
Wayne State University

Wayne State University Dissertations

1-1-2012

3-Dimensional Intracortical Neural Interface For
The Study Of Epilepsy
Jessin Koshy John
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Electrical and Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
John, Jessin Koshy, "3-Dimensional Intracortical Neural Interface For The Study Of Epilepsy" (2012). Wayne State University
Dissertations. Paper 888.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/888?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F888&utm_medium=PDF&utm_campaign=PDFCoverPages


 
3-DIMENSIONAL INTRACORTICAL NEURAL INTERFACE FOR  

THE STUDY OF EPILEPSY 

by 

JESSIN KOSHY JOHN 

DISSERTATION 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, MI 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

2014 

MAJOR: ELECTRICAL ENGINEERING 

Approved by: 
 
______________________________________ 
Advisor         Date 
 
______________________________________ 

______________________________________ 

______________________________________ 

______________________________________ 

 
 



 
 

ii 
 

DEDICATION	

	

	

	
To	my	Savior,	

To	whom	I	owe	everything,	
Jesus,	the	Son	of	God	

	
and	
	

to	my	wife,	Soumya,	and	all	of	my	family	who	always	supported	
me	with	their	never	ceasing	encouragement	and	prayer



 
 

iii 
 

ACKNOWLEDGEMENTS	

I am grateful beyond words for my advisor, Dr. Yong Xu, for his encouragement, 

support, and discipline at times.  His constant motivation and his immense expertise in 

the field have always been an inspiration to me.  He continues to be my role model in 

whom I would like to evolve into as a researcher.  I also sincerely appreciate the advice 

and assistance of all my committee members, Dr. Jeffrey Loeb, Dr. Amar Basu, Dr. Mark 

Ming-Cheng Cheng, and Dr. Hazem Eltahawy.  Their wisdom and insight truly helped 

refine my research strategies and develop a good project.  I express my sincere gratitude 

to all my lab mates, Dr. Yuefa Li, Hongen Tu, Eric Kim, Yating Hu, and Qinglong 

Zheng, Daniel Barkmeier, and Danielle Senador.  Throughout the years they have 

assisted me in my research in countless ways and were always willing to give me advice.  

Thanks to all the DLAR staff as well, especially Susie, for all their care and assistance. 

I am filled with gratitude for my friends and family for their love, prayers, and support 

throughout the years.  Regardless of the challenges that I faced, I never faced them alone.  

I am grateful to my parents, Koshy and Annamma John, for their constant devotion 

throughout my life.  I am grateful to my wife’s parents, Sunny and Susan Mathews, for 

supplying joy and hope in the midst of my challenges.  I am grateful to my siblings, 

Jobin, Becky, Justin, and Selina John, for their constant support and encouragement.  I 

am grateful for my best friends, Alan and Ann Thomas, for bringing laughter and joy in 

the midst of my trials.  Most importantly, I am grateful to my wife, Soumya John.  She 

has strengthened me, motivated me, enlightened me, and unconditionally loved me 

throughout our relationship.  Without her, I am nothing.  To her, I owe everything.  I am 

excited to see what comes along in our journey together. 



 
 

iv 
 

TABLE OF CONTENTS 

Dedication ………………………………………………………………………………...ii 
 
Acknowledgements……………………….……………………………………………...iii 
 
List of Figures ................................................................................................................... vii 

CHAPTER 1: BACKGROUND ......................................................................................... 1 

1.1  About Epilepsy ................................................................................................. 1 

1.2  Rat Model of Epilepsy ...................................................................................... 3 

1.3  MEMS Technology .......................................................................................... 5 

1.4  Neural Devices ................................................................................................. 7 

1.5  Smart Skins ..................................................................................................... 10 

1.6  3D Neural Devices.......................................................................................... 11 

CHAPTER 2: DESIGN..................................................................................................... 14 

2.1  Introduction .................................................................................................... 14 

2.2  Folding Neural Probe Technology ................................................................. 14 

2.3  Device Parameters .......................................................................................... 15 

2.4  1st Generation Proof of Concept Devices ....................................................... 17 

2.5  2nd Generation Neural Probe Devices ............................................................. 19 

2.6  Device Design Modifications ......................................................................... 22 

2.7  Chronic Device Printed Circuit Board............................................................ 25 

2.8  Chronic Devices ............................................................................................. 29 

CHAPTER 3: FABRICATION ........................................................................................ 33 

3.1  1st Step: Thermal Oxidation ............................................................................ 34 

3.2  2nd Step: Oxide Patterning .............................................................................. 35 



 
 

v 
 

3.3  3rd Step: Gold/Titanium Deposition ............................................................... 36 

3.4  4th Step: Electrode/Bonding Pad Patterning ................................................... 37 

3.5  5th Step: Trench Patterning ............................................................................. 39 

3.6  6th Step: Parylene Deposition ......................................................................... 41 

3.7  7th Step: Parylene Patterning for Microfluidics .............................................. 43 

3.8  8th Step: Microfluidic Channel Etching/Resealing ......................................... 45 

3.9  9th Step: Front-side shaping/Parylene Patterning ........................................... 49 

3.10  10th Step: Backside Etch/Device Release ....................................................... 54 

CHAPTER 4: FABRICATION AND PACKAGING RESULTS .................................... 60 

4.1  Introduction .................................................................................................... 60 

4.2  2nd Generation Neural Devices ....................................................................... 61 

4.3  Trenches.......................................................................................................... 63 

4.4  Flexible Shank Devices .................................................................................. 64 

4.5  Chronic Devices ............................................................................................. 65 

4.6  Chronic Device Printed Circuit Board............................................................ 73 

4.7  Final Packaging of Device Assembly ............................................................. 74 

4.8  Microfluidic Chronic Neural Device Packaging ............................................ 76 

CHAPTER 5: DEVICE CHARACTERIZATION ........................................................... 78 

5.1  Introduction .................................................................................................... 78 

5.2  Electrode Impedance Analysis in Saline ........................................................ 78 

5.3  Electrode Impedance Results.......................................................................... 79 

5.4  Chronic Device Package Impedance Analysis ............................................... 82 

5.5  Microfluidic Channel Analysis ....................................................................... 85 



 
 

vi 
 

CHAPTER 6: ANIMAL STUDIES .................................................................................. 88 

6.1  Introduction .................................................................................................... 88 

6.2  Acute Neural Activity ..................................................................................... 88 

6.3  Slice Recording Data ...................................................................................... 90 

6.4  Acute 3D Neural Recording ........................................................................... 93 

6.5  Biocompatibility study ................................................................................... 95 

6.6  1st Attempt Chronic Neural Device Surgery ................................................... 97 

6.7  2nd Attempt Chronic Neural Device Surgery .................................................. 98 

6.8  Chronic Device Neural Signal Recording .................................................... 103 

CHAPTER 7: CONCLUSIONS/FUTURE WORK ....................................................... 106 

Appendix: Animal Welfare Assurance Form ................................................................. 108 

References ....................................................................................................................... 112 

Abstract ........................................................................................................................... 123 

Autobiographical Statement ............................................................................................ 125 

 



 
 

vii 
 

LIST	OF	FIGURES	
Figure 1-1: Electrocorticogram (ECoG) recording of epileptic cortex. (A) flat 1cm 

diameter electrodes arranged in an evenly spaced grid are placed on the 
suspected epileptogenic region of cortex with a control electrode placed at a 
region of non-epileptic cortex; (B) the respective neural signals acquired by 
the electrodes demonstrate high spiking activity at the seizure onset electrode 
and lack of high spiking neural signals at the control electrode [8] ................ 3 

Figure 1-2: (A) Injection of tetanus toxin into the left somatosensory cortex (blue arrow) 
is followed by the placement of 6 skull-based screw electrodes at the 
indicated positions. (B) Within one week, small interictal discharges can be 
detected with an expected electrical field centered over the injections site 
(pink oval). (C) The interictal discharge frequency increases selectively at the 
injection site. (D) Induction of pCREB on the left, spiking side is seen in 
layers 2/3 just as in human epiletpic neocortex. (E) NARP activation is seen 
in these same neuronal lamina, but does not cross the midline [22]. .............. 4 

Figure 1-3: Utah Electrode Array Fabrication Scheme [54] and SEM image [55] ............ 9 

Figure 1-4: Michigan Electrode Array fabrication scheme [56], optical microscope image 
[56], and design layout for microfluidic Michigan electrode array [57]. ........ 9 

Figure 1-5: 3D stacking of Michigan electrode array design schematic [56] ................... 12 

Figure 2-1: (a) Schematic of the planar device consisting of multiple silicon islands 
before folding.  (b) Assembly method of the 3D probes (cross sectional 
view). (c) 3D illustration of the assembled neural probes. ............................ 17 

Figure 2-2: Prototypic devices including (a) a two-island device with a flexible 
interconnect, (b) a 2D planar/penetrating device, and (c) a 3D 
planar/penetrating device .............................................................................. 17 

Figure 2-3: (a) Rigid single-island device, (b) rigid two-island device, (c) rigid three-
island device .................................................................................................. 19 

Figure 2-4: (a) a microfluidic device, (b) a prototype long interconnect device .............. 21 

Figure 2-5: Prototypic extra-long interconnect device ..................................................... 22 

Figure 2-6: Microchannel patterns with (a) 2nd Generation microchannels and (b) 3rd 
Generation microchannels ............................................................................. 23 

Figure 2-7: Trench Pattern ................................................................................................ 24 

Figure 2-8: Flexible shank devices ................................................................................... 25 



 
 

viii 
 

Figure 2-9: Connection schematic for the printed circuit board including the Omnetics 
connectors, the soldering sites, the wire bonding pads, the wire bonding 
islands, and the probe islands ........................................................................ 28 

Figure 2-10: Electrode-Only Chronic Device ................................................................... 30 

Figure 2-11: Integrated Microfluidic Chronic Device ...................................................... 31 

Figure 3-1: Simplified fabrication process of neural probes with integrated 
microchannels.  Left column: cross sectional view of silicon islands. Right 
column: cross sectional view of one probe shank. ........................................ 33 

Figure 3-2: Microchannel inlet after XeF2 Etching (before 2nd Parylene Deposition) ... 48 

Figure 3-3: (a) image of microchannel inlet after 2nd parylene layer demonstrating sealed 
microfluidic channel; (b) image illustrating the crossing of a microchannel 
and a metal trace ............................................................................................ 48 

Figure 3-4: After Creating Aluminum mask on Parylene ................................................. 52 

Figure 3-5: Parylene Residue ............................................................................................ 53 

Figure 3-6: Black Silicon During Frontside DRIE ........................................................... 54 

Figure 3-7: After XeF2 and consecutive DRIE ................................................................ 54 

Figure 3-8: Exploded wafer during final backside DRIE ................................................. 59 

Figure 4-1: Prototypic Neural device with planar and penetrating probe islands ............. 60 

Figure 4-2: (a) rigid (gold) single-island device, (b) rigid (platinum) two-island device, 
and (c) rigid (gold) three-island device ......................................................... 62 

Figure 4-3: (a) a microfluidic device, (b) a prototype flexible interconnect device ......... 62 

Figure 4-4: Prototypic extra-long (45mm) interconnect device ....................................... 63 

Figure 4-5: Probe tip demonstrating deep trenches and associated encapsulating parylene 
layer ............................................................................................................... 63 

Figure 4-6: Flexible shank devices with (a) two island device with completely flexible 
shanks and (b) flexible interconnect device with partially flexible probe 
shanks; devices also demonstrate stiffness-enhancing microchannels .......... 64 

Figure 4-7: SEM images of flexible shanks ...................................................................... 65 

Figure 4-8: A chronic device demonstrating the flexible shank feature ........................... 65 



 
 

ix 
 

Figure 4-9: (a) Planar silicon islands structure before folding; (b) One assembled neural 
probe with 2×3×2 electrode array (2 silicon islands, 3 shanks per island, and 
2 electrodes per shank) .................................................................................. 66 

Figure 4-10: SEM image of folded interconnect connecting two probe islands ............... 67 

Figure 4-11: (a) close up view of the flexible interconnections; (b) close up view of 
aligned probe shanks; (c) probe shanks of electrode-only chronic device .... 67 

Figure 4-12: (a) Photograph of a neural probe device with 2 silicon islands and 4 
integrated microchannels before folding; (b) photograph of an assembled 
neural probe device with a 2×3×2  array of electrodes (2 silicon islands, 3 
shanks per island and 2 electrode per shank) and 4 integrated microchannels
 ....................................................................................................................... 69 

Figure 4-13: Probe island of chronic microfluidic neural device ..................................... 69 

Figure 4-14: (a) SEM image of the backside of a bent parylene cable between two 
islands; (b) SEM image of the cross section of a parylene microchannel ..... 70 

Figure 4-15: Backside of microchannels of flexible interconnect joining the bonding 
island to the probe islands; fluidic microchannels and electrode-trace 
protecting microchannels can be identified ................................................... 70 

Figure 4-16: Cross-section of flexible interconnect cable; the microchannel cross-section 
appears smaller due to compression by the razor during cutting of the cable; 
microchannel interconnections can be identified between fluidic 
microchannels ................................................................................................ 71 

Figure 4-17: SEM image of a microchannel inlet ............................................................. 72 

Figure 4-18: SEM image of microfluidic outlet port ........................................................ 72 

Figure 4-19: Front-side and Back-side of chronic device printed circuit board ............... 73 

Figure 4-20: wire bonding between device wire bonding pads and PCB wire bonding 
pads ................................................................................................................ 73 

Figure 4-21: Optical images of (left) female Omnetics connector and (right) male 
Omnetics connector ....................................................................................... 74 

Figure 4-22: Fully packaged 3D neural recording array with, neural multi-electrode 
device, custom printed circuit board, and Omnetics connector; the device is 
connected to the board via wire bonding and the board is connected to the 
connectors via soldering between the tails of the connectors and the thru-
holes of the board .......................................................................................... 75 

Figure 4-23: Epoxy-protected device side of the PCB ..................................................... 76 



 
 

x 
 

Figure 4-24: Polyimide tubing connected to inlets of microfluidic device ...................... 77 

Figure 4-25: Assembly of microfluidic package assembly ............................................... 77 

Figure 4-26: Implantation model for animal surgery ........................................................ 77 

Figure 5-1: Relationship between gold electrodes and phosphate buffered saline in 
impedance measurements [84]; Rct relates to the charge transfer resistance 
between the saline and the electrode and Rs relates to the series resistance 
between saline and electrode ......................................................................... 79 

Figure 5-2: Impedances of six distinct gold electrodes (each 40×40 µm2) from the same 
device ............................................................................................................. 81 

Figure 5-3: Impedances of three distinct platinum electrodes (each 40×40 µm2) from the 
same device ................................................................................................... 81 

Figure 5-4: Atomic Force Microscopy of (a) the electrode surface and (b) the 
interconnect surface ....................................................................................... 82 

Figure 5-5: Impedance data of two channels before and after assembly of probe islands 83 

Figure 5-6: Impedance data for epoxy-protected fully packaged device; a 1 Kohm resistor 
and two unwired connections (p_black and b_white) are included for 
reference to the working channels ................................................................. 83 

Figure 5-7: Bending radius impedance characterization (a) experimental setup with probe 
island bent 90 degrees relative to the wire bonding island and (b) angle 
results for one of the respective electrode sites ............................................. 84 

Figure 5-8: The measured relationship between flow rate and pressure. The inset picture 
shows a liquid droplet emerged from the outlet port of the microchannel at 
the probe tip. .................................................................................................. 85 

Figure 5-9: Fluid traveling through microfluidic channel ................................................ 86 

Figure 5-10: Microfluidic testing via Evan's Blue dye (a) before delivery (b) after 
delivery .......................................................................................................... 86 

Figure 5-11: Agarose brain phantom with Evan’s Blue dye being released into the gel via 
the microfluidic channel; dye can be seen diffusing via convection after 
release through the microfluidic outlet .......................................................... 87 

Figure 6-1: (a) Spikes from two neurons recorded from the primary auditory cortex of a 
rat. Note the difference in amplitude and spike rate between the two neurons. 
(b) The spikes from the two neurons were well differentiated using a unit 
sorter program ............................................................................................... 89 



 
 

xi 
 

Figure 6-2: Cortical slice recording setup ......................................................................... 92 

Figure 6-3: Epileptiform activity from a cortical slice.  Channels C4 and P4 refer to 
electrode sites placed at differing cortical region.  (a) Beginning and 
development of seizure on channel P4; (b) Cessation of seizure event after 
continuous high spiking activity for around 2.5 minutes; (c) Short seizure 
event occurring on channel C4 ...................................................................... 93 

