-
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conditionedMinres iterations grows logarithmically1 with respect to the size of α−1,
as α → 0:

a + b log10
(
α−1

)
(5)

for constants a, b independent of α. According to the numerical experiments presented
in [11], the size of b may become significant. More specifically, b ∈ [5, 50] for
problems with simple elliptic state equations posed on rectangles. Thus, for small
values of α,Minresmay require rather many iterations to converge—even though the
growth in iteration numbers is only logarithmic.

In practice, observations are rarely available throughout the entire domain of the
state equation. On the contrary, the purpose of solving an inverse problem is typically
to use data recorded at the surface of an object to compute internal properties of that
object: Impedance tomography, the inverse problem of electrocardiography (ECG),
computerized tomography (CT), etc. This fact, combined with the discussion above,
motivate the need for further improving numerical methods for solving KKT systems
arising in connection with PDE-constrained optimization.

This paper is organized as follows. In the next section we derive the KKT system
associated with the model problem (1)–(3). Our α robust preconditioner is presented
in Sect. 3, along with a number of numerical experiments. Sections 4 and 5 contain
our analysis, and the method is generalized in Sects. 6 and 7. In Sect. 8 we discuss
the preconditioner when applied to a standard finite element approximation of the
problem. Section 9 provides a discussion of our findings, including their limitations.

2 KKT system

Consider the PDE (2)with the boundary condition (3).A solution u to this elliptic PDE,
with source term f ∈ L2(Ω), is known to have improved regularity, i.e. u ∈ Hs(Ω),
for some s ∈ [1, 2], with s depending on the domain Ω . In the remainder of this paper
we assume that the solution u is in H2(Ω) for any source term f ∈ L2(Ω). This
assumption is known to hold if Ω is convex or if ∂Ω is C2, see e.g. [5,7].

When solutions to (2) exhibit H2(Ω)-regularity, we can write the problem on the
non-standard variational form: Find u ∈ H̄2(Ω) such that

(−Δu + u, w)L2(Ω) + ( f, w)L2(Ω) = 0 ∀w ∈ L2(Ω), (6)

where

H̄2(Ω) =
{
φ ∈ H2(Ω)

∣∣∣∣ ∂φ

∂n
= 0 on ∂Ω

}
,

1 In [10,11] it is proved that the number of needed preconditioned Minres iterations cannot grow faster
than

a + b
[
log10

(
α−1

)]2
.

Furthermore, in [11] it is explained why iterations counts of the kind (5) often will occur in practice.
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equipped with the inner product

(u, v)H2(Ω) =
∫

Ω

∇2u : ∇2v + ∇u · ∇v + uv dx

=
∫

Ω

ΔuΔv + ∇u · ∇v + uv dx . (7)

Here ∇2u denotes the Hessian of u, and the second identity is due to the boundary
condition ∂u

∂n = 0 imposed on the space H̄2(Ω).
We will see below that, in order to design a regularization robust preconditioner

for (1)–(3), it is convenient to express the state equation in the form (6), instead of
employing integration by parts/Green’s formula to write it on the standard self-adjoint
form.

2.1 Optimality system

We may express (1)–(3) in the form:

min
f ∈L2(Ω), u∈H̄2(Ω)

{
1

2
‖u − d‖2L2(∂Ω)

+ α

2
‖ f ‖2L2(Ω)

}
(8)

subject to
(−Δu + u, w)L2(Ω) + ( f, w)L2(Ω) = 0 ∀w ∈ L2(Ω). (9)

The associated Lagrangian reads

L( f, u, w) = 1

2
‖u − d‖2L2(∂Ω)

+ α

2
‖ f ‖2L2(Ω)

+ ( f − Δu + u, w)L2(Ω),

with f ∈ L2(Ω), u ∈ H̄2(Ω) and w ∈ L2(Ω). From the first order optimality
conditions

∂L
∂ f

= 0,
∂L
∂u

= 0,
∂L
∂w

= 0,

we obtain the optimality system: determine ( f, u, w) ∈ L2(Ω) × H̄2(Ω) × L2(Ω)

such that

α( f, ψ)L2(Ω) + (ψ,w)L2(Ω) = 0 ∀ψ ∈ L2(Ω), (10)

(u − d, φ)L2(∂Ω) + (−Δφ + φ,w)L2(Ω) = 0 ∀φ ∈ H̄2(Ω), (11)

( f, ξ)L2(Ω) + (−Δu + u, ξ)L2(Ω) = 0 ∀ξ ∈ L2(Ω). (12)
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3 Numerical experiments

Prior to analyzing our model problem, we will consider some numerical experiments.
Discretization of (10)–(12) yields an algebraic system of the form

⎡
⎣αM 0 M

0 M∂ AT

M A 0

⎤
⎦

︸ ︷︷ ︸
Aα

⎡
⎣ f

u
w

⎤
⎦ =

⎡
⎣ 0

M̃∂d
0

⎤
⎦ , (13)

where M is a mass matrix, the discretization of the L2(Ω) inner product. M∂ is a
mass matrix associated with the boundary ∂Ω of Ω . A is a matrix that arises upon
discretization of the operator (1−Δ). Since we write the state equation on a non self-
adjoint form, A will not be the usual sum of the stiffness and mass matrices. Instead,
Eq. (6) is discretized with subspaces of H̄2(Ω) and L2(Ω). Consequently, A will in
general not be a square matrix.

In (13), we have implicitly used the same discretization for the control variable and
the Lagrange multiplier. In (10)–(12), both variables belong to L2(Ω), so it seems
natural to preserve this correspondence in the discretization. In fact, we can see from
(10) that f = −α−1w, so the control could be eliminated from the system prior to
the discretization. This would result in a 2 × 2 block system in place of (13). While
solving the smaller system is more practical in terms of computational costs, we find
that the analysis is more clearly presented for the 3 × 3 system (13).

In the current numerical experiments, we employ the Bogner–Fox–Schmit (BFS)
rectangle for discretizing the state variable u ∈ H̄2(Ω). That is, the finite element
field consists of bicubic polynomials that are continuous, have continuous first order
derivatives and mixed second order derivatives at each vertex of the mesh. BFS ele-
ments areC1 on rectangles and therefore H2-conforming. The control f and Lagrange
multiplier w are discretized with discontinuous bicubic elements.

We propose to precondition (13) with the block-diagonal matrix

Bα =
⎡
⎣αM 0 0

0 αR + M∂ 0
0 0 1

α
M

⎤
⎦

−1

, (14)

where R results from a discretization of the bilinear form b(·, ·) on H̄2(Ω):

b(u, v) = (u, v)H2(Ω) +
∫

Ω

∇u · ∇v dx . (15)

In the experiments presented below, we used this bilinear form to construct a multigrid
approximation of (αR + M∂ )

−1.

