30 research outputs found

    Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications

    Get PDF
    MEMS (Micro Electro Mechanical System) based flexible devices have been studied for decades, and they are rapidly being incorporated into modern society in various forms such as flexible electronics and wearable devices. Especially in neuroscience, flexible interfaces provide tremendous possibilities and opportunities to produce reliable, scalable and biocompatible instruments for better exploring neurotransmission and neurological disorders. Of all the types of biomedical instruments such as electroencephalography (EEG) and electrocorticography (ECoG), MEMS-based needle-shape probes have been actively studied in recent years due to their better spatial resolution, selectivity, and sensitivity in chronical invasive physiology monitoring. In order to address the inherent issue of invasiveness that causes tissue damage, research has been made on biocompatible materials, implanting methods and probe structural design. In this dissertation, different types of microfabricated probes for various applications are reviewed. General methods for some key fabrication steps include photolithography patterning, chemical vapor deposition, metal deposition and dry etching are covered in detail. Likewise, three major achievements, which aim to the tagets of flexibility, functionality and mechanical property are introduced and described in detail from chapter 3 to 5. The essential fabrication processes based on XeF2 isotropic silicon etching and parylene conformal deposition are covered in detail, and a set of characterization is summarized

    Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications

    Get PDF
    MEMS (Micro Electro Mechanical System) based flexible devices have been studied for decades, and they are rapidly being incorporated into modern society in various forms such as flexible electronics and wearable devices. Especially in neuroscience, flexible interfaces provide tremendous possibilities and opportunities to produce reliable, scalable and biocompatible instruments for better exploring neurotransmission and neurological disorders. Of all the types of biomedical instruments such as electroencephalography (EEG) and electrocorticography (ECoG), MEMS-based needle-shape probes have been actively studied in recent years due to their better spatial resolution, selectivity, and sensitivity in chronical invasive physiology monitoring. In order to address the inherent issue of invasiveness that causes tissue damage, research has been made on biocompatible materials, implanting methods and probe structural design. In this dissertation, different types of microfabricated probes for various applications are reviewed. General methods for some key fabrication steps include photolithography patterning, chemical vapor deposition, metal deposition and dry etching are covered in detail. Likewise, three major achievements, which aim to the tagets of flexibility, functionality and mechanical property are introduced and described in detail from chapter 3 to 5. The essential fabrication processes based on XeF2 isotropic silicon etching and parylene conformal deposition are covered in detail, and a set of characterization is summarized

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Intracortical Neural Probes with Post-Implant Self-Deployed Electrodes for Improved Chronic Stability.

    Full text link
    This thesis presents a new class of implantable intracortical neural probe with small recording electrodes that deploy away from a larger main shank after insertion. This concept is hypothesized to enhance the performance of the electrodes in chronic applications. Today, electrodes that can be implanted into the brain for months or years, are an irreplaceable tool for brain machine interfaces and neuroscience studies. However, these chronically implanted neural probes suffer from continuous loss of signal quality, limiting their utility. Histological studies found a sheath of scar tissue with decreased neural density forming around probe shanks as part of an ongoing chronic inflammation. This was hypothesized to contribute to the deterioration of recorded signals. The neural probes developed in this thesis are designed to deploy electrodes outside this sheath such that they interface with healthier neurons. To achieve this, an actuation mechanism based on starch-hydrogel coated microsprings was integrated into the shank of neural probes. Recording electrodes were positioned at the tip of micrometer fine and flexible needles that were attached to the springs. Before insertion, the hydrogel dehydrates, retracting the springs. After insertion, the gel rehydrates, releasing the springs, which then deploy the electrodes. The actuation mechanism functions in a one-time release fashion, triggered by contact with biological fluids at body temperature. The deployment of the electrodes occurred over the course of two hours and can be divided into three stages: For the first 20 s, the electrodes did not deploy. Within the first three minutes they deployed by roughly 100 µm (0.5 µm/s). Tor the following two hours they deployed an additional 20 µm (0.17 µm/min). The employed design supported six deploying electrodes, each at the end of a 5 µm wide and thick, and 100 µm long needle. These were attached to a shank with 290 µm width, 12 µm thickness and 3 mm length. The shanks could be inserted into the cortex of rats through an opening in the pia without breaking. The acquired waveforms indicate that some of the deployed electrodes were able to record neural action potentials.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113317/1/egertd_1.pd