Figure 6-4: Impedance results of two electrodes before and after implantation; the slight 
increase in impedance is likely due to residual tissue left on the electrode 
sites ................................................................................................................ 94 

Figure 6-5: Acute 3D Neural Recording ........................................................................... 94 

Figure 6-6: In Vivo Acute Rat Cortical Study – rat was placed under pentobarbital 
general anesthesia and device was implanted at or near the auditory cortex of 
the rat; Recordings were collected from a Stellate EEG recording system; 
Device was a two island, 6 shank devices, with each shank having 2 
electrodes (2 electrodes were non-functional).  The electrodes were 
referenced differentially to one of the electrodes, electrode C3. ................... 95 

Figure 6-7: GFAP stain of cortical tissue slice demonstrating the gliotic effect of surgical 
implantation of the devices; devices were implanted for 4 weeks before 
removal; 2x magnification on left and 10x magnification on right. .............. 97 

Figure 6-8: 1st attempt chronic device implant ................................................................ 98 

Figure 6-9: Rat placed in stereotactic frame; the ear bars and nose bar prevent motion of 
the rat’s head during surgery ....................................................................... 101 

Figure 6-10: Exposed skull with landmarks Bregma and Lambda (b) exposed skull after 
creation of burr hole and placement of skull screws ................................... 101 

Figure 6-11: Device package after being fixed to skull screws and (b) probe island in burr 
hole before being inserted into cortex ......................................................... 102 

Figure 6-12: Implanted device package with probe island inserted into cortex and 
gelfoam covering burr hole ......................................................................... 102 

Figure 6-13: (a) Initial application of dental cement which fixes and protects neural 
device and binds together skull screws and (b) device package head cap after 
surgery completion ...................................................................................... 103 

Figure 6-14: Chronic device head cap package after 5 days of recovery; a reference wire 
was left attached to one of the skull screws to serve as a reference point for 
the device package ....................................................................................... 103 



 
 

xii 
 

Figure 6-15: Neural electrode map corresponding electrode sites on the neural device to 
EEG channels in the recording system ........................................................ 104 

Figure 6-16: Neural recording demonstrating a rhythmic chain of spikes occurring on 
channel 21 which corresponds to an electrode located at layers 2/3 of the 
somatosensory cortex .................................................................................. 105 

Figure 6-17: Neural recording demonstrating various neural signals across multiple 
channels occurring at different time points ................................................. 105 

	

	



1 
 

 

1. CHAPTER	1:	BACKGROUND	
 

Of all the most powerful computing tools available to man, none surpasses the power 

of the human brain.  Even to the current day, no technology has been created which 

matches the complexity and speed at which the human brain operates.  The computing 

power of the brain comes from cells within the brain known as neurons.  Although 

various categories of neurons exist, they are common in an important respect – they all 

receive and send signals via changes in membrane potential (voltage).  In spite of this 

generalization, just one neural signal may be passed through countless associated 

neuronal connections.  Given the sheer complexity of the human brain, diseases related to 

the brain are often among the most difficult to treat.  In spite of the challenges, mankind 

has made and continues to make great strides towards building understanding of the 

various functional regions and interconnections of the brain.  New technologies are 

allowing observation of brain function at the molecular and sub-molecular level.  As 

technology continues to improve, so improves the opportunity for elucidation of the 

underlying causes of neurological diseases.  One such disease that has yet to be fully 

understood is the disease known as epilepsy.  

 

1.1 About	Epilepsy	

Epilepsy is a disorder of the central nervous system which is characterized by 

recurrent, unprovoked seizures.  Seizures are abnormal central nervous system events in 

which groups of neurons suddenly fire synchronously, often impairing the individual.  

Patients with epilepsy carry a significant burden as seizures often occur unexpectedly.  
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10% of the population is affected by convulsive disorders and the incidence of epilepsy is 

as high as 3% of the population [1].  Single gene defects in ion channels or 

neurotransmitter receptors have been shown to be associated with some inherited forms 

of epilepsy [2-4]; however the majority of epilepsy cases are idiopathic.  In epilepsy 

patients with partial complex seizures, seizures are often found to originate at focal brain 

regions that often have no histopathological abnormalities [5].  Of these patients, those 

who are not successfully treated with medications often find great benefit in resection of 

the epileptic focus.  While in young patients the epileptic focus is usually found within 

the neocortex, in adults the epileptic focus is often within the hippocampus [6].  Why 

these often normal-appearing regions become or remain epileptic is still largely 

undetermined.  However, cases with neocortical foci are often characterized by a similar 

electrophysiological pattern of localized, often rhythmic, electrical discharges which can 

spread to other brain regions, thus resulting in clinical seizures.  Between clinical seizures 

(also known as ictal events), the epileptic foci generate unique, localized “interictal” 

discharges that often, but not always correspond to regions of seizure onset and therefore 

can sometimes allow neurologists and neurosurgeons to identify the abnormal epileptic 

regions [7].  Clinical studies are being undertaken to determine the electrical and spatial 

relationship between the latency and frequency of interictal discharges in relation to ictal-

onset zones as well as their relationship to post-surgical outcome.  As a means to 

understand the molecular underpinnings of focal epilepsy, genes have been identified 

which are consistently induced at these foci, regardless of the underlying cause [8].  

Induction of these genes has been found to be highly activity-dependent and the 

magnitude of induction seems to correlate more with interictal activity rather than ictal 
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activity [9].  These observations have led to the desire to investigate interictal activity and 

how these regions become epileptic.   

  

Figure 1‐1: Electrocorticogram (ECoG) recording of epileptic cortex. (A) flat 1cm diameter electrodes arranged in an 
evenly spaced grid are placed on the suspected epileptogenic region of cortex with a control electrode 
placed at a region of non‐epileptic cortex; (B) the respective neural signals acquired by the electrodes 
demonstrate high spiking activity at the seizure onset electrode and lack of high spiking neural signals at 
the control electrode [8] 

 

1.2 Rat	Model	of	Epilepsy	

In human epileptic tissue studies, genes encoding neurotransmitter receptors, ion 

channels, transcription factors, and neurotrophic factors have been found to have altered 

expression patterns in comparison to normal neural tissue [10-18].  Many of these 

molecular markers can be identified through immunoflourescence studies thus allowing 

visualization of the spatial progression and development of an epileptic focus.  These 

markers have been identified to be activated specifically in cortical lamina II and III with 

sharp lateral borders within the cortex. These findings suggests that increased lateral 

connectivity, known to be prominent within cortical layers II and III,  may be the 

structural basis of the epileptic discharge in human neocortex.  In an effort to correlate 

these molecular changes to real-time electrical potentials, rat models of epilepsy have 

been designed and utilized.  In the animal model of epilepsy described by Jefferys and 

others [19-21], tetanus toxin is injected into the somatosensory cortex of the rat to 
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produce a minimally damaging lesion with predominantly interictal spikes, and 

occasional seizures.  In the study in Figure 1-2 [22], tetanus toxin (100ng dissolved in 1 

microliter of .01M Sodium Phosphate) was injected into the somatosensory cortex and 

screw electrodes were implanted along both hemispheres (Figure 4a).  Within one week, 

interictal discharges were seen at the injection site (Figure 4b).  Over a span of 20 days, 

interictal spike frequency and amplitude increased selectively (when compared to vehicle 

injections) at the location of the cortex treated by tetanus toxin (Figure 4c). Eventually, 

the interictal activity transformed into secondarily generalized focal seizures.  Rats were 

sacrificed and analyzed histologically for activation of CREB (Cyclic AMP Response 

Element Binding protein) and NARP (a synaptic organizing protein), which demonstrated 

increased activation of both molecules in layers 2/3 (Figure 4d and Figure 4e) as seen in 

human studies. 

                  

        

Figure 1‐2: (A) Injection of tetanus toxin into the left somatosensory cortex (blue arrow) is followed by the 
placement of 6 skull‐based screw electrodes at the indicated positions. (B) Within one week, small 
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interictal discharges can be detected with an expected electrical field centered over the injections site 
(pink oval). (C) The interictal discharge frequency increases selectively at the injection site. (D) Induction 
of pCREB on the left, spiking side is seen in layers 2/3 just as in human epiletpic neocortex. (E) NARP 
activation is seen in these same neuronal lamina, but does not cross the midline [22]. 

 
Although much information has been gained from the rat model of epilepsy and the 

corresponding molecular studies, much is still to be understood.  The screw electrodes 

utilized to record interictal discharges have provided lateral information on the spread of 

epilepsy, thereby allowing correlation between the spread of interictal discharges and 

associated changes for molecular markers.  Due to the rat model of epilepsy, it is now 

known that areas of interictal activity have increases in synaptic plasticity molecules such 

as CREB and NARP along layers 2 and 3 of the cortex.  It is now important to know how 

interictal spiking actually changes from single to poly spiking to focal generalized 

seizures within these focal regions of interictal activity.  Based on the prior studies of 

molecular markers, it is hypothesized that interictal activity at least initiates propagation 

to adjacent layers of cortex through layers 2/3 of the cortex.  From layers 2/3, interictal 

spiking may then spread upward toward the surface of the cortex or downwards to deeper 

cortical layers.  To demonstrate this, a new technology must be designed that will allow 

elucidation of the interictal spiking region to map out the spread of ictal activity.  Using 

Microelectromechanical Systems (MEMS) technology, devices can be designed that will 

allow more in-depth analysis of cortical signals in the epileptic rat model. 

 

1.3 MEMS	Technology	

Microelectromechanical Systems (MEMS) are micro-scale devices that have the 

capability to perform electrical and mechanical functions.  MEMS devices have 

revolutionized the analytical chemical industry with the advent of micro total analysis 
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system (μTAS) microchips, also known as “lab on a chip”, which is a device that is able 

to perform chemical reactions, separation, and chemical analysis on a single microchip.  

One of the earlier demonstrations of such a miniaturized analytical microfluidic device 

was developed in 1975 in an effort to create a portable gas chromatography device [23].  

This first device included an injector valve, a separation column, and a thermal detector.  

Later, in the late 80’s and early 90’s, various groups started to develop micropumps, 

microvalves, and microreserviors [24].  The “lab on chip” technology later extended to 

the fields of the life sciences through DNA isolation functions, protein preparation, cell 

sorting, and even cell culturing [25, 26]. 

 

Extending further, devices have been made across all fields of medicine including an 

artificial “pancreatic tooth” design [27] and an artificial nephron system [28].  For a 

comprehensive review of various artificial devices created using MEMS technology, 

refer to a review article published by Dr. Mark Staples in the journal of pharmaceutical 

research [29].  Along this trend to develop devices suited toward the fields of medicine, 

many groups have desired to create artificial neural prosthesis devices.  MEMS 

(Microelectromehcanical Systems) technology has several unique advantages for the 

fabrication of neural probes.  First, photolithography enables precise definition of 

electrode size, shape, and position.  With MEMS technology, multiple 

recording/stimulation sites can be fabricated on a single probe shank. MEMS also enable 

the integration of other microstructures, such as microchannels for direct chemical 

delivery to neural tissues.  In addition, the batch fabrication capability of MEMS may 

lower the unit-cost of neural probes.  These are some of the reasons why MEMS neural 
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probes, including the well-known Michigan probes and Utah electrodes, have been 

extensively researched in the last two decades [30-52]. 

 

1.4 Neural	Devices	

Two of the more common modalities of neural probes include KCl-filled glass 

micropipette probes and metal-wire probes [52].  Both have been used extensively within 

the neurological sciences resulting in leaps in our understanding of the nervous system.  

However, both technologies have limitations.  The glass micropipette probes have 

characteristic high impedances, resulting in poor recording potential, and are limited in 

ability to generate multiple recording sites.  The metal-wire probes, which are used in 

deep brain stimulation, are limited to only one electrode per wire.  Although wire bundles 

can be produced, the possible configurations are limited and 3D configurations are poorly 

reproducible.  MEMS-based neural probes are a more recently developed modality of 

neural probe design.  Many current studies on MEMS-based neural probes address the 

concept of restoring sensation and motor function to patients with spinal cord lesions.  

Unlike other neural probe designs such as metal-wire probes [52], MEMS probe 

electrodes can be produced via photolithography, thereby allowing multiple electrodes on 

multiple shanks of various shapes, positions, and dimensions.  In addition, MEMS 

processes are Integrated-Chip (IC) compatible allowing for the integration of various chip 

components such as on-board amplifiers and multiplexers.  This can allow for recording 

of numerous arrays of electrodes and high signal-to-noise ratios.  Microchannels can also 

be integrated via MEMS processes to allow for chemical delivery of various compounds.  
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MEMS devices can be batch fabricated thus lowering costs and enhancing 

reproducibility. 

 

The initial Michigan probe developed in 1990 was a single probe shank with multiple 

stimulating sites [53].  The goal of the probe was to improve upon the conventional wire 

electrode.  The probe was fabricated using MEMS development techniques such as a 

micromachined silicon substrate and deposition of dielectric thin films.  The exposed 

stimulating sites were composed of Iridium oxide, a material which is biocompatible, 

capable of delivering high charge densities, and compatible with the probe production 

process.  A long term goal of this project was to develop this probe for use in neural 

prostheses. 

 

Along with the goal of developing a neural prosthesis, a device was desired that 

would allow high density recording or stimulation of deeper structures of the brain.  With 

this desire in mind, the Utah group developed the Utah probe in 1991 [36].  The initial 

Utah probe was composed of 100 penetrating electrodes which were each 1.5 mm long 

and sharpened at their tips (to facilitate cortical penetration).  In addition, the sharpened 

tips were coated with platinum to facilitate charge transfer to the neural tissue.  In 

contrast to the development of the Michigan probe, the Utah probe is produced from a 

silicon block through a process of thermomigration (alters the organization of the silicon 

material atomic structure) and guided chemical etching. 
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Figure 1‐3: Utah Electrode Array Fabrication Scheme [54] and SEM image [55] 

              

Figure 1‐4: Michigan Electrode Array fabrication scheme [56], optical microscope image [56], and design layout for 
microfluidic Michigan electrode array [57]. 

 
In later works, the Michigan group continued to add features to their neural probe 

design.  One important feature that was added was the application of microfluidic 

channels to their probes [57].  The microfluidic channels are constructed through wet 

anisotropic etching and sequential boron doping, thermal oxidation, and dielectric thin 

film deposition.  Further improvements Michigan has worked on include integrated in-

line flow meters (via an integrated thermal sensor) for detection of the rate of drug 

release [58] and the concept of hydrogel-filled microwells as a short-term alternative to 

microchannel delivery of drugs [59].  In addition to drug delivery, studies have been 
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conducted to develop flexible neural devices.  In 2001 developed a completely flexible 

polyimide-based intracortical electrode array [48].  Due to its flexible nature, the probe 

was capable of folding into a 3-dimensional structure.  Unfortunately, the drawback of 

this ultra-flexible probe design was that the probes were too soft to penetrate the pia 

mater thereby requiring the pia mater to be cut before insertion of the probe.  In addition, 

although the probe was incorporated with microwells, additional design capabilities were 

limited due to the ability to utilize silicon-based MEMS fabrication techniques. 

 

1.5 Smart	Skins	

Utilizing the flexible nature of polyimide, Dr. Tai and Dr. Jiang in 1997 demonstrated 

a flexible MEMS technology that incorporated the idea of several silicon islands 

connected by a polyimide film (skin) [60].  It was developed for use in aerodynamics 

studies as a shear stress sensor.  The process starts with wet etching of the backside of a 

silicon wafer to reduce the silicon to a desired thickness.  Then, aluminum is evaporated 

onto the front side of the wafer followed by polyimide spin coating which completely 

covers the aluminum layer.  Next a process known as reactive ion etching (RIE) is 

performed on the backside of the wafer to completely remove the underlying silicon 

substrate at locations defined by a mask.  Finally, polyimide is spin coated on the 

backside of the wafer thereby surrounding the exposed aluminum layer with polyimide 

on both sides.  To release the probes from the wafer, the probe is simply cut off with a 

razor blade.  