Remark The bilinear form (15) is equivalent to the inner product on H̄2(Ω). The
additional term stems from our choice of implementing a multigrid algorithm for the
bilinear form associated with the operator (Δ − 1)2 = Δ2 − 2Δ + 1. Indeed, the
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bilinear form αb( · , · ) + ( · , · )L2(∂Ω) can be seen to coincide with the variational
form associated with the fourth order problem

α(Δ − 1)2u = f in Ω, (16)
∂u

∂n
= 0 on ∂Ω, (17)

α
∂Δu

∂n
= u on ∂Ω. (18)

To limit the technical complexity of the implementation, we considered the problem
(1)–(3) on the unit square in two dimensions. The experiments were implemented in
Python and SciPy. The meshes were uniform rectangular, with the coarsest level for
the multigrid solver consisting of 8 × 8 rectangles. Figure 1 shows an example of a
solution of the optimality system (13).

3.1 Eigenvalues

Let us first consider the exact preconditioner Bα defined in (14). If Bα is a good
preconditioner for the discrete optimality system (13), then the spectral condition
number of BαAα should be small and bounded, independently of the size of both the
regularization parameter α and the discretization parameter h.

The eigenvalues of this preconditioned system were computed by solving the gen-
eralized eigenvalue problem

Aαx = λB−1
α x .

We found that the absolute value of the eigenvalues λ were bounded, with

0.445 ≤ |λ| ≤ 1.809,

uniformly in α ∈ {1, 10−1, . . . , 10−10} and h ∈ {2−2, . . . , 2−5}. This yields a uniform
condition number k(BαAα) ≈ 4.05. The spectra of the preconditioned systems are
pictured in Fig. 2 for some choices of α. The spectra are clearly divided into three
bounded intervals, and the eigenvalues are more clustered for α ≈ 1 and for very
small α.

3.2 Multilevel preconditioning

In practice, the action ofBα is replacedwith a less computationally expensive operation
B̂α . Note that Bα has a block structure, and that computationally efficient approxima-
tions can be constructed for the individual blocks. The only challenging block of
the preconditioner is the biharmonic operator αR + M∂ . Order optimal multilevel
algorithms for forth order operators discretized with the Bogner–Fox–Schmit was
developed in [16]. Specifically, it was shown that a multigrid V-cycle using a symmet-
ric 4 × 4 block Gauss–Seidel smoother, where the blocks contain the matrix entries
corresponding to all degrees of freedom associate with a vertex in the mesh, results
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(a) (b)

(c) (d)

Fig. 1 An example of a solution of (13). The observation data d was generated with the forward model,
using the “true” control 4x(1 − x) + y shown in panel (d). Solutions to the unregularized problem are
non-unique, and the generating control cannot be (exactly) recovered. The figures were generated with
mesh parameter h = 1/128 and regularization parameter α = 10−6. a Observation data d. The forward
model was solved for the control shown in d, but only the boundary values can be observed. b Computed
optimal state u based on the observation data shown in a. c Computed optimal control f based on the
observation data in a. d The “true” control function used to generate the observation data in a

in an order optimal approximation. The remaing blocks of the preconditioners are
weighted mass matrices which are efficiently handled by two symmetric Gauss-Seidel
iterations for the (1,1) and (3,3) blocks.

We estimated condition numbers of the individual blocks of B−1
α preconditioned

with their respective approximations. The results are reported in Tables 1 and 2. A
slight deterioration in the performance of the multigrid cycle can be seen for very
small values of α > 0.

3.3 Iteration numbers

To verify that also B̂α is an effective preconditioner for Aα , we applied the Minres
scheme to the system
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(a) (b)

(c) (d)

Fig. 2 Spectrum of BαAα for different regularization parameters α. The discretization parameter was
h = 2−4 for all figures

Table 1 Condition numbers of
M preconditioned with
symmetric Gauss–Seidel
iterations

Iterations 1 2 3

(h = 2−8) 1.931 1.303 1.126

B̂αAαx = B̂αb.

For the results presented in Table 3, theMinres iteration process was stopped as soon
as

(rk, B̂αrk)

(r0, B̂αr0)
= (Aαxk − b, B̂α{Aαxk − b})

(Aαx0 − b, B̂α{Aαx0 − b}) ≤ ε, (19)

which is the standard termination criterion for the preconditioned Minres scheme,
provided that the preconditioner is SPD. A random initial guess x0 was used, and the
tolerance was set to ε = 10−12.

4 Analysis of the KKT system

Recall that our optimality system reads:

α( f, ψ)L2(Ω) + (ψ,w)L2(Ω) = 0 ∀ψ ∈ L2(Ω),
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Table 2 Estimated condition
numbers of αR + M∂

preconditioned with one V-cycle
multigrid iteration

α\h 2−4 2−6 2−8

1 1.130 1.136 1.140

10−4 1.129 1.135 1.139

10−8 1.237 1.150 1.149

10−12 1.252 1.259 1.253

Table 3 Number of
preconditioned Minres
iterations needed to solve the
optimality system to a relative
error tolerance ε = 10−12

Estimated condition numbers in
parentheses, computed from
conjugate gradient iterations on
the normal equations for the
preconditioned optimality
system

α\h 2−4 2−5 2−6 2−7

1 53( 4.33) 53 (4.36) 53 (4.36) 53 (4.36)

10−1 57 (4.31) 57 (4.34) 57 (4.35) 57 (4.35)

10−2 75 (4.31) 72 (4.34) 70 (4.35) 68 (4.35)

10−3 79 (4.31) 79 (4.34) 77 (4.35) 73 (4.35)

10−4 81 (4.30) 81 (4.33) 79 (4.35) 77 (4.35)

10−5 82 (4.33) 81 (4.33) 79 (4.35) 79 (4.35)

10−6 81 (4.35) 79 (4.36) 79 (4.35) 81 (4.35)

10−7 70 (4.35) 81 (4.37) 81 (4.36) 79 (4.35)

10−8 62 (4.36) 70 (4.36) 79 (4.36) 81 (4.36)

10−9 62 (4.36) 64 (4.37) 68 (4.37) 78 (4.36)

10−10 62 (4.36) 63 (4.36) 64 (4.37) 67 (4.37)

(u − d, φ)L2(∂Ω) + (−Δφ + φ,w)L2(Ω) = 0 ∀φ ∈ H̄2(Ω),

( f, ξ)L2(Ω) + (−Δu + u, ξ)L2(Ω) = 0 ∀ξ ∈ L2(Ω),

with unknowns f ∈ L2(Ω), u ∈ H̄2(Ω) and w ∈ L2(Ω). We may write this KKT
system in the form:

Determine ( f, u, w) ∈ L2(Ω) × H̄2(Ω) × L2(Ω) such that

⎡
⎣αM 0 M ′

0 M∂ A′
M A 0

⎤
⎦

︸ ︷︷ ︸
Aα

⎡
⎣ f

u
w

⎤
⎦ =

⎡
⎣ 0

M̃∂d
0

⎤
⎦ , (20)

where

M : L2(Ω) → L2(Ω)
′
, f �→ ( f, · )L2(Ω), (21)

M∂ : H̄2(Ω) → H̄2(Ω)
′
, u �→ (u, · )L2(∂Ω), (22)

M̃∂ : L2(∂Ω) → H̄2(Ω)
′
, d �→ (d, · )L2(∂Ω), (23)

A : H̄2(Ω) → L2(Ω)
′
, u �→ (−Δu + u, · )L2(Ω), (24)
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and the notation “′” is used to denote dual operators and dual spaces. In the rest of this
paper, the symbols M , M∂ and A will represent the mappings defined in (21), (22)
and (24), respectively, and not (the associated) matrices, as was the case in Sect. 3.
We believe that this mild ambiguity improves the readability of the present text.