    Diamond thin films:giving biomedical applications a new shine

    Get PDF

    Titania nanotube arrays as potential interfaces for neurological prostheses

    Get PDF
    2014 Summer.Includes bibliographical references.Neural prostheses can make a dramatic improvement for those suffering from visual and auditory, cognitive, and motor control disabilities, allowing them regained functionality by the use of stimulating or recording electrical signaling. However, the longevity of these devices is limited due to the neural tissue response to the implanted device. In response to the implant penetrating the blood brain barrier and causing trauma to the tissue, the body forms a to scar to isolate the implant in order to protect the nearby tissue. The scar tissue is a result of reactive gliosis and produces an insulated sheath, encapsulating the implant. The glial sheath limits the stimulating or recording capabilities of the implant, reducing its effectiveness over the long term. A favorable interaction with this tissue would be the direct adhesion of neurons onto the contacts of the implant, and the prevention of glial encapsulation. With direct neuronal adhesion the effectiveness and longevity of the device would be significantly improved. Titania nanotube arrays, fabricated using electrochemical anodization, provide a conductive architecture capable of altering cellular response. This work focuses on the fabrication of different titania nanotube array architectures to determine how their structures and properties influence the response of neural tissue, modeled using the C17.2 murine neural stem cell subclone, and if glial encapsulation can be reduced while neuronal adhesion is promoted

    Solvent Evaporation-Assisted Three-Dimensional Printing of Piezoelectric Sensors from Polyvinylidene Fluoride and its Nanocomposites

    Get PDF
    RÉSUMÉ Les matériaux piézoélectriques sont connus pour générer des charges électriques lors de leur déformation. Leur capacité à transformer linéairement l'énergie mécanique en énergie électrique, et vice versa, est utilisée dans la détection, l'actionnement, la récupération et le stockage d'énergie. Ces appareils trouvent des applications dans les domaines de l'aérospatiale, de la biomédecine, des systèmes micro-électromécaniques, de la robotique et des sports, pour n'en nommer que quelques-uns. On retrouve la propriété de piézoélectricité dans certaines céramiques, roches, monocristaux et quelques polymères. Le poly(fluorure de vinylidène) (PVDF) est un polymère piézoélectrique qui présente un coefficient piézoélectrique très élevé par rapport aux céramiques, ce qui laisse présager des applications de détection et de récupération d'énergie. La facilité de fabrication, la flexibilité et la biocompatibilité du PVDF sont autant de qualité qui en font un très bon candidat pour ces applications. Les dispositifs actuels à base de PVDF commercial sont disponibles en films plats ou en fibres unidimensionnelles (1D). L'impression tridimensionnelle (3D) du PVDF peut amener à des sensibilités, souplesses et capacités de fabrication accrues des capteurs embarqués en cas d'impression multi-matériaux. Le PVDF est un polymère semi-cristallin possédant cinq polymorphes, dont la phase β polaire qui présente les meilleures propriétés piézoélectriques. Malheureusement, le PVDF, provenant de la fusion ou de la dissolution, cristallise en une phase α non polaire thermodynamiquement stable. Diverses transformations physiques telles que le recuit, l'addition de charge, l'étirement ou le polissage sont effectuées pour transformer la phase α en phase β. En raison de la cristallisation inhérente du PVDF dans la phase α, il y a eu très peu de tentatives de fabrication de structures 3D à partir du PVDF. L'électrofilage en champ proche et la Déposition de Filament Fondu ont permis de fabriquer certaines structures 3D couche par couche avec du PVDF, soit avec l'application de hautes tensions électriques, soit avec la fusion à haute température du polymère. Et les deux nécessitent un traitement de polarisation pour conférer la piézoélectricité aux structures imprimés. Pour fabriquer des capteurs incorporés ou conformes, sur des substrats donnés, il est essentiel de ne pas avoir d'effets négatifs sur les matériaux adjacents à cause de la polarisation pendant le processus d'impression. Ainsi, dans ce travail, nous avons développé un procédé d'impression 3D qui crée des structures PVDF principalement en phase β, à température ambiante et sans application de tension de polarisation.----------ABSTRACT Piezoelectric materials are known to generate electric charges upon deformation. Their ability to linearly transform mechanical energy into electrical energy and vice versa, is utilized in sensing, actuation, transducing, energy harvesting and storage. These devices find applications in aerospace, biomedicine, micro electromechanical systems, robotics and sports, to name a few. Piezoelectricity is found in some ceramics, rocks, single crystals and a few polymers. Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that exhibits a very high piezoelectric stress coefficient as compared to the ceramics, making it the forerunner for sensing and energy harvesting applications. PVDF’s formability, flexibility and biocompatibility, further reinforce its candidature. Present commercial PVDF-based devices come in flat films or one-dimensional (1D) fibers. Three-dimensional (3D) printing of PVDF leads to higher sensitivity, better compliance, and ability to print embedded sensors in case of multi-material printing. PVDF is a semi-crystalline polymer possessing five polymorphs, of which the polar β-phase exhibits highest piezoelectric properties. Unfortunately, PVDF from melt or solution crystallizes into a thermodynamically stable non-polar α-phase. Various physical transformations like annealing, filler addition, stretching or poling are carried out to transform the α-phase into β-phase. Due to the inherent crystallization of PVDF into α-phase, there have been very few attempts in fabricating 3D structures from PVDF. Near-field electrospinning and fused deposition modelling have demonstrated some layer-by-layer 3D structures with PVDF, either with application of high electric voltages or high temperature melting of the polymer, respectively. Also, both these techniques require a poling treatment to impart the desired piezoelectricity to the printed features. To fabricate embedded or conformal sensors on given substrates, it is essential to not have any adverse effects on the adjacent or substrate materials due to poling during the printing process. Thus, in this work, we develop a 3D printing process, that creates PVDF structures that inherently crystallize in the piezoelectric oriented β-phase at room temperature without any applied voltages. Solvent-evaporation assisted 3D printing is employed to print 3D piezoelectric structures of PVDF based solutions. In this process, the polymer solution is filled into a syringe which is inserted into a pneumatic dispenser. The pneumatic dispenser is mounted on a robotic arm that is controlled via a computer program