 



11 
 

 

Unlike current technologies at the time, this flexible sensor was capable of being 

folded and taped to a semi-cylindrical delta wing [61, 62].  The capabilities of the device 

were further extended by combining the sensor skin with an integrated circuit (IC) 

containing on-skin bias circuits, amplifiers, and multiplexers [63].  Entering into the 

medical field, in 2003 a tactile sensor skin was produced using the smart skin technology 

[64].  This device, which also uses strain sensors, was produced with the aim of providing 

a sensation of touch.  Another medical application of the smart skin technology was the 

development of wearable respiratory rate sensors.  The respiratory rate was detected 

using integrated accelerometers located on the silicon islands [65].  Through these smart-

skin studies, it was understood that flexible devices could be created by starting with 

silicon based devices coated with a polymer, and etching away the silicon leaving a 

device with a polymer base.  These studies paved the concept behind the modality for 

creation of a true 3D neural device.  

 

1.6 3D	Neural	Devices	

There is an increasing need for 3D arrays of high-density electrodes because of the 

3D nature of the nervous system.  However, practical 3D neural probes have not yet been 

realized.  The micro-wire and Utah array neural probes are both 2-dimensional by nature 

and the 3D Michigan probe is complicated and difficult to reproduce.   As mentioned 

before, the 3D versions of Michigan probes were realized by microassembling multiple 

planar chips on a silicon platform with the help of vertical and horizontal spacers [56].  

3D neural probes were also constructed by stacking discrete 2D devices [52, 66].  

Polymer 3D electrode arrays were developed by bending the polymer shanks out of the 
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plane [47, 48].  The NeuroProbes consortium of the European Union reported a 3D 

technology by slotting planar 2D devices into cavities on a silicon backbone [67].  The 

electrical contact was made using gold clips hanging over the edge of the cavities.  In 

spite of the multiple studies done to develop 3D devices, the use of 3D devices is limited 

due to challenges in assembly and packaging of the devices.  A reliable 3D device 

package is difficult to reproduce thus making mass production expensive and 

burdensome. 

 

 

Figure 1‐5: 3D stacking of Michigan electrode array design schematic [56] 

In addition to the desire to produce reliable 3D neural devices, many groups are 

realizing the need to have microfluidic channels which are integrated with the neural 

electrode sites to allow for targeted fluidic drug delivery.  As a result, many attempts 

have been made to implement microfluidic channels along with electrodes.  One group 

demonstrated electrodes and solid state channels using anisotropic silicon etching, boron 

etch stop, and thermal oxidation/LPCVD (low pressure chemical vapor deposition) 

sealing [57].  This device was implanted in the guinea pig superior/inferior colliculus in 

an effort to acutely monitor electrical reaction of neurons to various chemicals.  Another 

group demonstrated microfluidic channels on silicon-on-insulator (SOI) wafers [68].  
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Other groups have demonstrated polymer microchannels [49, 69].  However, 3D 

microfluidic channel implementation has not been demonstrated most likely due to the 

fact that routing of microchannels in 3D space is difficult to achieve. 

 

In this work, a novel technology for developing 3D neural probes based on a silicon 

island structure and a simple folding procedure has been developed. Some preliminary 

results have been presented in prior works [70-72]. This technology enables several 

highly desirable features. First, it provides a simple and reliable method to fabricate and 

assemble high-density 3D arrays of electrodes.  Second, this technology enables the 

integration of microchannels with 3D arrays of electrodes for localized fluidic drug 

delivery.  In addition, this technology allows the easy incorporation of a flexible cable 

between probe shanks and the interfacing die, which leads to very low-profile implants 

and helps to reduce the movement between brain tissue and probes [30].  In addition, the 

flexible cable allows production of a more stable 3D neural device package.  The 

fabrication process is also post-CMOS compatible, allowing the monolithic integration of 

CMOS (complementary metal oxide semiconductor) circuits with neural probes using 

economic post-CMOS process.  These important features will make the developed 

devices a valuable tool for various neural prostheses and neural disorder 

studies/treatments.  
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2. CHAPTER	2:	DESIGN	
 

2.1 Introduction	

 The design of the neural probe devices was a multi-step approach consisting of 

several different device designs with a variety of desirable features.  As the project 

progressed, better ideas and new features were implemented to enhance the functionality 

of the devices.  The various designs will be discussed in addition to the rationale behind 

the design and problems encountered with each design.  Device fabrication and 

packaging results including optical images of the various devices will be discussed in 

more detail in later chapters. 

 

2.2 Folding	Neural	Probe	Technology	

 The basic premise of this new technology is that devices can be created in such a way 

that portions of the device can be made completely flexible via etching away of any rigid 

portions of the device (such as silicon) while leaving the flexible portions of the device 

(such as Parylene or thin layers of gold).  The new neural probe technology is 

schematically illustrated in Fig. 4.  First, planar devices consisting of multiple silicon 

islands are fabricated on a Si (silicon) wafer using conventional MEMS technology and a 

flexible skin process [73-75]. Note that in addition to electrodes and microchannels, other 

microstructures such as reservoirs, valves, and pumps can all be fabricated using 

conventional MEMS processes.  In Fig. 4, the top three silicon islands are actually 2D 

neural probe devices, each of which carries a 2D electrode array and drug delivery ports.  
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The electrodes and microchannels on different islands can be accessed by the bonding 

pads and inlet ports on the bottom silicon island.  These silicon islands are connected by a 

parylene C layer, in which metal interconnects and microchannels are embedded.  

Parylene C is widely used for implantable devices due to its good biocompatibility.   

 

 The procedure of assembling the planar device into 3D probes is shown in Figure 2-1.  

First, island 1 is folded to island 2 back to back.  Next, island 3 is folded to island 2 face 

to face.  Note that a spacer is inserted between islands 2 and 3 to adjust the distance 

between probes in row 2 and row 3.  During this assembly process, epoxy is used to glue 

all pieces together.  Compared with the stacking method which utilizes discrete electrode 

arrays, the major difference here is the built-in interconnects between the 2D devices.  

This feature is especially desirable if a reservoir is integrated for on-chip drug delivery or 

circuits are integrated for on-chip signal processing or wireless communication.  The 

built-in interconnection will significantly reduce the system complexity.   In this model, 

the folding of three silicon islands results in a 3×3×2 3D array of electrodes.  More 

islands or denser electrodes can be integrated to develop larger 3D arrays of electrodes.  

A 3D model of the assembled neural probe is illustrated in Figure 2-1(c). 

 

2.3 Device	Parameters	

 As this is a batch fabrication process, a wide variety of devices can be designed and 

created simultaneously.  Although each device has its own features and characteristics, 

they have a few common characteristics.  The fabricated device probe shanks are 

typically 2800 µm long, 100 µm wide, 100 - 200 µm thick, and are spaced 650 µm from 
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each other.  The open electrode area is 40×40 µm2, with the most distal electrode 

typically being 300µm from the tip of the shank.   The electrode size is appropriate for 

the study of field potentials, which is important for certain neurological studies including 

the study of epilepsy [22].  Devices vary in regards to distance of electrodes from each 

other along a probe shank.  For example, some devices with two electrodes per shank 

have electrodes spaced 500µm from each other and other devices with three electrodes 

per shank have electrodes spaced 250µm from each other.  All device parameters were 

chosen based on the anatomical structure of the rat cortex, typically 1.5 – 2.5mm in 

thickness and several mm in length and width [22].  The interfacing die is connected to 

the shank island with a flexible 10 µm thick parylene cable, which allows the shank 

island to be positioned out of plane from the interface island.  It should be clear that the 

parylene cables bend while silicon islands remain rigid. 

Interfacing
die

3 islands

Flexible 
cable

A

Microchannel 
inlets

1 2 3

2
1

3Spacer 

 
                          (a)                                                            (b) 
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(c) 

 
Figure 2-1: (a) Schematic of the planar device consisting of multiple silicon islands before folding.  (b) Assembly 

method of the 3D probes (cross sectional view). (c) 3D illustration of the assembled neural probes. 

 

2.4 1st	Generation	Proof	of	Concept	Devices	

      
  (a)          (b)     (c) 
 
Figure 2-2: Prototypic devices including (a) a two-island device with a flexible interconnect, (b) a 2D 

planar/penetrating device, and (c) a 3D planar/penetrating device 

 
The first set of prototypic devices included various designs of electrode-only devices 

including devices with 3 to 4 sets of electrode sites per probe shank and devices with 
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fold-over electrode islands.  These prototypes were designed and created with the 

assistance of Dr. Yuefa Li, a postdoctoral researcher in our lab.  These devices have a 

variety of features.   The device of Figure 2-2(a) has two three-probe islands, with one 

island having 3 sets of electrodes per shank and the other island having 4 sets of 

electrodes per shank.  This demonstrated the concept of having two islands of electrodes 

which could be folded to create a 3-dimensional array of electrodes and varying numbers 

of electrodes per shank.  The device of Figure 2-2(b) demonstrated the ability to have an 

island which could be flexed in such a way that the probe island could be inserted 

through a planar (no shank) electrode island.  This would enable the assembly of a device 

package with electrodes on the shanks (penetrating) and electrodes at the base of the 

shanks.  Such a device could be used in comparison to the commonly used 

electrocorticography (ECOG) electrodes, which are cortex surface electrodes which are 

currently used to measure electrical activity of groups of neurons from the surface of the 

cortex.  The device of Figure 2-2(c) combines concepts of the other two devices in that it 

contains two foldable three-probe islands and a planar (no shank) electrode islands.  As 

before, the probe islands can be inserted through the planar island, however in this case 

the fully packaged device is a 3-dimensional array with surface electrodes.  This would 

allow measurement of a 3-dimensional region of electrical activity including activity at 

the surface of the cortex.  These prototypic devices demonstrated the flexibility in design 

of this technology in the creation of customized 3-dimensional neural electrode arrays.  

Other prototypic devices were created that demonstrated functionality of microfluidic 

channel integration along with electrodes. 
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2.5 2nd	Generation	Neural	Probe	Devices	

 

         
     (a)             (b)              (c) 
 

Figure 2-3: (a) Rigid single-island device, (b) rigid two-island device, (c) rigid three-island device 

 
The 2nd generation of device design involved modification of previous design 

parameters such that the devices could be utilized in a specific application – the study of 

neural signals within the cortex.  As has already been discussed in the background, 

activated phospho-CREB and NARP had been identified along layers 2 and 3 of the 

cortex in both human and animal models of epilepsy.  This knowledge formed the basis 

for the design parameters of the 2nd generation neural probes.  Using a rat brain atlas [76] 

with the assumption that the skull/subarachnoid space is 1mm [77, 78], the location of the 

most superficial 40µm x 40µm electrode was centered at a depth of 2.0mm from the top 

surface of the skull for the electrode to be located within layers 2 and 3.  Probe depth was 

designed to be greater than 2mm but less than 3.5mm so as not to damage underlying 

subcortical structures.  For signal acquisition at deeper layers, a second electrode was 

placed in layer 4 at a depth of 2.25mm and a third electrode was placed in layer 6 at a 

depth of 2.5mm [79].  With these design parameters in mind, the devices were designed 
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to have probe shanks with a length of 2.85mm and a width of 100µm.  Each design has 

three probe shanks for each probe island and an interface island with wire bonding pads.  

Devices with three electrodes per shank had electrodes for recording from layers 2/3, 4, 

and 6.  Devices with two electrodes per shank had electrodes for recording from layers 

2/3 and 6.  The probe shanks are spaced 650µm from each other.  Each 260µm x 260µm 

wire bonding pad on the interface island corresponds to a specific electrode site on the 

probe shanks.  Six device designs were created including features such as multiple 

islands, flexible interconnections, and integrated microfluidic channels. 

 

A rigid single-island device was created with three shanks and three electrodes per 

shank (Figure 2-3(a)).  The purpose of this design was to simplify the complexities of the 

device to a simple 2D array of electrodes with no microchannels and no flexible 

interconnects.  Previous prototypes of devices with flexible interconnections were seen to 

be very fragile with the interconnection being easily torn adjacent to the rigid islands.  In 

addition, previous packaging techniques along with the ultra-flexible (difficult to handle) 

interconnects made implantation with flexible interconnects challenging.  Two additional 

3D rigid devices were designed including a two-island package with three electrodes per 

shank (Figure 2-3(b)) and a three-island package with two electrodes per shank (Figure 

2-3(c)).  An integrated microfluidic device was designed having two probe islands, three 

shanks per probe island, and two electrodes per shank, with each shank having a 

microfluidic outlet just proximal to the electrode at layer 2/3 (Figure 2-4(a)).  The six 

microfluidic outlets were connected by microchannels to four inlets, with the right most 

and left most inlets each being connected to two outlets.   The patterns for the 
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microchannels were arrays of 150µm x 8µm rectangles.  During fabrication of these 

devices, the microchannels were to have an inner diameter of 30µm.  Lastly, two devices 

with flexible interconnections were designed in an effort to improve upon previous 

iterations of flexible interconnect devices.  Both devices have two probe islands, three 

shanks per probe island, and three electrodes per shank, with one of the probe islands 

being connected via a flexible interconnect to the wire bonding island.  As opposed to the 

sharp, right-angle interface between rigid and flexible regions of the previous iteration of 

flexible interconnects, these devices have flanked interfaces which reduce the 

susceptibility of developing a cut at the interface.  One of the flexible interconnect 

devices has an interconnect which spans about 8mm in length (Figure 2-4(b)), while the 

other flexible interconnect device has an interconnect which spans a length of 45mm 

(Figure 2-5). 

     
                            (a)          (b) 
 

Figure 2-4: (a) a microfluidic device, (b) a prototype long interconnect device 
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Figure 2-5: Prototypic extra-long interconnect device 

 

2.6 Device	Design	Modifications	

After development and testing of the 2nd generation neural probes, a variety of 

additional features were desired to improve the device design.  One such feature was a 

modified microchannel pattern (Figure 2-6).  The 2nd generation microfluidic channels 

often had blocked channels due to either microchannel collapse or due to material 

entering the large inlets during wafer processing.  As a means to solve the issue of 

microchannel collapse, microchannel patterns were modified to have smaller rectangular 

patterns (8µm x 15µm) in an effort to create silicon microbridges over the microchannels 

to enhance their structural stability.  In addition, the large microfluidic inlet was replaced 

with a three smaller, joined inlets with one of the inlets positioned perpendicular to the 

direction of the microchannels.  The smaller inlets and the third perpendicular inlet would 

serve as barriers to the flow of processing material entering and clogging the 

microchannels.  In addition, microchannel interconnections were placed between parallel 

(same inlet and same outlet) microchannels to serve as a failsafe if one of the parallel 

channels were to become clogged along the length of the channel.  Finally, a dual 

microchannel array pattern was compared to a single microchannel array pattern to 

determine which pattern would be more reliable.  It was later observed that the dual 

pattern resulted in a higher possibility of incompletely sealed channels. 
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Figure 2-6: Microchannel patterns with (a) 2nd Generation microchannels and (b) 3rd Generation microchannels 

 
Another important modification to the device design was the implementation of a 

trench pattern that surrounds the device shanks (Figure 2-7).  Although parylene is 

biocompatible, parylene only covered the top surface of the 2nd generation neural devices.  

The other three surfaces were exposed silicon, effectively decreasing the biocompatibility 

of the devices.  In addition, during implantation of the 2nd generation neural devices, the 

insulating parylene layer was seen to easily peel off during implantation in spite of use of 

adhesion promoter prior to parylene deposition (see Fabrication chapter).  In an effort to 

improve the biocompatibility of the shanks and improve the adhesion of the insulative top 

parylene layer, the initial strategy was to deposit parylene conformally over the devices 

and then etch directionally using an oxygen plasma etch, so that only the sidewalls would 

be coated with parylene (see Fabrication chapter).  Unfortunately, the directional etch 

was not uniform in removing parylene between shanks resulting in undesirable “parylene 

links” between adjacent probe shanks.  The modified strategy involved the development 

of a trench pattern which outlined the perimeter of the probe shanks.  This trench pattern 

would be only 8µm in width and would be at least 80µm in depth.  Once the trench is 
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made, it would be filled with parylene.  At the end of device processing, the parylene 

trenches would remain as the sidewalls of the probe shanks. 

 

Figure 2-7: Trench Pattern 

 
The final modification made to the 2nd generation neural devices was the development 

of partly flexible and completely flexible probe shanks.  According to comments made in 

previous literature [48, 69], rigid shanks could cause more trauma to neural tissue than 

flexible devices.  However, completely flexible devices would need to be inserted 

through guide holes, thereby complicating the surgical procedure [80].  Flexible devices 

were created by spring-boarding off the trenches made in the preceding modification.  