By using standard techniques for saddle point problems, one can show that the
system (20) satisfies the Brezzi conditions [1], provided that α > 0. Therefore, for
every α > 0, this set of equations has a unique solution. Nevertheless, if the standard
norms of L2(Ω) and H2(Ω) are employed in the analysis, then the constants in the
Brezzi conditions will depend on α. More specifically, the constant in the coercivity
condition will be of order O(α), and thus becomes very small for 0 < α � 1. This
property is consistent with the ill posed nature of (1)–(3) for α = 0, and makes it
difficult to design α robust preconditioners for the algebraic system associated with
(20).

Similar to the approach used in [9,10,14], we will now introduce weighted Hilbert
spaces. The weights are constructed such that the constants appearing in the Brezzi
conditions are independent of α. Thereafter, in Sect. 5, we will show how these scaled
Hilbert spaces can be combined with simple maps to design α robust preconditioners
for our model problem.

4.1 Weighted norms

Consider the α-weighted norms:

‖ f ‖2L2
α(Ω)

= α ‖ f ‖2L2(Ω)
, (25)

‖u‖2H2
α (Ω)

= α ‖u‖2H2(Ω)
+ ‖u‖2L2(∂Ω)

, (26)

‖w‖2
L2

α−1 (Ω)
= 1

α
‖w‖2L2(Ω)

, (27)

applied to the control f , the state u and the dual/Lagrange-multiplier w, respectively.
Note that these norms become “meaningless” for α = 0, but are well defined for
positive α.

4.2 Brezzi conditions

We will now analyze the properties of

Aα : L2
α(Ω) × H2

α (Ω) × L2
α−1(Ω) → L2

α(Ω)′ × H2
α (Ω)′ × L2

α−1(Ω)′,

defined in (20). More specifically, we will show that the Brezzi conditions are satisfied
with constants that do not depend on the size of the regularization parameter α > 0.
Note that we use the scaled Hilbert norms (25)–(27).
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Lemma 1 For all α > 0, the following “inf-sup” condition holds:

inf
w∈L2

α−1 (Ω)

sup
( f,u)∈L2

α(Ω)×H2
α (Ω)

( f, w)L2(Ω) + (−Δu + u, w)L2(Ω)

‖( f, u)‖L2
α(Ω)×H2

α (Ω) ‖w‖L2
α−1 (Ω)

≥ 1.

Proof Note that L2
α(Ω) and L2

α−1(Ω) contain the same functions, provided thatα > 0.

Let w ∈ L2
α−1(Ω) be arbitrary. By choosing f = w and u = 0 we find that

sup
( f,u)∈L2

α(Ω)×H2
α (Ω)

( f, w)L2(Ω) + (−Δu + u, w)L2(Ω)

‖( f, u)‖L2
α(Ω)×H2

α (Ω) ‖w‖L2
α−1 (Ω)

≥ (w,w)L2(Ω)

‖(w, 0)‖L2
α(Ω)×H2

α (Ω) ‖w‖L2
α−1 (Ω)

=
‖w‖2

L2(Ω)√
α ‖w‖L2(Ω) (

√
α)−1 ‖w‖L2(Ω)

= 1.

Since w ∈ L2
α−1(Ω) was arbitrary, this completes the proof. ��

Expressed in terms of the operators that constitute Aα , Lemma 1 takes the form

inf
w∈L2

α−1 (Ω)

sup
( f,u)∈L2

α(Ω)×H2
α (Ω)

〈M f, w〉 + 〈Au, w〉
‖( f, u)‖L2

α(Ω)×H2
α (Ω) ‖w‖L2

α−1 (Ω)

≥ 1,

see (21) and (24).
Recall that we decided towrite our state Eqs. (2)–(3) on the non-standard variational

form (6). Throughout this paper we assume that problem (2)–(3) admits a unique
solution u ∈ H̄2(Ω) for every f ∈ L2(Ω), and that

‖u‖H2(Ω) ≤ c1 ‖ f ‖L2(Ω) . (28)

This assumption is valid if Ω is convex or if Ω has a C2 boundary, see e.g. [5,7].
Inequality (28) is a key ingredient of the proof of our next lemma.

Lemma 2 There exists a constant c2, which is independent of α > 0, such that

α ‖ f ‖2L2(Ω)
+ ‖u‖2L2(∂Ω)

≥ c2
(
α ‖ f ‖2L2(Ω)

+ α ‖u‖2H2(Ω)
+ ‖u‖2L2(∂Ω)

)

= c2 ‖( f, u)‖2L2
α(Ω)×H2

α (Ω)

for all ( f, u) ∈ L2(Ω) × H̄2(Ω) such that

( f, φ)L2(Ω) + (−Δu + u, φ)L2(Ω) = 0 ∀φ ∈ L2(Ω). (29)
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Proof If ( f, u) satisfies (29), then

‖u‖H2(Ω) ≤ c1 ‖ f ‖L2(Ω) ,

see the discussion of (28). Let θ = (1 + c21)
−1 ∈ (0, 1), and it follows that

α ‖ f ‖2L2(Ω)
+ ‖u‖2L2(∂Ω)

≥ αθ ‖ f ‖2L2(Ω)
+ α

1 − θ

c21
‖u‖2H2(Ω)

+ ‖u‖2L2(∂Ω)

≥ 1

1 + c21

(
α ‖ f ‖2L2(Ω)

+ α ‖u‖2H2(Ω)
+ ‖u‖2L2(∂Ω)

)
.

��
This result may also be written in the form

〈[
αM 0
0 M∂

] [
f
u

]
,

[
f
u

]〉
≥ c2 ‖( f, u)‖2L2

α(Ω)×H2
α (Ω)

for all ( f, u) ∈ L2
α(Ω) × H2

α (Ω) satisfying

M f + Au = 0,

where M , M∂ and A are the operators defined in (21), (22) and (24), respectively.

4.3 Boundedness

Having established that the Brezzi conditions hold, with constants that are independent
of α, we next explore the boundedness of Aα .

Lemma 3 For all ( f, u), (ψ, φ) ∈ L2
α(Ω) × H2

α (Ω),

∣∣∣∣
〈[

αM 0
0 M∂

] [
f
u

]
,

[
ψ

φ

]〉∣∣∣∣ ≤ √
2 ‖( f, u)‖L2

α(Ω)×H2
α (Ω) ‖(ψ, φ)‖L2

α(Ω)×H2
α (Ω) .