    3-Dimensional Intracortical Neural Interface For The Study Of Epilepsy

    Get PDF
    Epilepsy is a chronic disease characterized by recurrent, unprovoked seizures, where seizures are described as storms of uncontrollable neuro-electrical activity within the brain. Seizures are therefore identified by observation of electrical spiking observed through electrical contacts (electrodes) placed on the scalp or the cortex above the epileptic regions. Current epilepsy research is identifying several specific molecular markers that appear at specific layers of the epilepsy-affected cortex. However, technology is limited in allowing for live observation of electrical spiking across these layers. The underlying hypothesis of this project is that electrical interictal activity is generated in a layer- and lateral-specific pattern. This work reports a novel neural probe technology for the manufacturing of 3D arrays of electrodes with integrated microchannels. This new technology is based on a silicon island structure and a simple folding procedure. This method simplifies the assembly or packaging process of 3D neural probes, leading to higher yield and lower cost. Various types of 3D arrays of electrodes, including acute and chronic devices, have been successfully developed. Microchannels have been successfully integrated into the 3D neural probes via isotropic XeF2 gas phase etching and a parylene resealing process. This work describes in detail the development of neural devices targeted towards the study of layer-specific interictal discharges in an animal model of epilepsy. Devices were designed utilizing parameters derived from the rat model of epilepsy. The progression of device design is described from 1st prototype to final chronic device. The fabrication process and potential pitfall are described in detail. Devices have been characterized by SEM (scanning electron microscope) imaging, optical imaging, various types of impedance analysis, and AFM (atomic force microscopy) characterization of the electrode surface. Flow characteristics of the microchannels were also analyzed. Various animal tests have been carried out to demonstrate the recording functionality of the probes, preliminary biocompatibility studies, and the reliability of the final chronic device package. These devices are expected to be of great use to the study of epilepsy as well as various other neurological diseases
    corecore