Since the trenches were reasonably deep (~100µm), it was conceived that completely 

flexible devices could be made by over-etching channels until all of the silicon material 

within the shanks were etched.  The deep trenches would serve as an etch stop, 

preventing further etch of silicon laterally.  Processing would then continue as before 

until device release, where the devices would be released with no silicon over the flexible 

areas of the probe shanks.  As a means to determine the best balance of flexible and rigid 

regions of probe shanks, a batch of prototypic flexible devices were created with varying 

flexible regions.  Additionally, non-functional channels were added along flexible 
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interconnect regions in an effort to adjust the flexibility/stiffness and enhance the 

durability of the flexible interconnects.  Previous flexible interconnects were too flexible 

and easily friable, making implantation of the probe islands difficult.   

  

Figure 2-8: Flexible shank devices 

 

2.7 Chronic	Device	Printed	Circuit	Board	

During prior attempts of chronic animal surgeries, it was promptly understood that 

the entire chronic implantation package needed to be as small as possible in order to 

minimize animal suffering and preserve functionality of the device.  As a means to 

achieve the smallest possible package while allowing for the largest number of channels, 

Altium designer was used to design and optimize a customized printed circuit board 

(PCB).  It was decided that the printed circuit needed a variety of components including a 

connector interface area, a wire bonding area, and soldering pads.   

 

From chronic package designs from other groups, it was apparent that the most 

commonly used connectors were the Omnetics connectors.  These connectors are small in 

size, mass produced, and utilized universally by many neural interface groups around the 
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country [52, 81].  The Omnetics connectors chosen were the female NPD-18-DD and the 

male NSD-18-WD.  Both connectors had a total of 18 channel and 2 guide post locations.  

Aside from the interface between each other, the female connector had straight thru-hole 

tails and the male connector had 18” 34 AWG lead wires.  The female connector tails 

could be fed through and soldered to thru-holes within the PCB.  The male connector lead 

wires could be easily interfaced with any external recording equipment.  According to 

specifications provided by the Omnetics Corporation, the tails of the female connector 

were for 13mil diameter thru-holes that were spaced (center-to-center) 25mils from each 

other vertically and 30mils from each other horizontally.   

 

The wire bonding area needed to be an appropriate size that it would comfortably fit a 

neural device bonding pad, while maintaining a high density of channels without making 

wire bonding too difficult.  A bonding pad diameter of 8mils with bonding pads space at 

8mils diagonal from neighboring bonding pads seemed to be the best configuration, 

balancing between ease of wire bonding and density of channels.  The bonding pads were 

arranged around the perimeter of a 3.5mm x 3.5mm square, where the device bonding 

island would be fixed.  It is important to note that a total of 40 bonding pads were placed, 

even though the Omnetics connectors only allowed for a total of 36 possible channels.  

To connect to the remaining 4 channels, 8 soldering pads were also incorporated into the 

PCB design.  In this manner, 8 channels could potentially be recorded from the neural 

devices without the need for connection to the Omnetics connectors.  These soldering 

pads could also be utilized in referencing to the circuit board. 
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After determining necessary components and component parameters, it was important 

to determine capabilities of various PCB manufacturing companies.  The chosen 

company, Hughes Circuits Inc., specified a minimum trace/space size of 3mils, a 

minimum hole/via size of 0.1mm, and a minimum thickness of 21 mils.  To improve the 

flexibility of the PCB in utilizing one or two Omnetics connectors (depending on number 

of channels needed), the inner wire bonding pads were connected to one connector and 

the outer wire bonding pads were connected to the other connector.  With these 

restrictions in mind, Altium designer software was utilized to design and optimize the 

configuration and arrangement of all components.  Once the component positions and 

connection tracings had been finalized, the design files were sent along with material 

specifications to Hughes Circuits Inc. for production.  The board material was set as 

Polyclad 370 HR (a non-conductive, rigid material) with a thickness of 21mils.  Due to 

the complexity of the connections, two conductive layers were necessary to minimize 

board size.  Electroless Nickel Immersion Gold (ENIG) was utilized for all exposed 

conductive surfaces such as the bonding pads, thru-holes, and soldering pads.  The final 

board design length and width were .51” x .458”, respectively. 
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Figure 2-9: Connection schematic for the printed circuit board including the Omnetics connectors, the soldering 
sites, the wire bonding pads, the wire bonding islands, and the probe islands 
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2.8 Chronic	Devices	

Utilizing lessons learned from the previous animal surgery attempts and the modified 

device designs, chronic neural devices were designed in an effort to realize the goal of 

observing change in electrical signals across the various cortical layers.  Previous neural 

devices were only appropriate for measuring neural signals during implantation (acute 

neural signal recording).  Chronic surgeries were attempted, however the bulky 

packaging of the assembly resulted in 100% failure rates, with the assembly breaking 

from the animals head in less than a week.  As mentioned in the preceding section, great 

strides were accomplished in miniaturizing the package assembly through development 

of the chronic device PCB.  The next step was development of the chronic neural device.  

During prior animal surgeries, it was realized that the most stable implantation setup 

would be such that the package is parallel to the plane of the skull, with only the probe 

islands being perpendicular to the skull implanted into the cortex.  In order achieve this, 

the flexible interconnect design was utilized with the wire bonding island being fixed 

along with the package to the skull.  Via the flexible interconnect between the wire 

bonding island and the probe islands, the probe islands could be positioned and implanted 

within the cortex.  Additional features were also included.  Two types of chronic devices 

were designed: electrode-only chronic devices and integrated microfluidic chronic 

devices.   
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Figure 2-10: Electrode-Only Chronic Device 

 
The electrode-only device (Figure 2-10) featured four electrode sites per probe shank.  

As with previous device parameters, electrodes were positioned at layers 2/3, layer 4, and 

layer 6 of the cortex.  However, an additional fourth electrode was positioned more 

superficially at a depth of 1mm – just below the surface of the skull.  The purpose of this 

electrode was to serve as a reference to previous animal studies which utilize screw 

electrodes as discussed in the background section.  In addition to the fourth electrode, this 

device featured anchoring holes which were placed at different areas along the probe 

shanks.  In spite of the trench patterns, the parylene layer would still have a tendency to 

peel off from the silicon substrate.  The anchoring holes, which were 8µm x 24µm 

rectangles, were etched and sealed along with the trench patterns.  Another added feature 

was embedded microchannels underneath the gold tracings of the flexible interconnects.  

A common problem with the longer flexible interconnects was peel off of the gold 

tracings underneath the parylene layer.  During processing of the previous designs of 

devices, a very thin layer of silicon dioxide would be the only layer covering the thin 



31 
 

 

metal layers running the flexible interconnects, thus the thin metal layers of the flexible 

interconnect would often be peeled off resulting in loss of channels.  For the electrode-

only chronic device, electrode tracings within the flexible interconnect regions would be 

split into two thinner electrode tracings with a microchannel between the two tracings.  

During processing, the microchannel would be etched to the extent that the electrode 

tracings would become freestanding.  At this point, parylene would be deposited within 

the microchannels, thereby fully encapsulating the electrode tracings with parylene.  

Additional improvements to the device design included thicker shanks (200µm thick) to 

improve the durability of the devices and additional microchannels within the flexible 

interconnects to enhance the strength and adjust the stiffness of the interconnects. 

 

Figure 2-11: Integrated Microfluidic Chronic Device 

 
The integrated microfluidic device featured two electrode sites per probe shank, with 

4 of the 6 probe shanks having a microfluidic outlet.  The two electrodes of the probe 

shanks were positioned at layers 2/3 and layer 6 of the cortex.  In contrast to the 

electrode-adjacent microfluidic outlets of previous designs, the outlet for this design was 
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integrated within the electrode positioned at layers 2/3.  In previous design iterations, 

processing material would often enter and clog the microchannels at the inlets and 

outlets.  This was believed to be due to the microfluidic channels being open during 

wafer processing.  As a means to prevent material influx into the channel, the outlets and 

inlets were designed such that the microfluidic inlet and outlet ports would be sealed until 

the electrode sites were opened via oxygen plasma RIE (see Fabrication chapter).  No 

additional inlet/outlet patterning steps would be necessary.  Oxygen plasma RIE used to 

open the electrode sites would continue until the inlet/outlet sites were fully open.  As 

described for the electrode-only devices, the integrated microfluidic devices also included 

parylene anchoring sites, microchannels underneath gold tracings in flexible regions, 

200µm-thick shanks, and stiffness/durability enhancing microchannels within the flexible 

interconnects. 
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3. CHAPTER	3:	FABRICATION	
 

Development of the devices was a multi-step approach consisting of several different 

layers and processing steps.  The results are summarized in Figure 3-1. 

 

Figure 3‐1: Simplified fabrication process of neural probes with integrated microchannels.  Left column: cross 
sectional view of silicon islands. Right column: cross sectional view of one probe shank. 
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The process starts with a 512µm thick 4 inch diameter (1 0 0) double side polished 

silicon wafer.   

 

3.1 1st	Step:	Thermal	Oxidation	

The first step is thermal oxidation in which a silicon dioxide layer is formed on the 

surface of the silicon wafers.  This silicon dioxide layer provides insulation for the metal 

traces.  In preparation for thermal oxidation, the silicon surfaces are first cleaned using 

the standard RCA clean process, which involves a sequential ionic clean (1:1:5 

NH4OH:H2O2:H2O at 80oC for 10 minutes) and organic clean (1:1:6 HCl:H2O2:H2O at 

80oC for 10 minutes) baths in which organic and ionic contaminants are removed from 

the surface.  The wafers are then immediately placed in the PWS thermal oxidation 

furnace with a wet oxide growth recipe, where the silicon dioxide layer is formed via wet 

oxidation at 1100oC for 25 minutes to achieve an oxide thickness of 300 nm.  After 

oxidation is complete, the silicon dioxide layer thickness is measured using an 

UltraClean100 Nanospec optical analyzer. 

 

Lessons/Potential Pitfalls: During thermal oxidation with the PWS oxidation furnace, 

oxidation is dependent on location of the wafers in the chamber.  Wafers deeper inside 

the chamber will have a thicker, more uniform silicon dioxide layer than wafers which 

are located closer to the opening.  For this reason, usually not more than 12 wafers are 

oxidized in one thermal oxidation run (12 wafers per wafer boat). 
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3.2 2nd	Step:	Oxide	Patterning	

After removing the wafers from the chamber, the oxide layer is patterned using 

SPR220 photoresist using standard photolithography techniques.  This step is important 

for removing any underlying oxide underneath the flexible areas of the devices.  To 

increase adhesion of the photoresist layer, hexamethyldisilazane (HMDS) can be pipetted 

and spun on the wafer at a speed of 2000rpm.  The SPR220 photoresist is spun at 3500 

revolutions per minute for 30 seconds after which the photoresist is soft baked at 115 oC 

for 90 seconds.  Using a chrome photomask with our desired oxide patterns, the 

photoresist is exposed for 6 seconds using a MA6 Mask Aligner.  The exposed wafers are 

then developed in AZ300 developer solution for 90 seconds after which they are rinsed 

and nitrogen dried.  The patterned wafers are then inspected using an optical microscope 

for signs of improper photolithography.  To ensure that there is no photoresist residue, the 

wafers are descummed using a Drytek Reactive Ion Etching (RIE) system.  Oxygen 

plasma is generated with a flow rate of 30sccm O2 gas with a power of 100 Watts and a 

threshold pressure of 200 mTorr.  The wafers undergo descumming for 30 seconds each 

to ensure no photoresist residue remains.  The wafers are then immersed in a buffered 

oxide etch solution (100:1 DI Water:HF) for 10 minutes.  Oxide etch patterning can be 

observed via optical microscope through observation of the pattern coloration from a 

bluish hue to a gray coloration.  However, completeness of oxide etch can be determined 

using the Nanospec optical analyzer.  Once oxide patterning is complete, photoresist can 

be stripped using immersion in PRS2000 solution at 60oC for 10 minutes.  After 

photoresist strip, wafer should be observed under optical microscope to ensure there are 

no observed photoresist residues.  Wafers can be descummed in oxygen plasma with a 



36 
 

 

flow rate of 30sccm O2 gas, a power of 150 Watts, and a threshold pressure of 200 mTorr 

for 90 seconds or as needed to remove any residues. 

 

Lessons/Potential Pitfalls:  Before spin-coating with photoresist, wafers must be as 

clean as possible to avoid streaking of the photoresist.  For the purposes of spin-coating 

after PWS thermal oxidation, surface contaminants should be minimal, so nitrogen blow 

may be sufficient.  If wafers are dirty, wafers can be rinsed and dried in the Verteq wafer 

washer/dryer.  In some cases, streaking may be unavoidable due to deformities and non-

uniformities in the oxide layer.  In this case, photolithography may still be successful, 

however patterning should be carefully observed before hard baking to ensure no short 

circuits or open circuits are observed.  Additionally, mask should be kept clean before 

and after exposing the wafer.  If any impurities are seen, mask can be cleaned in mask 

cleaner solution.  During exposure and development, caution should always be used to 

avoid over-development and over-exposure of the patterns.  For oxide patterning, various 

dilutions of buffered HF exist which can affect the rate of oxide etching.  It should be 

noted that a faster HF etch will result in corresponding decrease in oxide etch precision. 

 

3.3 3rd	Step:	Gold/Titanium	Deposition	

The third step is deposition of the titanium/gold metal layer on top of the silicon 

dioxide layer.  This is achieved using an Enerjet Electron Beam (E-Beam) Evaporator.  

The machine generates a high powered electron beam which strikes the metal target, 

thereby releasing the metal vapors for deposition onto the wafers.  The deposition rate is 

controlled by the power of the electron beam.  For our deposition, the deposition rate was 
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set to 5Å/sec for both layers.  Titanium is deposited first to a thickness of 200Å.  The 

titanium layer serves as an adhesion layer between the silicon dioxide layer and the gold 

layer.  Titanium was chosen as the adhesion layer because it is known to be more 

biocompatible than other possible adhesion metals.  Next gold is deposited to a final 

thickness of 2000Å.  After metal deposition is complete, the entire chamber is allowed to 

cool down for 10 minutes in order to avoid cracking of the thin films upon exposure to 

cold air. 

 

Lessons/Potential Pitfalls: Since deposition rate is dependent on the power of the 

electron beam, it is also dependent on location of the beam in striking the target.  The 

location must be adjusted as needed during the initial preparative stages of deposition 

(rise and soak stages) where the beam is visible.  Deposition rate should be consistent to 

allow for a more uniform deposition of metal layers.  It is also important to let the wafers 

cool before the chamber is vented.  If this step is skipped, there is a high possibility that 

the heat exchange between the hot wafers in the chamber and the cool nitrogen air 

entering the chamber will cause the wafers to have many cracks along the metal layers. 

 

3.4 4th	Step:	Electrode/Bonding	Pad	Patterning	

After removing the wafers from the chamber, the metal layers are patterned using 

SPR220 photoresist using an electrode pattern chrome mask and photolithography 

techniques presented in the oxide patterning section.  After proper photolithography is 

confirmed through optical microscopy, the wafers are descummed as described in 

preceding sections.  Next, the wafers are placed in a gold etch bath at room temperature 
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until gold etching is complete (typically ~8 minutes if the temperature of the bath is at 

room temperature).  After gold etch is complete, the wafers are rinsed, dried, and 

optically inspected for completion and accuracy of gold patterning.  The wafers are then 

placed in the titanium etch bath at room temperature until titanium etching is complete 

(typically ~1 minute if the temperature of the bath is at room temperature).  Again, the 

wafers are rinsed, dried, and optically inspected.  Next, the photoresist on the wafers is 

stripped and descummed via immersion in PRS2000 solution and oxygen plasma RIE as 

described previously.  Lastly, the oxide layer is removed via dry etching in a LAM9400 

RIE system.  The LAM9400 etching system differs from the Drytek RIE system in that 

this tool uses timed inductively coupled plasma generation and a DC bias source to create 

a higher density, more directional plasma.  This results in a faster, more precise etch of 

the oxide layer.  The recipe used utilizes a mixture of C2F6 and Argon gases. The Dektak 

profilometer can be utilized to observe completion of the oxide etch by referencing to the 

electrode tracings and measuring the depth to the silicon layer.  Etching is complete when 

the depth no longer changes and the surface is observed to be gray instead of bluish.  

Final verification of oxide etch completion can be done as before using the Nanospec 

optical analyzer. 

 

Lessons/Potential Pitfalls: During metal etching, care must be used as over-etching 

can results in a significant undercut of the metal patterns.  The metal baths have hot 

plates which heat the baths up to room temperature (25 or 28 oC) to allow for faster 

etching, however faster etching also means a higher chance of accidental over-etching.  