Proof Recall the definitions (21) and (22) of M and M∂ , respectively. Since

‖( f, u)‖L2
α(Ω)×H2

α (Ω) =
√

α ‖ f ‖2
L2(Ω)

+ α ‖u‖2
H2(Ω)

+ ‖u‖2
L2(∂Ω)

,

we find, by employing the Cauchy–Schwarz inequality, that

∣∣∣∣
〈[

αM 0
0 M∂

] [
f
u

]
,

[
ψ

φ

]〉∣∣∣∣ = ∣∣α( f, ψ)L2(Ω) + (u, φ)L2(∂Ω)

∣∣
≤ ‖ f ‖L2

α(Ω) ‖ψ‖L2
α(Ω) + ‖u‖L2(∂Ω) ‖φ‖L2(∂Ω)

≤ √
2
√

‖ f ‖2
L2

α(Ω)
‖ψ‖2

L2
α(Ω)

+ ‖u‖2
L2(∂Ω)

‖φ‖2
L2(∂Ω)

≤ √
2 ‖( f, u)‖L2

α(Ω)×H2
α (Ω) ‖(ψ, φ)‖L2

α(Ω)×H2
α (Ω) .
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Lemma 4 For all ( f, u) ∈ L2
α(Ω) × H2

α (Ω), w ∈ L2
α−1(Ω),

∣∣∣∣
〈
[M A]

[
f
u

]
, w

〉∣∣∣∣ ≤ √
3 ‖( f, u)‖L2

α(Ω)×H2
α (Ω) ‖w‖L2

α−1 (Ω) .

Proof Again, we note that

‖( f, u)‖L2
α(Ω)×H2

α (Ω) =
√

α ‖ f ‖2
L2(Ω)

+ α ‖u‖2
H2(Ω)

+ ‖u‖2
L2(∂Ω)

,

‖w‖L2
α−1 (Ω) = 1√

α
‖w‖L2(Ω) .

From thedefinitions of M and A, see (21) and (24), and theCauchy-Schwarz inequality,
it follows that

∣∣∣∣
〈
[M A]

[
f
u

]
, w

〉∣∣∣∣ = |〈M f, w〉 + 〈Au, w〉|
= ∣∣( f, w)L2(Ω) + (−Δu + u, w)L2(Ω)

∣∣
≤
(
‖ f ‖L2

α(Ω) + ‖Δu‖L2
α(Ω) + ‖u‖L2

α(Ω)

)
‖w‖L2

α−1 (Ω)

≤ √
3 ‖( f, u)‖L2

α(Ω)×H2
α (Ω) ‖w‖L2

α−1 (Ω) .

For the last equality, recall from (7) that ‖Δu‖L2(Ω) = ∥∥∇2u
∥∥

L2(Ω)
≤ ‖u‖H2(Ω) for

all u ∈ H̄2(Ω). ��

4.4 Isomorphism

We have verified that the Brezzi conditions hold, and that Aα is a bounded operator.
Moreover, all constants appearing in the inequalities expressing these properties are
independent of the regularization parameter α > 0. Let

V = L2
α(Ω) × H2

α (Ω) × L2
α−1(Ω), (30)

V ′ = L2
α(Ω)′ × H2

α (Ω)′ × L2
α−1(Ω)′. (31)

Theorem 1 The operator Aα , defined in (20), is bounded and continuously invertible
for α > 0 in the sense that for all nonzero x ∈ V ,

c ≤ sup
0 �=y∈V

〈Aαx, y〉
‖y‖V ‖x‖V ≤ C, (32)

for some positive constants c and C that are independent of α > 0. In particular,

∥∥∥A−1
α

∥∥∥L(V ′,V)
≤ c−1 and ‖Aα‖L(V,V ′) ≤ C.
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Proof This result follows from Lemmas 1, 2, 3, and 4 and Brezzi theory for saddle
point problems, see [1]. ��

4.5 Estimates for the discretized problem

The stability properties (32) are not necessarily inherited by discretizations. However,
the structure used to prove the so-called “inf-sup condition” in Lemma 1 is preserved
in the discrete system provided that the same discretization is employed for the control
and the Lagrange multiplier. Furthermore, the boundedness properties, Lemmas 3 and
4, certainly also hold for conforming discretizations.

It remains to adress the coercivity condition, Lemma 2, for the discretized problem.
We consider finite dimensional subspacesUh ⊂ U = H̄2(Ω) andWh ⊂ W = L2(Ω).
For certain choices of Uh and Wh , the estimate of Lemma 2 carries over to the finite-
dimensional setting.

Lemma 5 Assume Uh ⊂ U and Wh ⊂ W , such that (1 − Δ)Uh ⊂ Wh. Then

α ‖ fh‖2L2(Ω)
+ ‖uh‖2L2(∂Ω)

≥ c2 ‖( fh, uh)‖2L2
α(Ω)×H2

α (Ω)
(33)

for all ( fh, uh) ∈ Wh × Uh such that

( fh, φh)L2(Ω) + (uh − Δuh, φh)L2(Ω) = 0 ∀φh ∈ Wh . (34)

Proof Assume that (1 − Δ)Uh ⊂ Wh , and that (34) holds for ( fh, uh) ∈ Wh × Uh .
Then fh +(1−Δ)uh ∈ Wh , and (34) implies fh +(1−Δ)uh = 0. Therefore, ( fh, uh)

satisfies (29) and the estimate (33) follows from Lemma 2. ��
If the discretization is chosen such that Lemma 5 is satisfied, then the estimates

(32) carries over to discretized system. More precisely, we have

∥∥Aα,h
∥∥L(Vh ,V ′

h)
≤ ‖Aα‖L(V,V ′) , and

∥∥∥A−1
α,h

∥∥∥L(V ′
h ,Vh)

≤
∥∥∥A−1

α

∥∥∥L(V ′,V)
, (35)

where Vh = Wh × Uh × Wh ⊂ V , equipped with the inner prdocut of V , and Aα,h

is discrete counterpart to Aα , defined by setting
〈Aα,h xh, yh

〉 = 〈Aαxh, yh〉 for all
xh, yh ∈ Vh .

If the state is discretized with C1-conforming bicubic Bogner–Fox–Schmit rectan-
gles, as in Sect. 3, then Lemma 5 is satisfied if the control and Lagrange multiplier
is discretized with discontinuous bicubic elements on the same mesh. For triangular
meshes, one could choose Argyris triangles for the state variable and piecewise quintic
polynomials for the control and Lagrange multiplier variables.

We remark that Lemma 5 provides a sufficient, but not necessary criterion for
stability of the discrete problem, and usually may imply far more degrees of freedom
in the discrete space Wh ⊂ W than is actually needed. The usefulness of Lemma 5 is
that the estimates (35) can, in principle, always be obtained by choosing a sufficiently
large space for the control and Lagrange multiplier.
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5 Preconditioning

The linear problem (20) is of the form

Ax = b. (36)

where x is sought in a Hilbert space V , the right hand side b is in the dual space V ′,
and A is a self-adjoint continuous mapping of V onto V ′. Iterative methods for linear
problems are most often formulated for operators mapping V into itself, and can not
be directly applied to the linear system (36), as described in [9]. If we want to apply
such methods to (36), then we need to introduce a continuous operator mapping V ′
isomorphically back onto V . More precisely, if we have a continuous operator

B : V ′ → V,

thenM = BA : V → V is continuous and has the desired mapping properties, and if
B is an isomorphism, the solutions to (36) coincides with the solutions to the problem

Mx = BAx = Bb. (37)

In this paper we shall consider B ∈ L(V,V ′) a preconditioner if B is self-adjoint
and positive definite. This implies thatB−1 is self-adjoint and positive definite as well,
and hence B−1 defines an inner product on V by setting

(x, y) =
〈
B−1x, y

〉
, x, y ∈ V. (38)

This inner product has the crucial property of makingM self-adjoint, in the sense that

(Mx, y) = 〈Ax, y〉 = 〈Ay, x〉 = (My, x) . (39)

Conversely, given any inner product on ( · , · ) on V , the Riesz–Fréchet theorem
provides a self-adjoint positive definite isomorphism B : V ′ → V such that (38) and
(39) hold, and we say that B is the Riesz operator induced by ( · , · ). This establishes a
one-to-one correspondence between preconditioners and Riesz operators on V ′. Since
the Riesz operator is an isometric isomorphism, the operator norm of BA coincides
with the operator norm of A. We formulate this well-known fact here in a lemma for
the sake of self-containedness. We refer to [6,9] for a more in-depth discussion of
preconditioning and its relation to Riesz operators.

Lemma 6 Let V be a Hilbert space, and let A : V → V ′ be a self-adjoint isomor-
phism, and assume that B is the Riesz operator induced by the inner product on V , or
equivalently, that the inner product on V is defined by the self-adjoint positive definite
isomorphism B−1 : V → V ′. Then BA : V → V is an isomorphism, self-adjoint in
the inner product on V , with

‖BA‖L(V,V) = ‖A‖L(V,V ′) and
∥∥∥(BA)−1

∥∥∥L(V,V)
=
∥∥∥A−1

∥∥∥L(V ′,V)
.
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In particular, the condition number of BA is given by

κ(BA) =
∥∥∥A−1

∥∥∥L(V ′,V)
‖A‖L(V,V ′) .

Proof SinceA is self-adjoint,M = BA is self-adjointwith respect to the inner product
on V . From the Riesz–Fréchet theorem we have ‖Ax‖V ′ = ‖BAx‖ = ‖Mx‖, and
we obtain following identity for the operator norm ofM.

‖M‖L(V,V) = sup
x �=0

‖Mx‖V
‖x‖V = sup

x �=0

‖Ax‖V ′

‖x‖V
= sup

x �=0
sup
y �=0

〈Ax, y〉
‖x‖V ‖y‖V

= ‖A‖L(V,V ′) .

A similar identity is obtained for the norm of the inverse operator,

∥∥∥M−1
∥∥∥L(V,V)

= sup
x �=0

∥∥M−1x
∥∥V

‖x‖V
=
(
inf
x �=0

‖Mx‖V
‖x‖V

)−1

=
(
inf
x �=0

sup
y �=0

〈Ax, y〉
‖x‖V ‖y‖V

)−1

=
∥∥∥A−1

∥∥∥L(V ′,V)
.

We say that a preconditioner Bα for Aα is robust with respect to the parameter α

if κ(BαAα) is bounded uniformly in α. The significance of Lemma 6 is that such a
robust preconditioner can be found by identifying (parameter-dependent) norms in
which Aα and A−1

α are both uniformly bounded.

5.1 Parameter-robust minimum residual method

In Sect. 4 stability of Aα was shown in the α-dependent norms defined in (25)–(27).
Thepreconditioner providedbyLemma6 is theRiesz operator inducedby theweighted
norms. This operator Bα : V ′ → V takes the form

Bα =
⎡
⎣αM 0 0

0 αR + M∂ 0
0 0 1

α
M

⎤
⎦

−1

(40)

where R : H̄2(Ω) → H̄2(Ω)
′
is the operator induced by the H2(Ω) inner product,

i.e. 〈Ru, v〉 = (u, v)H2(Ω).
SinceAα is self-adjoint, the preconditioned operatorBαAα : V → V is self-adjoint

in the inner product on V . Consequently we can apply the minimum residual method
(Minres) to the problem
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BαAαx = Bαb.

Theorem 2 Let Aα be the operator defined in (20) and Bα the operator defined in
(40). Then there exists an upper bound, independent of α, for the convergence rate of
Minres applied to the preconditioned system

BαAαx = Bαb.

In particular there exists an upper bound, independent of α, for the number of iterations
needed to reach the stopping criterion (19).

Proof A crude upper bound for the convergence rate (more precisely, the two-step
convergence rate) of Minres is given by

‖BαAα(x − x2m)‖V ≤
(
1 − κ

1 + κ

)m

‖BαAα(x − x0)‖V

where κ = κ(BαAα) is the condition number of BαAα , see e.g. [9]. From Lemma 6
and (32) we determine that κ is bounded independently of α, with

κ =
∥∥∥(BαAα)−1

∥∥∥L(V,V)
‖BαAα‖L(V,V)

=
∥∥∥A−1

α

∥∥∥L(V ′,V)
‖Aα‖L(V,V ′)

≤ c−1C.

(41)

��
In practical applications, the operator Bα will be replaced with a less computationally
expensive approximation B̂α . Ideally B̂α will be spectrally equivalent to Bα , in the
sense that the condition number of B̂αB−1

α is bounded, independently of α. Then the
preconditioned system reads

B̂αAαx = B̂αb,

and the upper bound for the convergence rate is determined by the conditioned number
κ(B̂αAα) ≤ κ(B̂αB−1

α )κ(BαA−1
α ).

Remark In this paperweonly consider theminimumresidualmethod, andwe therefore
require that the preconditioner is self-adjoint and positive definite. More generally, if
other Krylov subspace methods are to be applied to (20), then preconditioners lacking
symmetry or definiteness may be considered.

Wemention in particular that a preconditioned conjugate gradient method for prob-
lems similar to (20) was proposed in [14], based on a clever choice of inner product.

6 Generalization

Is our technique applicable to other problems than (1)–(3)?Wewill nowbriefly explore
this issue, and show that the preconditioning scheme derived above yields α robust
methods for a class of problems.
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The scaling (25)–(27)was also investigated in [10], but for a family of abstract prob-
lems posed in terms of Hilbert spaces. More specifically, for general PDE-constrained
optimization problems, subject to Tikhonov regularization, and with linear state equa-
tions. But in [10] no assumptions about the control, state or observation spaces were
made, except that they were Hilbert spaces. Under these circumstances, it was proved
that the coercivity and the boundedness, of the operator associated with the KKT
system, hold with α-independent constants. Nevertheless, in this general setting, the
inf-sup condition involved an α-dependent constant, which, eventually, yielded theo-
retical iteration bounds of order O([log (α−1

)]2) for Minres.
In the present paper we were able to prove an α-robust inf-sup condition for

the model problem (1)–(3). This is possible because both the control f and the
dual/Lagrange-multiplier w belong to L2(Ω). From a more general perspective, it
turns out that this is the property that must be fulfilled in order for our approach to be
successful: The control space and the dual space, associated with the state equation,
must coincide. This will usually lead to additional regularity requirements for the state
space.