This is why it is better at this step to use bath temperature without using the hot plates to 
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heat the solutions.  Still, the wafers should be checked in the bath solution at least every 2 

minutes for the gold etch and every 15 seconds for the titanium etch, with more frequent 

checks as time progresses.  It is also important to note that Buffered Oxide Etchant 

solution exhibits similar titanium etching rates in comparison to Titanium Etchant 

solution and can be used interchangeably when Titanium Etchant solution is not 

available.  In the oxide etching step, wet etching was observed to require a long duration 

Buffered Hydrofluoric acid immersion, thus putting the thin titanium layer at risk of 

etchant attack.  For this reason, dry etching via the LAM9400 was chosen to remove the 

oxide layer.  The Drytek RIE can also be used to etch the oxide layer as well.  In this 

method, 40 sccm C2F6 (seen on the dial as 200) and 3 sccm Ar are pumped to the 

chamber with a power of 200 Watts and a threshold pressure of 200 mTorr with duration 

of about 15 minutes. 

 

3.5 5th	Step:	Trench	Patterning	

After the oxide layer has been removed, silicon should be the surface material 

exposed on the wafer (aside from the gold/titanium tracings developed in the preceding 

step).  This step involves patterning of the silicon substrate with deep trenches.  To 

achieve this, the substrate surface was primed with HMDS and then use SPR220 

photoresist with a spin rate of 2000rpm for 20 seconds.  This should result in a 

photoresist thickness of approximately 4µm.  The wafer is then soft baked at 115 oC for 

90 seconds.  Using a photomask with our desired trench patterns, the photoresist is 

exposed for 9 seconds using a MA6 Mask Aligner.  The exposed wafers are then 

developed in AZ300 developer solution for 90 seconds after which they are rinsed and 
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nitrogen dried.  The patterned wafers are then inspected using an optical microscope for 

signs of improper photolithography.  The wafers are then descummed for 90 seconds in 

Oxygen plasma RIE as described previously.  To ensure no residual oxide has grown on 

the silicon substrate from the oxygen plasma RIE, the wafers can be immersed in a 

buffered oxide etch solution (100:1 DI Water:HF) for 1 minute.  After the wafers are 

washed and dried, each wafer is placed within an STS Pegasus Deep Reactive Ion 

Etching (DRIE) system and is subjected to a timed BOSCH process.  The BOSCH 

process is an alternating etching process involving isotropic etching via reactive SF6/O2 

plasma and sidewall passivation using C4F8 which protects the sidewalls from further 

etching [82].  In this manner, DRIE is often used to create very deep features with 

relatively straight sidewalls.  At the Lurie Nanofabrication Facility (LNF) within the 

University of Michigan, a variety of BOSCH process recipes have been designed which 

allow for various etch rates for a variety of feature sizes.  The etch recipe which was seen 

to work well with thin trenches requiring high resolution was LNF recipe #1.  This recipe 

was used for approximately 40 minutes to achieve 150 - 200µm deep trenches. 

 

Lessons/Potential Pitfalls: In contrast to previous patterning steps, extra care must be 

taken to observe proper patterning of trench patterns as the trench patterns are very long 

(over 200µm) but very thin (less than 10µm), which results in increased difficulty of 

properly patterning the trenches especially with lower resolution masks.  If 

underdevelopment occurs, very thin or incomplete trenches could be created resulting in 

incomplete trenches within the silicon.  If overdevelopment occurs, this could result in a 

wider trench which effectively leads to a deeper trench and a wider undercut.  This could 



41 
 

 

cause later issues such as incompletely filled parylene trenches resulting in two separate 

layers of parylene within the silicon trench. 

 

3.6 6th	Step:	Parylene	Deposition	

The next step is deposition of the biocompatible polymer, Parylene C.  This layer 

serves multiple different purposes including sealing of the deep trenches and anchor 

points, insulation of the metal layers, as a mask for the microfluidic channel patterns, and 

to enhance the biocompatibility of the exposed areas of the device.  In order to improve 

adhesion between the Parylene and the silicon substrate, the wafers are first soaked in a 

solution of A-174  polymer deposition adhesion complex in IPA (A-174:IPA:DI water – 

1:100:100 respectively) for 45 minutes after which they are rinsed in IPA for 15 seconds 

and air dried for 2 minutes (no need for nitrogen blow).  Next, the wafers are placed in a 

wafer holder along with a clean glass slide within the clean parylene deposition chamber.  

The Parylene C dimer (corresponding to the desired end thickness of parylene) is placed 

inside an aluminum foil “boat” and placed within the vaporizer chute.  In order to seal a 

trench, it is important to understand that a thickness of parylene must be deposited that is 

at least half of the width of the trench to be sealed.  Deposition of Parylene is a conformal 

coating process, which means that parylene deposits on every exposed surface at an equal 

deposition rate.  For a 10µm wide trench, as the thickness of the parylene reaches 5µm, 

the trench sidewalls will each have 5µm thick parylene (total thickness of 10µm as the 

two sidewall parylene layers meet) thereby sealing the 10µm wide trench.  For this stage 

of the process, 8 grams of parylene C dimer is used for a thickness of approximately 5 

microns in order to seal 10µm wide trenches.  The chamber is then pumped down with 
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the cryo-pump until it reaches 11 – 12 mTorr and the furnace heats up to 670oC .  At this 

point, the vaporizer is turned on and the process is allowed to run to completion.  After 

deposition, the chamber is vented, the wafers and glass slide are removed, the chamber is 

pumped down again, and the system is shut off.  Lastly, the glass slide is scratched and 

measured using the Dektak profilometer to verify the thickness of the parylene.  The 

trenches should also be observed under microscope to verify that the trenches are 

completely sealed.  If needed, additional parylene should be deposited to completely seal 

the trenches. 

 

Lessons/Potential Pitfalls: Parylene deposition is done in a non-clean environment, 

however in order to ensure uniform parylene layer, the chamber must checked for debris 

and other material that may result in chamber leaks or unwanted material deposition.  

Razor blades are used gently to peel off excessively thick parylene layers deposited on 

the inside of the chamber after which Micro-90 cleaning solution is used to clean the 

particulate matter in the entire chamber.  Care must be taken not to allow parylene debris 

to enter the pyrolysis baffle.  If parylene enters the baffle, the debris may burn causing 

black debris to be deposited throughout the chamber and on the wafers.  Even with 

extreme care, Parylene deposition often results in small bubbles which may appear 

throughout the parylene layer.  Although this is usually harmless to the rest of the 

process, parylene should be checked optically to ensure layer is not excessively dirty or 

full of bubbles as this could lead to adhesion problems in later parts of the process. 
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3.7 7th	Step:	Parylene	Patterning	for	Microfluidics	

The first parylene pattern will be the pattern for the microfluidic channels.  Similar to 

the trench patterning described earlier, the substrate surface is primed with HMDS after 

which SPR220 is spun at a speed of 1800rpm for 30 seconds to achieve a thickness of 

5µm.  The wafer is then baked at 115oC for 90 seconds.  The exposure time for the 

channel patterns is still 9 second s as with the trench patterns, however it is important that 

the mask aligner utilizes direct, hard contact between the mask and the wafer to ensure 

full transference of microfluidic channels.  As such, the chrome mask should be checked 

for any residual photoresist and cleaned often to avoid loss of patterns.  The patterns are 

then developed for 90 seconds in AZ300 developer solution.  The microfluidic patterns 

should be checked thoroughly to ensure accuracy of photolithography.  Next, the exposed 

parylene sites are etched away using the LAM9400 with a fast isotropic parylene etching 

recipe for 1200 seconds (20 minutes).  Alternatively, Drytek RIE oxygen plasma can be 

used with 30sccm O2 gas, 150 Watts, threshold pressure of 200 mTorr, for duration of 25 

– 30 minutes.  Regardless of the tool used, the parylene should be etched enough such 

that the exposed parylene is fully etched and the underlying silicon is exposed.  Since the 

deposited parylene was approximately 5 microns, it is expected that the photoresist will 

be completely etched away by the time the exposed parylene is etched through.  Extra 

etching time is suggested to ensure no parylene residue remains on the exposed silicon.  

Dektak profilometry and optical inspection (scratch an area where parylene should be 

removed and observe if parylene is readily apparent) are both utilized to ensure parylene 

patterning.  After completion of parylene etching, the channel patterns should have either 

exposed silicon or exposed metal.  The wafers are dipped in gold etchant solution for 1 
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minute, followed by titanium etchant for 10 seconds, followed by 49% Buffered 

Hydrofluoric acid (BHF) solution for 1 minute in an effort to remove any exposed layers 

within the channel patterns on the silicon surface.  The wafers are immediately rinsed and 

dried (optionally, wafers can be baked at 105 oC for 6 minutes to remove any residual 

water).  The channel patterns should be observed optically to ensure that silicon is 

exposed at all points within the channel patterns.  Metal/Oxide etchant should be repeated 

if any metal/oxide material remains within the patterns. 

 

Lessons/Potential Pitfalls:  Before the SPR220 5µm mask was chosen as the masking 

layer for the microfluidic patterns, 8 micron thick photoresist (AZ 4620) was attempted 

as the masking layer.  Unfortunately, due to the size of the features (8 µm x 15 µm), the 

non-uniformity of the thick photoresist layer, the long exposure/development time, and 

the power of the mask aligner, thick photoresist photolithography resulted in hexagonal 

and rounded patterns instead of the desired rectangular patterns.  According to literature, 

this effect is due to a variety of factors including but not limited to over/under-exposure, 

over/under-development, and lamp non-uniformity.  If this is unavoidable, an aluminum 

mask can be utilized for the microfluidic patterning.  To improve adhesion between the 

aluminum mask and the parylene layer, the parylene layer is first roughened in the Drytek 

RIE.  Oxygen plasma with 30sccm O2 gas, 100 Watts, threshold pressure of 200 mTorr, 

and duration of 30 seconds should be sufficient.  Next, the aluminum is deposited using 

the E-beam evaporator with a final thickness of 200nm at a deposition rate of 3.5Å/sec (a 

higher deposition rate is acceptable here because the aluminum is just a masking layer).  

After deposition of the Aluminum layer, patterning occurs as described above with the 
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exception that after photolithography, the aluminum is etched away in an aluminum etch 

bath.  Whichever masking method is used for creating the channel patterns, the patterns 

must be checked for accuracy.  One of the leading reasons for blocked channels in this 

process is incomplete patterning.  The latest device design with dual channels and 

channel interconnections accommodates for some flaws in patterning, but certain areas of 

the device are very sensitive to incomplete patterning.  Specifically in areas with single 

channels such as appears within the probe shank itself, one missing channel pattern will 

result in a completely blocked channel.  Extra care must be taken to identify flaws in 

these regions.  Although the parylene can be somewhat over-etched in this step, excessive 

over-etching may result in wider channel patterns since the oxygen plasma etch 

(regardless of using either the LAM9400 or the Drytek RIE) is an isotropic etch.  After 

exposure of the underlying silicon/metal/oxide, the metal/oxide layers must be removed 

for the subsequent channel etching.  Residual material over the silicon could also result in 

incomplete/blocked channels. 

 

3.8 8th	Step:	Microfluidic	Channel	Etching/Resealing	

With the patterned parylene serving as a mask, the next step involves isotropic XeF2 

etching of the exposed silicon.  In this process, when the silicon is exposed to XeF2 gas, 

Xe gas is created along with SiF4 (a gas).  As this reaction occurs, the exposed silicon is 

etched isotropically, thereby creating an equal-directional etch of silicon with large 

undercuts.  The microfluidic channel patterns are composed of arrays of 8µm x 15µm 

rectangles which are spaced 10µm away from each other in the desired direction of the 

microchannel.  Before etching via the XeF2 gas, the microchannel patterns are first etched 
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via the STS Pegasus DRIE using LNF Recipe #1 for 5 minutes.  This allows the 

microchannels to be deeper, thereby enlarging and reducing flow resistance within the 

channels.  As the XeF2 reaction etches the exposed silicon isotropically, the undercut 

underneath the rectangular patterns converge eventually creating a silicon channel with 

overlying parylene.  It is important to note that a more extended XeF2 is important to 

allow for a smoother microchannel, however excessive XeF2 could result in short-circuit 

connections between microchannels.  The microchannel formation is achieved using 5 

cycles of 700mTorr XeF2 each of 1 minute duration.  During XeF2 etching, the chamber 

must be purged of all impurities through cycles of pumping and nitrogen venting.  After 

exposing the wafer to 700mTorr XeF2 for 1 minute, the F2 is consumed and the etching 

begins to saturate with SiF4, thereby reducing the etch rate.  For this reason, it is better to 

purge the chamber after 1 minute of XeF2 etching and start a new cycle.  After 5 to 10 

cycles of XeF2 etching, it is important to use a microscope to optically inspect the wafers 

to determine the etching rate of silicon and to determine if there are any open circuits or 

broken channels forming.  If the rectangular patterns are being properly etched, the 

exposed silicon should appear gray, at a slightly different focal length, and slightly 

roughened.  As the cycles progress, the etch rate can be determined by measuring the 

undercut of the rectangular patterns.  The target etching is around 25 microns of undercut 

on both sides of the channels.  This amount of undercut would result in a 50 micron 

diameter half-pipe microchannel.  Once this undercut has been achieved, the microfluidic 

patterns are inspected for completion of etching.  Channel undercut between rectangular 

patterns should be overlapping with no open circuits within the same channel and no 

short circuits between different channels.  The channel at this point is similar to a silicon 
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half-pipe with patterned parylene covering the top of the channel.  The rectangular 

patterns within the parylene are leak points for the channel and must be sealed to 

complete the microchannel formation.  In order to seal the channels, parylene is again 

deposited on the wafers to reseal the rectangular patterns.  As parylene coats uniformly, 

parylene will be deposited along the inside surface of the channel and at the rectangular 

openings until opposing sides of the rectangles join (since the rectangles are 8 microns 

wide, the sealing off should happen after 4 microns of parylene have been deposited).  

This will result in a microchannel with 4 micron thick parylene wall.  As a result, the 

50µm silicon channel will effectively produce a 46µm inner diameter half-pipe parylene 

channel.  Before depositing the second layer of parylene, the first parylene layer must be 

treated with oxygen plasma (30sccm O2 gas, 100 Watts, threshold pressure of 200 mTorr, 

and duration of 90 seconds) to improve the adhesion between the two parylene layers.  To 

ensure that all openings are effectively sealed, 12 microns of parylene (approximately 30 

grams of parylene dimer) are deposited on the wafers.  Additionally, this second thicker 

parylene enhances the durability of the flexible interconnecting cables for the completed 

device.  As before, a glass slide should be used to determine the final parylene thickness. 

Additionally, the microchannels should be observed under optical microscopy to ensure 

that the parylene within the rectangular patterns has converged. 
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Figure 3‐2: Microchannel inlet after XeF2 Etching (before 2nd Parylene Deposition) 

 
(a) 

 
(b)  

 
Figure 3‐3: (a) image of microchannel inlet after 2nd parylene layer demonstrating sealed microfluidic channel; (b) 

image illustrating the crossing of a microchannel and a metal trace 
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Lessons/Potential Pitfalls: During XeF2 etching, care must be taken to observe 

development of any short circuits or open circuits earlier on so that the problem can be 

resolved before further etching is done.  If areas of the microfluidic channel are not 

etching, additional wet etching may be needed to completely expose the silicon within the 

rectangular patterns.  If open circuits are formed due to some areas being etched slower, 

more etching time may be adequate to allow for completion of the microfluidic channel, 

however this may result in constricted flow within the channel which should be avoided 

if possible.  During XeF2 etching, it was noted that after cycles of 2 minutes of etching, 

the etch rate per cycle was still the same.  This led to the conclusion that 1 minute cycle 

intervals is adequate to ensure a more uniform etch rate per cycle.  It should be noted that 

etch rate is dependent on amount of exposed silicon.  More exposed silicon would 

increase the consumption of F2 thus resulting in a slower etch rate.  Optical microscopy is 

the simplest way to determine etch rate during XeF2 etching.  After deposition of 

parylene, rectangular patterns should again be optically inspected to determine if 

microfluidic channels are fully sealed.  If the parylene mask rectangular patterns were too 

wide in preceding steps, a larger amount of parylene may need to be deposited, however 

this will result in longer parylene etching times in later steps. 