Motivated by this discussion, let us consider an abstract problem of the form:

min
f ∈W, u∈U

{
1

2
‖T u − d‖2O + 1

2
α ‖ f ‖2W

}
(42)

subject to
〈Au, w〉 + ( f, w)W = 0, ∀w ∈ W. (43)

Here, W is the dual and control space, U is the state space, O is the observation space,
W , U and O are Hilbert spaces.

Let us assume that

(A1) A : U → W ′ is a continuous linear operator with closed range. In particular,
there is a constant c1 such that for all u ∈ U ,

‖u‖U/Ker A = inf
ũ∈Ker A

‖u − ũ‖U ≤ c1 ‖Au‖W ′ .

(A2) T : U → O is linear and bounded, and invertible on the kernel of A. That is,
there is a constant c2 such that for all u ∈ Ker A,

‖u‖U ≤ c2 ‖T u‖O .

It then follows that the KKT system associated with (42)–(43) is well-posed for every
α > 0: Determine ( f, u, w) ∈ W × U × W such that

⎡
⎣αM 0 M ′

0 K A′
M A 0

⎤
⎦

︸ ︷︷ ︸
=Aα

⎡
⎣ f

u
w

⎤
⎦ =

⎡
⎣ 0

K̃ d
0

⎤
⎦ , (44)
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where

M : W → W ′, f �→ ( f, · )W , (45)

K : U → U ′, u �→ (T u, T · )O , (46)

K̃ : O → U ′, d �→ (d, T · )O , (47)

Note that, compared with (13), the boundary observation matrix M∂ has been replaced
with the general observation operator K in (44).

We introduce scaled norms as follows.

‖ f ‖2Wα
= α ‖ f ‖2W ,

‖u‖2Uα
= α ‖Au‖2W ′ + ‖T u‖2O ,

‖w‖2W
α−1

= 1

α
‖w‖2W .

We first show that ‖ · ‖Uα
is indeed a norm on U when assumptions (A1) and (A2)

hold. It suffices to show that ‖ · ‖Uα
is a norm equivalent to ‖ · ‖U when α = 1. We

have
‖T u‖O + ‖Au‖W ′ ≤ ( ‖T ‖L(U,O) + ‖A‖L(U,W ′)

) ‖u‖U , (48)

and letting π denote the orthogonal projection of U onto Ker A,

‖u‖U ≤ ‖πu‖U + ‖u − πu‖U

≤ c2 ‖T πu‖O + ‖u − πu‖U

≤ c2 ‖T u‖O + (
1 + c2 ‖T ‖L(U,O)

) ‖u − πu‖U

≤ c2 ‖T u‖O + c1
(
1 + c2 ‖T ‖L(U,O)

) ‖Au‖W ′ .

(49)

Here the last inequality follows from ‖u − πu‖U = inf ũ∈Ker A ‖u − ũ‖U and assump-
tion (A1).

We set V = Wα × Uα × Wα−1 . As in Sect. 4, Aα : V → V ′ can be shown to be an
isomorphism, with parameter-independent estimates obtained in the weighted norms.

Theorem 3 There exists positive constants c and C, independent of α, such that for
all nonzero x ∈ V ,

c ≤ sup
0 �=y∈V

〈Aαx, y〉
‖x‖V ‖y‖V

≤ C. (50)

We omit the full proof, which is analogous to that of Theorem 1. The crucial part is the
“inf-sup condition” of Lemma 1, which is easily shown to hold in the abstract setting:

sup
( f,u)∈Wα×Uα

( f, w)W + 〈Au, w〉
‖( f, u)‖Wα×Uα

‖w‖W
α−1

≥ (w,w)W

‖(w, 0)‖Wα×Uα
‖w‖W

α−1

= 1.
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The coercivity condition of Lemma 2 naturally holds in the prescribed norm on Uα ,
since for ( f, u) ∈ W × U such that Au = M f ,

α ‖ f ‖2W + ‖T u‖2O = α

2
‖ f ‖2W + α

2
‖Au‖2W ′ + ‖T u‖2O ≥ 1

2

(
‖ f ‖2Wα

+ ‖u‖2Uα

)
.

Note that the weighted norm now depends on A, and as consequence, the estimates
become A-independent. In fact, we obtain bounds for the constants c and C which are
independent of α as well as the operators appearing in (42)–(43). This is postponed
to the next section, where sharp estimates are obtained for (50).

With the estimates (50), Lemma 6 provides a preconditioner for the operator Aα ,
given as

Bα =
⎡
⎣αM 0 0

0 αA′M−1A + K 0
0 0 1

α
M

⎤
⎦

−1

. (51)

The condition number of BαAα will be bounded independently of α. It is, however,
not clear how to find a computationally efficient approximation of Bα in the abstract
setting of (42)–(43).

Example 1 The problem (1)–(3) fits in the abstract framework presented in this section
when we assume that the state has H2(Ω) regularity. We set W = L2(Ω), U =
H̄2(Ω), A = 1 − Δ, and T : H̄2(Ω) → L2(∂Ω) is a trace operator, see (46). Since
A is a continuous isomorphism, assumptions (A1) and (A2) are both valid. The inner
product on Uα takes the form

(u, v)Uα = 〈K u, v〉 + α
〈
AM−1Au, v

〉

=
∫

∂Ω

uv ds + α

∫
Ω

(u − Δu)(v − Δv) dx

=
∫

∂Ω

uv ds + α

∫
Ω

∇2u : ∇2v + 2∇u · ∇v + uv dx,

where ∇2u denotes the Hessian of u, and the last equality follows from the boundary
condition ∂u/∂n = 0 imposed on H̄2(Ω). The resulting preconditioner is the one
that was used in the numerical experiments, detailed in Sect. 3, and it is spectrally
equivalent to the preconditioner defined in (40).

Example 2 Let U , W , and K be as in Example 1, but let us set A = −Δ. Now A has
non-trivial kernel, consisting of the a.e. constant functions, and for constant u we have

‖T u‖L2(∂Ω) =
√

|∂Ω|
|Ω| ‖u‖H̄2(Ω) .
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Since assumptions (A1) and (A2) are valid, the optimality system is still well-posed.
In this case the inner product on Uα is given by

(u, v)Uα =
∫

∂Ω

uv ds + α

∫
Ω

D2u : D2v dx .

Example 3 Let us consider the “prototype” problem:

min
f, u

{
1

2
‖u − d‖2L2(Ω)

+ α

2
‖ f ‖2L2(Ω)

}

subject to

−Δu + u + f = 0 in Ω,

∂u

∂n
= 0 on ∂Ω.

Note thatwe here consider the case inwhich observation data is assumed to be available
throughout the entire domain Ω of the state equation.