 

3.9 9th	Step:	Front‐side	shaping/Parylene	Patterning	

After completion of the microfluidic channels, an additional 12 – 13 microns of 

parylene will have been deposited on the wafers.  To begin shaping the devices and 

exposing the desired electrodes, an aluminum mask is used to aid in parylene etching.  In 
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this process, an aluminum mask is desirable since the amount of parylene to be etched is 

rather large (about 15-16 microns) resulting in a prolonged etch time.  As a result of the 

isotropic oxygen plasma etch, the patterns would be considerably enlarged if a 

photoresist layer were used instead.  A metal mask is reflective for the plasma RIE and is 

therefore less likely to exhibit significant pattern enlargement.  In order to improve 

adhesion of the metal mask to the parylene, the surface is first roughened using oxygen 

plasma RIE with 30sccm O2 gas, 100 Watts, and a threshold pressure of 200 mTorr for 90 

seconds.  The aluminum layer is then deposited using the E-beam evaporator and 

patterned using standard photolithography.  The aluminum mask only serves as a 

masking layer, so a deposition of 200nm deposited at a rate of 1nm/sec is sufficient.  As 

in previous parylene etching steps, the exposed parylene sites are etched away using the 

Drytek RIE.  Oxygen plasma with 30sccm O2 gas, 150 Watts, and a threshold pressure of 

200 mTorr should be sufficient.  In this etch, the silicon adjacent to the devices, the 

electrode sites and bonding pads, and the microfluidic inlets and outlets must all be 

uncovered.  For the silicon, electrode sites, and bonding pads, 15-16µm of parylene must 

be etched away.  However for the inlets and outlet sites, an additional 4µm parylene wall 

must be etched away.  As parylene is etched at a rate of 1 micron for every 5 minutes 

using this recipe, 110 minutes should be enough to ensure the parylene is fully etched 

with a justifiable 10 minute over-etch.  In addition, 6sccm CF4 should be added to the gas 

mixture in the last 20 minutes to remove any parylene residue on the electrode/bonding 

pad sites.  Completion of parylene etching can be observed through Dektak profilometry 

and optical inspection.  The parylene etch should be complete when etching depth does 

not change.  The surface of the exposed electrode sites can be scratched via a needle-
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microprobe to verify that no parylene residue remains on the surface.  Additionally, a 

white-light interferometer may be used to approximate the depth of the inlets/outlets to 

verify that the inlets/outlets have been opened.  After completion of the parylene etch, the 

patterned parylene should be representative of the final device outline.  An AZ4620 8 

micron thick photoresist mask is used to protect the exposed gold sites and the 

inlets/outlets for the following DRIE step.  Since this is thicker photoresist, it is more 

viscous and less likely to clog the inlets/outlets.  This photoresist is spun at a rate of 

3000rpm for 30 seconds, after which it is soft baked at 100 oC on the hot plate for 10 

minutes.  Next, the photoresist is exposed for 80 seconds and developed in 400K 

Developer solution (mixed with 3 parts DI water) for 2 minutes after which it is optically 

inspected and subsequently descummed.  The wafers are then processed again using the 

LAM9400 with a dry oxide etch recipe in an effort to remove any residual oxide layers.  

A timed etch of about 90 seconds should be sufficient.  At this point, the only two surface 

layers should be thick photoresist and silicon, with the silicon exposed at areas adjacent 

to the parylene front-side patterns.  The next stage is etching of the silicon via the STS 

Pegasus standard DRIE BOSCH process as described during trench etching.  For this 

process, the recipe used is a modified recipe #3 with reduced power.  Recipe #3 differs 

from recipe #1 in that the cycle times are more beneficial for large features and faster 

etching times.  In the reduced power recipe, the RF coil generator is reduced in power by 

more than half in comparison to the standard recipe #3.  The purpose of this reduced 

power is to reduce the heating effects on the wafer.  Additionally, the wafer should be 

checked at least every 25 minutes to verify proper etching of silicon and to reduce 

cumulative heating effects.  A total of 90 minutes with the reduced power recipe results 
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in an etching depth of about 200 µm.  The Dektak surface profilometer can be used to 

verify etching depth.  After completion of DRIE etching, PR stripper is used along with 

Drytek descumming (as described earlier) to remove any residual photoresist.  Finally, 

the wafers are immersed in the aluminum etch bath to strip the aluminum mask. 

 

Figure 3‐4: After Creating Aluminum mask on Parylene 

 
 

Lessons/Potential Pitfalls: It was occasionally observed that with standard oxygen 

plasma etching of parylene, a thin parylene residue remained on the surface of the silicon 

after a long period of parylene etching.  This residue is quite undesirable resulting in an 

etch stop and black silicon production during the DRIE step.  For this reason, CF4 is 

added to aid in removal of this residue.  Optical microscopy and inspection by scratching 

the silicon surface is a quick way to determine complete removal of parylene.  Instead of 

using the LAM9400 to etch the residual oxide on the silicon, BHF was originally chosen 

due to ease of use.  However during the BHF dip, the thick photoresist was observed to 

not provide a complete protection of the aluminum mask.  Due to the large step height of 

the parylene, the step coverage of thick photoresist may be incomplete in protecting the 

40µm 
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entire aluminum mask and some areas of aluminum may be attacked by the BHF.  During 

DRIE, etching should be conducted carefully, starting with 2 – 5 minutes and continuing 

to larger duration cycles as a proper etch rate is observed (should be about 4 microns per 

minute).  This is important because black silicon can be observed earlier and prevented 

via simple measures such as more RIE etching of parylene or more LAM9400 dry oxide 

etching.  If black silicon is accidently formed, the surface can be treated via 

XeF2 isotropic etching for 3 or 4 cycles.  This will cause some undercut of the devices 

(undesirable) however it is necessary in order to proceed with DRIE. 

 

Figure 3‐5: Parylene Residue 

 

100µm 
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Figure 3‐6: Black Silicon During Frontside DRIE 

 

Figure 3‐7: After XeF2 and consecutive DRIE 

 

3.10 10th	Step:	Backside	Etch/Device	Release	

After the devices have been shaped from the front-side of the wafers, the last and 

final steps involve shaping of the backside of the devices and release of the devices via 

the Pegasus STS DRIE system.  For the majority of the rest of the process, processing 

will proceed on the backside of the wafers unless otherwise stated.  In the front-side 

etching step, the devices are shaped 200µm into the silicon.  In the back-side etching 

650µm 

650µm 
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step, the devices must be shaped into three distinct depths: a non-etched portion 

corresponding to the thickness of the device islands, a depth equivalent to the thickness 

of the wafer minus the depth of front-side etching for the device shanks, and a depth 

corresponding to the entire thickness of the wafer for the completely flexible regions.  

Since the etching depths are so large, photolithography after the first DRIE etch step 

would be very difficult.  As a result, the patterns for both sets of DRIE etching must 

somehow be on the wafer before proceeding with any DRIE etching.  Photoresist as a 

mask is easy to work with as no additional etching steps are needed and the photoresist 

can be removed easily using photoresist stripper solution or acetone.  However, this could 

only work for one of the masks as all photoresist masks would be removed by photoresist 

stripper solution or acetone.  A metal mask such as aluminum could be used, however 

certain tools restrict the use of metal masks (such as an aluminum mask), including the 

Pegasus STS DRIE system.  The parylene layer on the back-side of the wafer, which was 

grown from previous parylene deposition steps (which should be 15 micron thick), can be 

utilized as a good alternative for a metal mask in the DRIE.  Since the features for the last 

mask are quite large, a thick photoresist may be used to pattern the thick parylene layer. 

AZ9260 photoresist is spun on the backside of the wafer at a speed of 2000rpm to 

achieve a thickness of about 10µm.  This thickness is reasonable as only a few microns of 

parylene are actually needed to serve as a mask in the DRIE.  After the photoresist 

masked is completely etched away via oxygen plasma, the parylene will be etched 

uniformly until the originally exposed areas are completely etched.  This should result in 

a 10µm thick parylene mask.  To prevent thermal deformation of the parylene on the 

front-side, the photoresist is baked for 20 minutes at 100oC on a hot plate.  The thick 
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photoresist is then exposed for 55 seconds after which is developed in AZ400K developer 

solution (1:4 400K:DI water) for about 2:30 minutes.  As before, the parylene is etched 

away using Drytek oxygen plasma (30sccm O2 gas, 150 Watts, and threshold pressure of 

200 mTorr) for 90 - 100 minutes.  Near the end of the etch, 6sccm CF4 can be added to 

the gas mixture to etch away any parylene residue from the oxygen plasma etching.  To 

ensure the parylene is completely removed from the exposed regions, the wafers can be 

scratched and observed under optical microscopy.  After parylene has been removed, any 

underlying oxide layer is removed using the LAM9400 oxide etching recipe as in step 4 

(utilizing a mixture of C2F6 and Argon) for duration of about 2-3 minutes.  The Nanospec 

optical analyzer can be used to ensure removal of the oxide layer.  At this point, there 

should be only exposed silicon and a parylene mask corresponding to the final DRIE 

mask.  Next, we spin another thick photoresist layer as before (AZ9260 10µm thick 

photoresist) and pattern using the second to last photoresist mask, which corresponds to 

the completely flexible regions of the devices.  Photolithography proceeds as before for 

patterning of the parylene layer, after which the wafer is descummed using oxygen 

plasma as in previous steps.  After all masks patterning is complete, the wafer can be 

wafer bonded to a backup wafer using Crystal Bond 555.  Crystal Bond 555 is a wafer 

bonding agent that melts at 60 oC and is water soluble.  First, the backup wafer (a bare 

silicon wafer) is heated on a vacuum hot plate to 80 oC, after which the stick of crystal 

bond is applied to the center of the heated wafer thereby melting crystal bond on the 

wafer.  Next the device wafer is placed with the front-side facing the melted crystal bond 

of the backup wafer.  The vacuum hot plate is then pumped down for 5 minutes after 

which the chamber is slowly vented and the wafers are removed.  After bonding the 
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wafers to backup wafers, the combined wafers processed in the LAM9400 with the oxide 

etching recipe for 1 minute to remove any residual oxide layer.  As with the front-side 

etching, the reduced power LNF Recipe #3 is used in an effort to avoid excessive heating 

effects.  Etching continues until a depth of 200µm is achieved (corresponding to the 

depth of the front-side etching).  Etching depth can be measured using the Dektak surface 

profilometer.  After completion of the first DRIE etching process, the remaining thick 

photoresist is removed via spinning on a photolithography spinner (2000 rpm) using 

sequential acetone and isopropanol spray until all of the photoresist is removed.  This 

photoresist removal method is preferred compared to the usual photoresist stripper 

solution dip because it maintains the crystal bond between the device wafer and backup 

wafer, eliminating the need to first remove the crystal bond and then later reapply it.  

After photoresist removal, the bonded wafers can be descummed again to remove any 

residual photoresist.  At this point, the device wafer should have exposed patterned 

silicon with the previously patterned parylene layer still present.  The bonded wafers are 

placed back in the Pegasus STS DRIE and etched using LNF Recipe #3 until the devices 

are released.  Near completion of this final etching step, the underlying front-side shanks 

and the titanium/gold layers of the flexible parylene cables should start to become visible.  

After completion of the process, the devices should still be attached to the backup wafer 

via crystal bond.  To release devices, the bonded wafers are placed in hot water (60 oC) 

and the devices are carefully removed.  

 

Lessons/Potential Pitfalls:  For back-side photolithography, a special spinner chuck is 

needed for proper spinning of the front-side patterned wafer.  The reason for this is the 
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large front-side features which prevent proper vacuum grip of the normal spinner chuck.  

The proper chuck to use involves utilization of a rubber ring which elevates the wafer 

slightly above the surface of the chuck.  As the vacuum of the chuck is applied, the space 

between the wafer and the chuck surface is brought to vacuum thereby gripping the 

patterned wafer.  The process of applying crystal bond also presented various issues in 

the back-side etch process.  The typical process for bonding with crystal bond involves 

utilizing a few milligram shavings of crystal bond to the heated backup wafer.  For device 

wafers with limited to non-existant front-side features, the amount of crystal bond used is 

justifiable.  However, since there is a 200µm front-side etch, regions within the 200µm-

depth regions would not be in direct contact with the backup wafer, thus resulting in heat-

isolation and therefore overheating of the devices.  Crystal bond 555 is not a very good 

heat conductor, but it is significantly more conductive than air.  Thus, enough crystal 

bond should be used such that the 200µm depth is sealed but not too much such that there 

is poor conductivity between the device wafer and the backup wafer.  In addition, care 

must be taken to not allow any air bubbles to be trapped between the two wafers.  The 

vacuum hot plate helps in removing some trapped air, however air can still be trapped 

underneath the wafer.  In fact, during the second DRIE step (etch-through), a 

complication developed and the middle-portion of the wafer developed a small explosion 

which damaged many of the devices towards the middle of the wafer.  This explosion 

was likely due to the thermal heating and expansion of trapped gas within the wafer bond 

during DRIE.  In an effort to resolve the problem, crystal bond can be applied to both 

wafers before the two wafers are bonded together.  In this manner, trapped gas within the 

bond can be avoided, thus avoiding wafer explosion. 
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Figure 3‐8: Exploded wafer during final backside DRIE 
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4. CHAPTER	4:	FABRICATION	AND	PACKAGING	RESULTS	
 

4.1 Introduction	

As discussed in the design chapter, development of the neural devices was an iterative 

process. Prototypic devices were designed, analyzed, tested, and then redesigned with 

modified features. The first prototypic devices demonstrated some of the beneficial 

features of these devices including multiple islands, flexible interconnects, and integrated 

microfluidics.  The device depicted in Figure 4-1is one of the prototypic devices, having 

two penetrating probe islands, a planar-electrode island, and wire bonding island, with 

each island being connected via a completely flexible interconnect.  This device, like the 

other prototypic devices, demonstrated the overall processing technique in developing 

this neural device technology.  However, these devices had a number of issues including 

clogged microfluidic channels and easily friable island interconnections.  In addition, the 

parylene flexible interconnect was full of intrinsic stress causing the parylene cable to be 

distorted after fabrication.  In an effort to resolve these issues and generate neural devices 

with relevant device dimensions and parameters, the second generation of neural devices 

were designed and produced. 

 

Figure 4‐1: Prototypic Neural device with planar and penetrating probe islands 
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4.2 2nd	Generation	Neural	Devices	

These devices were the first batch of neural devices designed to complete a specific 

task – recording electrical signals occuring at different layers of cortex in the rat brain.  

As mentioned in the design chapter, six different device designs were created from the 

2nd generation of neural devices.  Three rigid electrode-only devices were created: a rigid 

single-island device, a rigid two-island device, and a rigid-three island device (Figure 

4-2).  As mentioned in the design section, the purpose of creating rigid device designs 

was to reduce the complexity of the neural devices.  The first prototype neural devices 

often suffered from broken and disconnected flexible interconnections.  In addition, the 

prototypic flexible devices created challenge during implantion of the devices, as the 

probe islands would be very difficult to manually position due to the ultra-flexible 

interconnects.  To avoid this problem and to allow reliable first-stage device 

characterization and animal testing, the rigid devices were designed with no flexible 

interconnection between probe islands and the wire bonding island.  Additionally, since 

there were issues in regards to the functionallity of the microfluidic devices, rigid 

microfludic devices were also created with no flexible interconnect (Figure 4-3(a).  These 

rigid devices were utilized in the majority of preliminary tests including impedance 

analysis, fluidic testing, and preliminary animal studies.  In addition to the rigid devices, 

two flexible interconnect devices were created with flanked interfaces between the rigid 

islands and the flexible regions (Figure 4-3(b) and Figure 4-4).  These flanked interfaces 

were presumed to reduce the likelihood of tearing of the flexible interconnect at the 

interface.  In addition, a 45mm long flexible interconnect device was prototyped, 
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demonstrating the ability to create device which could potentially interface with a circuit 

board far away from the site of implantation (Figure 4-4).  These 2nd generation devices 

were also created in two batches with different metalization layers: one was composed of 

20nm/200nm chrome/gold and the other was composed of 20nm/200nm 

titanium/platinum.  This allowed comparison studies between the impedance 

characteristics of both types of devices.  One of the platinum devices is depicted in Figure 

4-2(b). 