If the usual variational form of the PDE is used, i.e.,

(u, w)H1(Ω) + ( f, w)L2(Ω) = 0, ∀w ∈ H1(Ω), (52)

then the control space equals L2(Ω), whereas the dual space is H1(Ω). The precon-
ditioning strategy presented in this section is therefore not applicable.

If instead we can assume H2(Ω)-regularity, we can use the variational form

(−Δu + u, w)L2(Ω) + ( f, w)L2(Ω) = 0, ∀w ∈ L2(Ω). (53)

Now, the control and dual spaces both equal L2(Ω). The methodology presented in
this section can thus be applied, and a robust preconditioner is obtained. Compared
with the preconditioner for the problem with boundary observations only, see Sect. 5,
Eq. (40), the only change is the replacement of M∂ , in the (2, 2) block of Bα with M .

We remark that in [13,14], parameter-robust preconditioners were proposed for
the “prototype” problem, using the standard variational formulation (52) of the PDE.
Those methods do not require improved regularity for the state space. Instead, they
require that observations are available throughout the computational domain.

7 Eigenvalue analysis

In Sect. 6 it was shown that the condition number ofBαAα , withAα defined in (44) and
Bα defined in (51), can be bounded independently of α, as well as independently of the
operators appearing in (42)–(43). Moreover, the numerical experiments indicate that
the eigenvalues are contained in three intervals, independently of the regularization
parameter α, see Fig. 2. In this section we detail the structure of the spectrum of the
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preconditioned system considered in Sect. 6, and we obtain sharp estimates for the
constants appearing in Theorem 3.

We consider self-adjoint linear operators Aα and Bα ,

Aα =
⎡
⎣αM 0 M ′

0 K A′
M A 0

⎤
⎦ and B−1

α =
⎡
⎣αM 0 0

0 K + αR 0
0 0 α−1M

⎤
⎦ (54)

where R is defined by
R = A′M−1A. (55)

We assume that A : U → W ′ and M : W → W ′ are continuous operators, for some
Hilbert spaces U and W . In addition we will make use of the following assumptions.

(B1) M is a self-adjoint and positive definite,
(B2) K + R is positive definite,
(B3) K is self-adjoint and positive semi-definite.

Assumptions (B1)–(B3) ensure thatBα is a self-adjoint and positive definite. In partic-
ular, assumptions (B1)–(B3) hold for Aα as in (44), provided that the assumptions of
Sect. 6 hold. For simplicity, we also assume that thatAα andBα are finite-dimensional
operators.

Theorem 4 Let p, q, and r be the polynomials

p(λ) = 1 − λ, q(λ) = 1 + λp(λ), r(λ) = p − λq(λ).

Let q1 < q2 and r1 < r2 < r3 be the roots of q and r, respectively. The spectrum
of BαAα is contained within three intervals, determined by the roots of p and r,
independently of α:

sp(BαAα) ⊂ [r1, q1] ∪ [r2, 1] ∪ [q2, r3]. (56)

Consequently, the spectral condition number of BαAα is bounded, uniformly in α,

k(BαAα) ≤ r3
r2

≈ 4.089. (57)

If K has a nontrivial kernel, inequality (57) becomes an equality.

Proof Consider the equivalent generalized eigenvalue problem

⎡
⎣αM 0 M ′

0 K A′
M A 0

⎤
⎦
⎡
⎣ f

u
w

⎤
⎦ = λ

⎡
⎣αM 0 0

0 K + αR 0
0 0 α−1M

⎤
⎦
⎡
⎣ f

u
w

⎤
⎦ (58)

We show that (58) admits no nontrivial solutions unless λ is as in (56).
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Since M is a self-adjoint isomorphism, by assumption (B1), we can rewrite (58) as
the three identities

αp f + w = 0, (59)

pK u + A′w − λαRu = 0, (60)

f + M−1Au − λα−1w = 0. (61)

Assume that λ is not contained within the three closed intervals of (56). Then p �= 0,
and we can use (59) to eliminate f from (61).

0 = αp( f + M−1Au − λα−1w) = αpM−1Au − (1 + λp)w

= αpM−1Au − qw.
(62)

Since q is nonzero, we can use (62) to eliminate w from (60),

0 = q(pK u + A′w − λαRu) = qpK u + α(p − λq)Ru

= qpK u + r Ru,
(63)

where the identity (55) was used. By assumption, pq and r are both nonzero. More-
over, it can be easily seen that pq and r have the same sign outside of the bounded
intervals of (56). From assumptions (B1)–(B3), we conclude that qpK + r R is a self-
adjoint definite operator. Then (63) only admits trivial solutions, hence λ can not be
an eigenvalue of BαAα .

The estimate (57) follows from (56), noting that | sp(BαAα)| ⊂ [r2, r3]. From (63)
it can be seen that the roots of r are eigenvalues of BαAα if Ker K is nontrivial. ��
Remark If A = (1 − Δ) : H̄2(Ω) → L2(Ω)

′
, then R = A′M−1A is characterized

by a bilinear form b(·, ·) as in (15):

〈A′M−1Au, v〉 =
∫

Ω

ΔuΔv + 2∇u · ∇v + uv dx

= (u, v)H2(Ω) +
∫

Ω

∇u · ∇v dx = b(u, v)

For discretizations Uh ⊂ U and Wh ⊂ W of A such that A(Uh) ⊂ M(Wh), the
discretization of b coincides with A′

h M−1
h Ah . This follows from an argument similar

to that in the proof of Lemma 5, and as a consequence, Theorem 4 can be applied to
the preconditioned discrete systems considered in Sect. 3.

8 Discretization with H1 conforming finite elements

The theory outlined in Sect. 4 provides a robust preconditioning technique for the opti-
mality system (20) assuming additional regularity and making use of H2 conforming
elements. However, this additional regularity only appears relevant to the discretiza-
tion of the (2, 2) block of the ideal preconditioner (51), since the coefficient matrix in
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(44) only involves second order operators. It therefore seems reasonable that the use
of sophisticated H2 conforming elements could be avoided in favour of standard H1

conforming elements, provided that we can implement an approximate inverse to the
fourth operator appearing in the preconditioner.

To be precise, we can discretize the optimality system (10)–(12) with H1-
conforming piecewise linear Lagrange elements for all the unknown variables. Note
that this requires that the integration by parts formula is applied to the state equation,
resulting in the variation problem

α( fh, ψh)L2(Ω) + (ψh, wh)L2(Ω) = 0 ∀ψh ∈ Vh,

(uh − d, φh)L2(∂Ω) + (φh, wh)H1(Ω) = 0 ∀φh ∈ Vh,

( fh, ξh)L2(Ω) + (uh, ξh)H1(Ω) = 0 ∀ξh ∈ Vh .

for ( fh, uh, ξh) ∈ Vh × Vh × Vh , where Vh is the space of continuous piecewise linear
functions. Since all three unknowns belong to the same space, the eigenvalue analysis
in Sect. 7 can be applied to the discretized coefficient matrix, which reads

⎡
⎣αMh 0 Mh

0 Kh Ah

Mh Ah 0

⎤
⎦ , (64)

where Ah and Mh are symmetric matrices. The analysis in Sect. 7 reveals that an ideal
preconditioner is given by

⎡
⎣αMh 0 0

0 Kh + αAh M−1
h Ah 0

0 0 α−1Mh

⎤
⎦

−1

, (65)

with condition numbers of the preconditioned system bounded independtly of α and
the discretization parameter h.

The operator Kh + Ah M−1
h Ah in the (2,2) block of (65) coincides with Schur

complement of a Ciarlet-Raviart mixed finite element formulation of the fourth order
problem (16)–(18), and can be thought of as non-local fourth order operator. Multigrid
techniques for a similar operator was studied in [8], where amultigridW-cycle applied
to a local operator approximating the Schur complement was shown to be an efficient
preconditioner.

Table 4 presents iteration numbers and estimated condition numbers for a simplistic
scheme where we replace the (2,2) block in (65) with Kh + Ah M̃−1

h Ah , where M̃h is a
lumped mass matrix. For the appxroximate inversion of (65), we applied an algebraic
multigrid W-cycle for the (2,2) block and two symmetric Gauss–Seidel iterations to
the remaining two diagonal blocks. The experiment was carried out on a unit square
domain and an L-shaped domain, with both domains triangularized with structured
meshes. For the L-shaped domain, the H2-regularity discussed in the beginning of
Sect. 2 is known not to hold.
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Table 4 Minres iteration counts with estimated condition numbers in paranthesis for the coefficient matrix
(64), with a preconditioner based on (65)

α\h 2−6 2−7 2−8 2−9

Square domain

10−10 81 (6.80) 82 (6.80) 88 (6.87) 93 (6.90)

10−8 90 (6.65) 93 (6.82) 91 (6.63) 89 (6.63)

10−6 95 (7.10) 90 (6.63) 89 (6.66) 88 (6.71)

10−4 89 (6.63) 89 (6.68) 88 (6.72) 86 (6.73)

10−2 79 (6.63) 79 (6.70) 78 (6.73) 78 (6.73)

1 69 (6.68) 68 (6.74) 67 (6.75) 67 (6.75)

L-shaped domain

10−10 80 (6.80) 82 (6.76) 88 (6.81) 93 (6.87)

10−8 90 (6.65) 93 (6.73) 91 (6.63) 89 (6.63)

10−6 93 (6.92) 90 (6.63) 89 (6.64) 88 (6.71)

10−4 89 (6.64) 89 (6.68) 92 (8.16) 92 (10.2)

10−2 85 (8.25) 87 (10.2) 89 (13.1) 90 (17.4)

1 90 (16.4) 93 (22.5) 94 (32.0) 86 (46.9)

The (2,2) block of (65) was replaced by an AMG W-cycle (BoomerAMG from the Hypre[4] library),
constructed from the operator Kh + Ah M̃−1

h Ah , where M̃h is a lumped mass matrix. The AMG operator
was constructedwith 0.5 treshold parameter, with other parameters set to their default values. The remaining
twodiagonal blockswere each replaced two symmetricGauss–Seidel iterationswere applied. The optimality
system was solved approximately with a random initial guess and relative convergence criterion (19) with
ε = 10−8

The iteration numbers reported in Table 4 appears bounded, although we observe
an increase in the estimated condition number for the L-shaped domain as the mesh
is refined. Although the condition number with an exact inverse (65) is bounded in
accordance with the analysis in Sect. 7, this appears not to be the case when the exact
inverse of the (2,2) block is replaced with an AMG cycle.

We remark that for unstructered meshes we observed iteration counts increasing
with mesh refinement, indicating the need for a more sophisticated approach to the
multilevel approximation of the (2,2) block, for example as in [8], for more compli-
cated geometries.

9 Discussion

Previously, parameter robust preconditioners for PDE-constrained optimization prob-
lems have been successfully developed, provided that observation data is available
throughout the entire domain of the state equation. For many important inverse prob-
lems, arising in industry and science, this is an unrealistic requirement. On the contrary,
observation data will typically only be available in subregions, of the domain of the
state variable, or at the boundary of this domain. We have therefore explored the pos-
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sibility for also constructing robust preconditioners for PDE-constrained optimization
problems with limited observation data.

For an elliptic control problem,with boundaryobservations only,wehavedeveloped
a regularization robust preconditioner for the associated KKT system. Consequently,
the number of Minres iterations required to solve the problem is bounded indepen-
dently of both regularization parameter α and the mesh size h. In order to achieve
this, it was necessary to write the elliptic state equation on a non-standard, and non-
self-adjoint, variational form. If this approach is employed, then the control and the
Lagrange multiplier will belong to the same Hilbert space, which leads to extra reg-
ularity requirements for the state. This fact makes it possible to construct parameter
weighted metrics such that the constants appearing in the Brezzi conditions, as well
as the constants in the inequalities expressing the boundedness of the KKT system,
are independent of α and h. Consequently, the spectrum of the preconditioned KKT
system is uniformly bounded with respect to α and h, which is ideal for the Minres
scheme. These properties were illuminated through a series of numerical experiments,
and the preconditioned Minres scheme handled our model problem excellently.

The use of a non-self-adjoint form of the elliptic state equation leads to additional
challenges for conforming discretization schemes and in multigrid implementations.
For the numerical experiments, we employed a C1 finite element discretization that is
H2-conforming, where the rectangular elements are tensor products of Hermite inter-
vals. This discretization is limited to structured meshes. While there are other, more
flexible C1 finite element discretizations available in two dimensions (e.g. Argyris
and Bell triangles), all of the methods suffer from high computational cost due the
smoothness requirements imposed on the nodal basis functions. In three dimensions,
the situation is even worse, and C1 discretizations with tetrahedrons become nearly
intractable, see e.g. [15].

Some of the difficulties with traditional C1 finite element discretizations can be
avoided with Galerkin methods making use of basis functions that naturally fulfill
the smoothness requirements. Examples of such methods include discretization with
spline basis functions, such as isogeometric analysis [3]. Another approach is the
virtual element method [2]. However, the development of multilevel methods for the
fourth order operator in the preconditioner (51) would remain a challenging problem.

We have also demonstrated that the technique is applicable also outside of H2-
conforming discretizations.

Our findings for the simple elliptic control problem were generalized to a broader
class of KKT systems. It turns out that the methodology is applicable whenever the
control and the Lagrange multiplier belong to the same space, and extra regularity
properties are fulfilled by the state equation - these are the key issues. Froma theoretical
perspective, this is in many cases not a severe restriction, but it gives rise to new
challenges for the discrete problems. This is even the case for the elliptic state equation
considered in this text. Also, our approach will not yield α independent bounds if the
control is only defined on a subdomain of the domain of the state equation. In such
cases, the spaces for the control and the Lagrange multiplier will not coincide. How to
design efficient parameter-robust preconditioners for such problems, is, as far as the
authors know, still an open problem.
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