       

Figure 4-2: (a) rigid (gold) single-island device, (b) rigid (platinum) two-island device, and (c) rigid (gold) three-
island device 

 

    

Figure 4-3: (a) a microfluidic device, (b) a prototype flexible interconnect device 
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Figure 4-4: Prototypic extra-long (45mm) interconnect device 

 

4.3 Trenches	

After development and testing of the 2nd generation of neural devices, trenches were 

incorporated into the design.  One of the major benefits of the trenches was encapsulation 

of the sidewalls of the silicon shanks.  Figure 4-5 shows SEM images of the tip of a probe 

shank.  It can be clearly observed that the sidewalls are encapsulated with parylene thin 

film.  This sidewall encapsulation prevents the top parylene layer from peeling off during 

implantation.  In addition, the electrical isolation of metal traces is also improved, as the 

parylene on the sidewalls may prevent exposure of the metal traces near the edge of the 

shanks.  Another benefit of the trenches which was realized in later designs was that the 

parylene trench could serve as an etch stop in the lateral direction.  This allowed for the 

development of completely-flexible and partially-flexible devices. 

  

Figure 4-5: Probe tip demonstrating deep trenches and associated encapsulating parylene layer 
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4.4 Flexible	Shank	Devices	

Upon development of the trenches for encapsulation of the sidewalls, it was 

understood that the deep trenches could serve as an etch stop in the lateral direction.  

Thus the concept of creating flexible shanks was created as described in the design 

section.  Flexible shank designs were created for all of the 6 designs used previously.  As 

a means to conserve cost and time while fully demonstrating the technique, metal and 

oxide layers were not included in this batch of devices.  In addition to the flexible shank 

design concept, microchannels for the purpose of adjusting the stiffness and enhancing 

the durability of the flexible interconnect cables were also introduced in this design.  Two 

of the flexible shank devices are depicted in Figure 4-6.  Figure 4-7 depicts scanning 

electron microscope (SEM) images of the flexible shanks.  Figure 4-8 demonstrates 

utilization of the flexible shank concept on the chronic device design. 

    
 

Figure 4-6: Flexible shank devices with (a) two island device with completely flexible shanks and (b) flexible 
interconnect device with partially flexible probe shanks; devices also demonstrate stiffness-
enhancing microchannels 
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Figure 4-7: SEM images of flexible shanks 

 

 

Figure 4‐8: A chronic device demonstrating the flexible shank feature 

 

4.5 Chronic	Devices	

Chronic neural devices with different parameters have been designed and fabricated.  

Figure 4-9(a) shows a photograph of one fabricated planar device with two shank islands 

and one interfacing island (with bonding pads).  The assembled 3D neural probe with 
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4×3×2 array of electrodes is shown in Figure 4-9(b).  It should be noted that alignment of 

the probe islands was achieved manually through an optical microscope.  Better 

alignment could be achieved through the use of alignment holes.  This feature will be 

added in future device designs.  The folded parylene C layer connecting the Si islands can 

be clearly observed.   

 
(a) 

 

 
(b) 

 
Figure 4‐9: (a) Planar silicon islands structure before folding; (b) One assembled neural probe with 2×3×2 electrode 

array (2 silicon islands, 3 shanks per island, and 2 electrodes per shank) 
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Figure 4-10: SEM image of folded interconnect connecting two probe islands 
 

     
(a) 

 

       
     (b)          (c) 
 

Figure 4-11: (a) close up view of the flexible interconnections; (b) close up view of aligned probe shanks; (c) 
probe shanks of electrode-only chronic device 
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 3D chronic neural devices with integrated microchannels have been demonstrated as 

well. A prototype with a 2×3×2 3D array of electrodes and four microchannels has been 

developed as shown in Figure 4-12.  The four beams on the interfacing die are used to 

couple external tubing to on-chip microchannels.  Figure 4-13 shows an SEM picture of a 

probe island with six electrodes and two microchannel outlet ports. The SEM image of 

the backside of a bent parylene cable without trace-protecting microchannels is shown in 

Figure 4-14(a). Note that both metal traces and microchannels are embedded in the 

flexible parylene cables.  The embedded microchannels and metal traces are clearly 

observed. No breaks or cracks are observed on the folded microchannels, however some 

buckling of the channel can be identified.  Though this could increase the flow resistance 

of the channel, this may not cause blockage of the channel.  It should be noted that 

buckling in the folded microchannels can be avoided, as the bending radius can be 

adjusted by simply lengthening or shortening the flexible interconnect in the device 

design. The relationship between bending radius and flow rate will be analyzed in future 

studies.  The cross section of a microchannel is shown in Figure 4-14(d). It is clearly seen 

that the microchannel patterns are sealed completely by the thick parylene.   
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(b) 

 
Figure 4‐12: (a) Photograph of a neural probe device with 2 silicon islands and 4 integrated microchannels before 

folding; (b) photograph of an assembled neural probe device with a 2×3×2  array of electrodes (2 silicon 
islands, 3 shanks per island and 2 electrode per shank) and 4 integrated microchannels 

 

  

Figure 4-13: Probe island of chronic microfluidic neural device 
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(a) 

 

 
       (b) 
 
Figure 4‐14: (a) SEM image of the backside of a bent parylene cable between two islands; (b) SEM image of the 

cross section of a parylene microchannel 

 

Figure 4-15: Backside of microchannels of flexible interconnect joining the bonding island to the probe islands; 
fluidic microchannels and electrode-trace protecting microchannels can be identified 
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Figure 4-16: Cross-section of flexible interconnect cable; the microchannel cross-section appears smaller due to 
compression by the razor during cutting of the cable; microchannel interconnections can be 
identified between fluidic microchannels 

 

Figure 4-17 shows the SEM microscope image of the inlet area on the tip of the 

coupling beam.  The small discrete patterns are marks of openings on the parylene 

film for the XeF2 undercutting of the silicon substrate.   These opening were sealed 

after depositing another thick parylene layer due to the nature of the conformal 

coating.  Note that the inlets can be formed by either using larger openings or re-

opening the inlet ports via RIE.  To improve the yield, we used two parallel channels 

for one microchannel outlet with interconnections between parallel channels (Figure 

4-16).  Figure 4-18 shows the SEM image of one microchannel outlet.  This image 

demonstrates placement of a microfluidic outlet within an electrode site.  
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Figure 4‐17: SEM image of a microchannel inlet 

 

 

Figure 4-18: SEM image of microfluidic outlet port 
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4.6 Chronic	Device	Printed	Circuit	Board	

As described in the design chapter, a customized chronic device printed circuit board 

(PCB) was designed along with the design for the chronic devices.  As such, the spacing 

of the wire bonding pads on the PCB corresponds directly to the size parameters of the 

device wire bonding island.  The PCB is the platform used to connect the omnetics 

connector to the chronic neural device.  In addition, the board has soldering pads which 

also allow connection to the device.  The final board dimensions are length of .51”, width 

of .458”, and thickness of .021”.  Images of the PCB are depicted in Figure 4-19. 

      

Figure 4-19: Front-side and Back-side of chronic device printed circuit board 

 

Figure 4-20: wire bonding between device wire bonding pads and PCB wire bonding pads 
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Figure 4‐21: Optical images of (left) female Omnetics connector and (right) male Omnetics connector 

 

4.7 Final	Packaging	of	Device	Assembly	

Final package assembly begins with attachment of the Omnetics connectors to the 

circuit board.  Although the connector can be placed on either the device-side or the 

soldering pad-side of the PCB, placing the connectors on the device-side of the PCB 

creates challenges during wire bonding of the device, as the connectors get in the way of 

the wire bonding tool.  For this reason, the connectors are placed on the soldering pad-

side of the PCB.  The tails of the Omnetics connectors are fed through the thru-holes after 

which they are soldered at the point of contact between the tails and the thru-holes.  It is 

important to avoid soldering between adjacent thru-holes and adjacent tails, as this 

creates short-circuits between channels.  After soldering, the tails can be trimmed and the 

connections can be analyzed for any possible short-circuits.  The wire bonding island of 

the chronic neural device is then fixed via double-sided tape or epoxy to the PCB 

between the wire bonding pads of the PCB.  A K&S 4123 wire bonder tool with 1 mil 

diameter aluminum wire was used to create the wire bonds between the device and PCB 

wire bonding pads.  After wire bonding connections are made, the device should now be 

tested for identification and verification of functional channels using an impedance 
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analyzer (see device characterization section).  Once the channels are verified, the probe 

islands are assembled into their 3D assembly.  An image of the fully packaged device 

with wire bond connections is depicted in Figure 4-22.  At this point, the channels should 

be verified again to ensure no channels were lost during the folding process.  Once 

channels are verified, the delicate wire bonding can be protected using a low-viscosity 

non-conductive epoxy.  This epoxy can be placed over the entire device-side of the PCB 

to serve as a protectant and insulator, as this side will be attached to the skull of the rat.  

An image of the epoxy-protected assembly is depicted in Figure 4-23. 

 

Figure 4-22: Fully packaged 3D neural recording array with, neural multi-electrode device, custom printed 
circuit board, and Omnetics connector; the device is connected to the board via wire bonding and 
the board is connected to the connectors via soldering between the tails of the connectors and the 
thru-holes of the board 
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Figure 4-23: Epoxy-protected device side of the PCB 

 

4.8 Microfluidic	Chronic	Neural	Device	Packaging	

As with the electrode-only devices, the microfluidic devices also have a wire-bonding 

island which fits perfectly within the wire-bonding pads on the PCB.  As such, the 

microfluidic chronic neural devices are assembled similar to the electrode-only chronic 

device, with the exception of the microfluidic connections.  In order to connect to the 

microfluidic inlets, flexible polyimide tubing (with an inner diameter of 620 µm) was 

coupled to each microchannel inlet after which they were sealed with marine (water 

resistant) epoxy at the interface between the microfluidic channels and the base of the 

inlets (Figure 4-24).  After coupling of the tubing to the inlets, the device can be fixed 

and wire bonded to the PCB as with the electrode-only device.  An image of a fully 

packaged microfluidic chronic device is seen in Figure 4-25.  Figure 4-26 depicts an 

implantation model for animal surgery with black dotted lines representing the exposed 

surface of the rat skull during surgery.  The probe islands are seen with shanks inserted 

into a model burr hole (3mm diameter).  The device is fixed to anchoring skull screws as 
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utilized during animal surgery.  The fluidic tubing can be flexed and cut as needed to 

properly implant the device 

 

Figure 4-24: Polyimide tubing connected to inlets of microfluidic device 

 

Figure 4-25: Assembly of microfluidic package assembly 

 

Figure 4-26: Implantation model for animal surgery
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5. CHAPTER	5:	DEVICE	CHARACTERIZATION	
 

5.1 Introduction	

After development of the neural devices, it was important to characterize the devices 

in the benchtop setting to understand the recording capabilities of the neural devices 

before being used to record neural signals.  In addition, the microfluidic channels were 

analyzed for flow rate and delivery of liquid substances.  These characterization studies 

were used throughout the device development process as a means to improve the devices 

as issues arose.  Animal studies were also used to improve device design, but this will be 

discussed in the animal studies chapter. 

 

5.2 Electrode	Impedance	Analysis	in	Saline	

Impedance of an object is equal to the relation of the potential difference (voltage) 

across an object divided by the current passing through the object.  As such, to detect the 

very small voltages seen during a neural action potential, it is desirable to record signals 

from a low-impedance electrode.  In accordance with work done in prior work, electrode 

impedances were measured in diluted Phosphate Buffered Saline solution (PBS) with an 

HP 4284A Precision LCR (Impedance) meter.  1mm diameter Platinum wire was used as 

a counter electrode.  PBS solution is known to be a good electrolyte which closely 

resembles the ionic composition of extracellular fluid seen around neurons.  The 

relationship between current across the electrode potential and electrode current within 

PBS solution can be defined by the following equation [83]: 
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where η is the change in electrode potential, i is the electrode current, kT/e ≈ 26mV at 

room temperature, α is the symmetry factor, and io is the exchange current.  The 

symmetry factor is between 0.2 and 0.5 for neural potentials between -200mV and 

+100mV.  The exchange current is a constant which depends on electrode size.  As the 

other variable of the equations are all constant in a constant environment, the impedance 

can therefore be determined by dividing the measured value of η, the change in electrode 

potential, by i, the electrode current.  In addition, the interface can be modeled by a RC 

circuit with a constant phase element (CPE) as demonstrated in the diagram below ().  

This demonstrates the relationship between intrinsic capacitance and resistance as 

frequency changes. The impedance is dominated by the capacitance between the 

electrode and electrolyte interface. As the electrode surface area increases, the 

capacitance increases and the impedance decreases [84]. 

 

Figure 5‐1: Relationship between gold electrodes and phosphate buffered saline in impedance measurements [84]; 
Rct relates to the charge transfer resistance between the saline and the electrode and Rs relates to the 
series resistance between saline and electrode  

 

5.3 Electrode	Impedance	Results	

Initial impedance studies were conducted using the rigid single island neural devices.  

The purpose for using these devices was to measure the impedance of the electrode sites 
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without any additional complications such as flexible interconnections.  The results for 

six distinct electrodes each with a recording area of 40x40 µm2 are plotted in Figure 5-2.  

It can be observed that the impedances for each electrode tended to be less than 60 

Kohms at 1 KHz.  As mentioned in prior chapters, similar devices were also created 

using platinum/titanium instead of gold/chrome.  For these devices, impedance values 

were measured to be less than 20 Kohms at 1 KHz (Figure 5-3).   For both gold and 

platinum electrodes, our measured impedance values were smaller than those reported 

elsewhere [49, 50, 84-86].   This is believed to be due to electrode surface roughening 

during the DRIE step in our process.  Work by other groups reported similar surface 

roughening caused by RIE [87].  Atomic Force Microscopy was utilized to examine the 

electrode surface roughness.  As a control experiment, parylene was removed over one of 

the gold electrode tracings and the gold surface was measured underneath the parylene 

layer, which would not have been attacked by DRIE.   Both images are presented in 

Figure 5-4.  It was observed that the gold electrode has an RMS (root mean square) 

roughness of 196 Å whereas the protected gold has an RMS roughness of 14.3 Å.  Such a 

degree of roughening would likely increase the effective surface area of the electrode, 

thereby lowering the impedance.  It should be noted that while a roughened surface may 

be more susceptible to erosion upon stimulation, for the purpose of recording neural 

signals, stimulation-generated surface erosion would not be a major issue.  However, 

further study should be done to determine long-term stability of impedance values. 
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Figure 5‐2: Impedances of six distinct gold electrodes (each 40×40 µm2) from the same device 

 

 

Figure 5‐3: Impedances of three distinct platinum electrodes (each 40×40 µm2) from the same device 
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   (a)      (b) 
 
Figure 5‐4: Atomic Force Microscopy of (a) the electrode surface and (b) the interconnect surface 

 

5.4 Chronic	Device	Package	Impedance	Analysis	

Throughout assembly of the chronic device package, the impedance of the device 

electrodes were analyzed to ensure functionality of all channels.  As opposed to the 

impedance studies done during the rigid device impedance analysis, the chronic device 

package included a number of additional features which could increase the impedance of 

the electrodes.  The first impedance analysis for the chronic device package was 

conducted immediately after the device was wire-bonded, but before the probe islands 

were aligned and packaged in 3D.  The next set of impedance data was acquired after 

aligning and packaging the probe islands in 3D.  The final set of impedance data was 

acquired after using epoxy to seal and protect the wire bonding along with the device side 

of the PCB (see fabrication/packaging results chapter).  See Figure 5-5 for the impedance 

data for one of the electrodes before and after assembling the probe islands.  See Figure 

5-6 for the impedance data for the fully packaged and epoxy protected chronic device. 

 

196 Å RMS 14.3 Å RMS 
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Figure 5‐5: Impedance data of two channels before and after assembly of probe islands 

 

 

Figure 5‐6: Impedance data for epoxy‐protected fully packaged device; a 1 Kohm resistor and two unwired 
connections (p_black and b_white) are included for reference to the working channels 

 
After analysis of the impedance data for a fully packaged device, it was desirable to 

characterize the change in impedance upon bending of the flexible interconnect 
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connecting the probe islands to the wire bonding island.  In an effort to reduce the 

complexities of the analysis, an unpackaged chronic electrode-only device was wire 

bonded to a standard testing printed circuit board.  The device was again placed in PBS 

solution as before and the impedances were measured using the LCR impedance meter.  

However, in comparison to prior measurements, the angle of the probe island was bent in 

relation to the interface island at several bending angles from 0 degrees to 150 degrees.  

The setup of the experiment and the results are displayed in Figure 5-7. 

 
(a) 

 

 
(b) 

 
Figure 5‐7: Bending radius impedance characterization (a) experimental setup with probe island bent 90 degrees 

relative to the wire bonding island and (b) angle results for one of the respective electrode sites 

Probe island 
angled at 90 
degrees 
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5.5 Microfluidic	Channel	Analysis	

In addition to characterization of the impedance of the electrodes, it was important to 

characterize the fluid delivery capabilities of the microfluidic channels.  The 

microchannel flow rate was measured using DI (deionized) water.  A programmable 

syringe pump and digital pressure gauge were attached to the tube-connected inlets and 

were used for dispensing liquid and measuring pressure.  Pressure measurements were 

collected for various flow rate settings programmed into the syringe pump.  No leaks 

were observed on the surface of the microchannels when DI water was pumped into the 

channel.  The flow rate setting as a function of pressure generated was measured and is 

plotted in Figure 5-8.  It should be noted that with the typical pressure of a rat brain being 

less than 0.1 psi [46], large blood reflux into the microchannel would be unexpected, 

however further study is needed.  Figure 5-9 depicts the flow of DI water traveling 

through one of the microchannels. 
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Figure 5‐8: The measured relationship between flow rate and pressure. The inset picture shows a liquid droplet 

emerged from the outlet port of the microchannel at the probe tip. 
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Figure 5‐9: Fluid traveling through microfluidic channel 

 
After measurement of the flow rate in relation to applied pressure of the microfluidic 

channel, it was important to test the functionality of the microchannels within simulated 

brain-like environments.  As demonstrated in previous work [88], agarose gel (0.1% w/v) 

can be utilized as a brain phantom to simulate the pressure within the brain.  As utilized 

in the study, Evan’s blue dye was utilized to test the delivery of fluids through the 

microfluidic channels.  Figure 5-10 depicts a microfluidic probe island before and after 

injection of Evan’s blue dye through the microchannel.  Figure 5-11 depicts delivery of 

the Evan’s Blue dye into the Agarose brain phantom. 

      
Figure 5‐10: Microfluidic testing via Evan's Blue dye (a) before delivery (b) after delivery 

Fluid traveling 
through channel 
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Figure 5‐11: Agarose brain phantom with Evan’s Blue dye being released into the gel via the microfluidic channel; 
dye can be seen diffusing via convection after release through the microfluidic outlet 

Diffusion of dye after 
delivery through outlet  
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6. CHAPTER	6:	ANIMAL	STUDIES	

6.1 Introduction	

In an effort to study the efficacy of the recording capability of our devices, several in 

vivo and in vitro animal studies were conducted.  The purpose of these studies was 

simply to verify if these devices could be utilized to gather neural activity data.  As such, 

animal studies were conducted in a progressive manner.  Initial studies tested the ability 

of the devices to record any neural signals, while subsequent steps progressed to the 

recording of epileptogenic signals in brain slices, acute recording of neural signals in 3D 

space, and eventually chronic recording of neural signals in 3D space.  In addition to the 

recordings, preliminary biocompatibility studies were conducted to demonstrate the 

immunologic response to implanted neural devices.  All animals used were male, adult (4 

months) Sprague-Dawley rats.  All protocol for animal studies were pre-approved by the 

animal investigation committee (AICUC) at Wayne State University.  

 

6.2 Acute	Neural	Activity	

In one of the earlier studies, one of the rigid neural devices was implanted into the 

auditory cortex of an adult normal rat.  The purpose of this study was to mimic a neural 

signal recording study which utilized microwire arrays to record neural signals related to 

the perception of sound [89].  The wire bonding pads of the neural device were connected 

to a printed circuit board composed of wire bonding pads and soldering pads.  The 
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soldering pads of the circuit board were soldered to the lead wires of an Omnetics 

connector.  The counterpart connector was attached to a TDT (Tucker Davis 

Technologies) recording system, which is a system often utilized to record neural activity 

from microelectrode arrays [90, 91].  After placing the rat under general anesthesia via 

ketamine:xylazine (100mg/kg:10mg/kg), the rat was prepared for surgery and placed in a 

Kopf stereotactic frame with hollow ear bars.  A craniotomy was performed in the skull 

of the rat just above the auditory cortex.  With the TDT recording system attached to the 

device-connector package, the probe shanks of the device were implanted into the 

auditory cortex.  A noise pulse system was then utilized to induce short noise bursts of 

varying amplitude and frequency into the left external auditory canal of the rat through 

the hollow ear bars.  Neural activity associated with the sensation of hearing in rats was 

identified by the electrode array.  Using a unit sorter program, two distinct neural signals 

were recorded from the electrode sites as seen in Figure 6-1.  This data was seen to be 

similar to recordings generated via other electrode devices such as the microwire array 

[89].  In addition, this study demonstrated the ability of the neural devices to be able to 

acquire and isolate two distinct neural signals. 

 

Figure 6‐1: (a) Spikes from two neurons recorded from the primary auditory cortex of a rat. Note the difference in 
amplitude and spike rate between the two neurons. (b) The spikes from the two neurons were well 
differentiated using a unit sorter program 

200uV 

- 200uV 

60uV 

- 60uV 
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6.3 Slice	Recording	Data	

After demonstration of the utility of the neural devices in recording noise-induced 

neural signals within the auditory cortex, it was important to demonstrate acquisition of 

epileptogenic signals via the devices.  Young normal rats (less than 3 months of age) 

were euthanized via guillotine, after which their brains were harvested and sectioned into 

350µm thick cortical slices.  Slices were immediately perfused in standard ringer solution 

(glucose, oxygen, etc.) to maintain viability of the slices for a few hours.  Similar to the 

previous animal study, a rigid neural device was wire bonded to a printed circuit board 

with wire bonding pads and soldering pads.  EEG compatible lead wires were then 

soldered to the soldering pads, after which they were connected to a Stellate Harmonie 

EEG recording system.  This system had been well utilized in prior studies for recording 

of epileptogenic neural signals [7, 9].  Cortical slices were placed on a nylon grid and 

immersed in a perfusion chamber which delivered fresh modified ringer solution at a 

constant rate.  This modified ringer solution differed from standard ringer solution in that 

magnesium was removed and 4-Aminopyridine was added to the solution.  Ringer 

solutions lacking magnesium and containing 4-aminopyridine have been shown to cause 

epileptiform activity in rat cortical slices [92, 93].  The probe shanks of the neural device 

were then penetrated through the cortical slice and the electrode sites of the shanks were 

positioned within the slice via a micromanipulator.  After connection of the EEG lead 

wires to the system and placement of a reference wire, neural signals were recorded 

through the Stellate recording system.  It should be noted that only some of the electrode 

sites were in contact with brain tissue as the slice was only thick enough to accommodate 
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two of the electrodes on a shank.  The electrode sites (channels P4 and C4) were located 

in different regions of cortex and were referenced to a wire within the perfusion solution.  

As seen in Figure 6-3, epileptiform discharges were observed across both channels.  

Figure 6-3(a) demonstrates the onset of an epileptic event on channel P4.  As can be 

identified in the data, after an initial neural spike, continuous neural spiking occurs with 

gradually increasing amplitude.  This neural behavior is consistent with what is seen 

during the beginning of an ictal (seiure) event.  Figure 6-3(b) demonstrates cessation of 

the ictal event after 2.5 minutes.  Neural spiking can be seen at the beginning of the 

recording, but it eventually wanes until very little spiking is seen relative to the 

background noise.  Figure 6-3(c) demonstrates a short ictal event on channel C4.  This 

event is understood to be an ictal event in a different area of cortex compared to what was 

seen earlier in channel P4.  Neural signals were recorded from the cortical slices for 

approximately 3 hours before neural activity ceased.  Although this was an ex vivo neural 

signal recording study, this study demonstrated the ability of the devices to record 

epileptiform neural activity similar to what has been seen using conventional seizure 

recording systems [92, 93]. 
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Figure 6‐2: Cortical slice recording setup 

 

 
(a) 

 
(b) 

 

1456 µV 

1494 µV 

5 seconds 

5 seconds 
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(c) 

Figure 6‐3: Epileptiform activity from a cortical slice.  Channels C4 and P4 refer to electrode sites placed at differing 
cortical region.  (a) Beginning and development of seizure on channel P4; (b) Cessation of seizure event 
after continuous high spiking activity for around 2.5 minutes; (c) Short seizure event occurring on 
channel C4 

 

6.4 Acute	3D	Neural	Recording	

The previous animal studies had demonstrated the functionality of the neural devices 

in recording neural signal data similar to what had been seen in other works.  However, 

recording of neural activity through a 3D array of electrodes had yet to be demonstrated.  

In one of the first 3D recording studies, a 2 island, 6 shank, 12 electrode neural probe was 

wire bonded to a printed circuit board with wire bonding pads and soldering pads.  

Similar to the brain slice recording study, the soldering pads were soldered to EEG 

compatible lead wires which connected with the Stellate Harmonie EEG recording 

system.  For this study, an adult rat was placed under pentobarbital anesthesia after which 

it was prepared for surgery and placed in a stereotactic frame.  Using proper sterile 

technique, the scalp was incised and a burr hole was generated using a 3mm diameter 

drill bit 1mm posteriorly and 3.5mm laterally to Bregma, which corresponds to the region 

of the somatosensory cortex [76].  The connected 3D neural probe was then lowered into 

the cortex using a micromanipulator and then fixed in position using dental cement 

(methyl methacrylate).  After placement of a reference wire on the skull and verification 

863 
µV 

5 seconds 
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of connections with the Stellate recording system, neural activity was recorded for an 

hour.  Neural activity was observed across 10 channels as seen in Figure 6-6.  Two 

channels were non-functional and were excluded from the recording.  To improve the 

quality of the recorded signals, electrodes were re-referenced differentially to one of the 

electrodes on the device (electrode C3).  After the recording, the animal was properly 

sacrificed and the device was carefully removed.  The device was later re-characterized 

for impedance to verify functionality of the channels.  Two of the electrode impedances 

are represented in Figure 6-4.  This study demonstrated the ability of the devices to 

record acute neural activity in 3-dimensional space. 
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Figure 6‐4: Impedance results of two electrodes before and after implantation; the slight increase in impedance is 
likely due to residual tissue left on the electrode sites 

 

 

Figure 6‐5: Acute 3D Neural Recording 
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Figure 6‐6: In Vivo Acute Rat Cortical Study – rat was placed under pentobarbital general anesthesia and device was 
implanted  at  or  near  the  auditory  cortex  of  the  rat;  Recordings were  collected  from  a  Stellate  EEG 
recording  system; Device was a  two  island,  6  shank devices, with  each  shank having  2  electrodes  (2 
electrodes were non‐functional).  The electrodes were referenced differentially to one of the electrodes, 
electrode C3. 

 

6.5 Biocompatibility	study	

After completion of the acute 3D neural recording trial, it was important to begin 

working towards development of a chronic neural device that could be implanted for 

several weeks.  In an effort to determine biocompatibility of the devices after long term 

implantation, a rigid 9-electrode, single-island device was implanted into the sensory 

cortex of an adult rat.  To avoid complexity during the surgery, the device was not 

connected to a circuit board.  As with the acute animal study, the rat was anesthetized via 

557µV 

1 sec 
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pentobarbital, prepared for surgery, and placed in a stereotactic frame.  After creating an 

incision along the midline of the scalp, a 3mm diameter dremel bit was used to create a 

burr hole after which the device was inserted into the cortex.  Adjacent to the device, 5 

screw electrodes were inserted into the skull and attached to a 6 pin connector [94].  The 

purpose of the screw-based electrodes and connector were to provide a means for 

recording the electrophysiological effect of the implanted device as well as serving as 

anchor points to secure the entire assembly onto the skull.  Dental cement was utilized to 

bind the screws to the device and fix and protect the entire assembly.  The rat was 

allowed to recover for a week after which the rat was placed in a video EEG recording 

system for 24 hours.  Analysis of the EEG data was insignificant for any electrical 

spiking normally associated with traumatic brain injury.  The rat was recorded again at 2 

and 3 weeks post-surgery with no electrical signal change associated with traumatic brain 

injury.  At 4 weeks, the rat was sacrificed and its brain was removed for cortical tissue 

analysis.  After fixing of the brain in 4% paraformaldehyde solution and sucrose solution, 

the brain was cryosectioned and stained using Glial Fibrillary Acidic Protein (GFAP), 

which is a stain used for visualization of reactive astrocytes seen during inflammation 

within the brain [95].  Inspection of the GFAP-stained tissue slices demonstrated only 

mild inflammation and glial scar formation, which shows promise that the immunologic 

response to the device is limited.  Images of the slices can be seen in Figure 6-7. 
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Figure 6‐7: GFAP stain of cortical tissue slice demonstrating the gliotic effect of surgical implantation of the devices; 
devices were implanted for 4 weeks before removal; 2x magnification on left and 10x magnification on 
right. 

 

6.6 1st	Attempt	Chronic	Neural	Device	Surgery�

After demonstration of the acute functionality of the device within a live animal, the 

need was pressing to demonstrate functionality of the devices over a longer period of 

time.  Similar to the device design, the surgical technique was an iterative process which 

was revised and improved as the design of the device was revised and improved.  During 

the acute 3D neural device surgery, it was quickly understood that the printed circuit 

board would need to be much smaller in order for the device to be implanted on a freely 

moving animal (see Figure 6-5).  A smaller PCB was designed specifically for the 

purpose of decreasing the overall package size of the neural device, including the device, 

the circuit board, and the connector.  This circuit board included wire bonding pads and 

soldering pads, similar to its predecessor, however it was significantly smaller 

(approximately ¾” by ¾”).  This circuit board was wire bonded to a rigid 3D neural 

device and soldered to a rectangular connector.  The rectangular connector had been used 

in screw-based electrophysiological studies [22].  Similar to the acute neural device 

surgery, the rat was put under general anesthesia via pentobarbital after which it was 

Shank associated 
glial scarring 

Shank associated 
glial scarring 
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prepared for surgery and placed in a stereotactic frame.  Using stereotactic technique, the 

scalp was incised and reflected, after which a 3mm burr hole was created 1mm 

posteriorly and 3.5mm laterally to Bregma (somatosensory cortex region) [76].  The 

device package (neural device, circuit board, and connector) was positioned and 

implanted via a micromanipulator into the cortex.  Dental cement was then applied to the 

skull and the device package to fix the assembly in place on the skull.  Although the 

assembly was much smaller than the assembly created during the acute animal surgery, 

the package was still quite large and bulky in relation to the rat’s head.  Within days after 

implantation, the entire assembly head cap separated from the rat’s skull and the rat 

needed to be euthanized.  An image of the animal after surgery is depicted in Figure 6-8.  

 

Figure 6‐8: 1st attempt chronic device implant 

 

6.7 2nd	Attempt	Chronic	Neural	Device	Surgery�

After the initial attempt at creating and implanting a chronic neural device, it was 

understood that a more holistic approach would be necessary in achieving reliable 
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chronic device package.  From the first chronic package, it was understood that 

combination of the printed circuit board, the rigid device, and the large rectangular 

connector resulted in a structure that was very large (over 1”) and unstable for use in a 

chronic animal study.  In addition, the rectangular connector only allowed for 8 possible 

channels, which limited the amount of channels available for the device and limiting the 

degree of 3D resolution.  From these lessons, the chronic device and device package was 

re-designed to be much smaller in size while allowing for a larger number of channels.  

As mentioned in the design chapter, it was realized that the most stable implantation 

setup would be such that the package is parallel to the plane of the skull, with only the 

probe islands being perpendicular to the skull implanted into the cortex.  In order achieve 

this, the flexible interconnect design was utilized with the wire bonding island being 

fixed along with the package to the skull.  Via the flexible interconnect between the wire 

bonding island and the probe islands, the probe islands could be positioned and implanted 

within the cortex.  With this concept in mind, the chronic device printed circuit board and 

the chronic device were designed and developed.  In addition, the Omnetics connectors 

were chosen to replace the rectangular connectors to decrease the size of the connector 

and increase the number of available channels.  Details of all design procedures and 

parameters have been discussed in detail in the design chapter. 

 

Considering the change in the overall design of the chronic device package, a new 

surgical technique was required to successfully implant the neural device packages.  For 

the animal surgery, a 4 month old rat was placed under general anesthesia using a 

ketamine:xylazine (100mg/kg:10mg/kg), after which it was prepared for surgery and 
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placed in a stereotactic frame.  As before, the scalp was incised at the midline and the 

skin and underlying tissue was reflected to expose the skull.  After proper exposure of the 

skull, a 3mm burr hole was generated 1mm posteriorly and 3.5mm laterally to Bregma 

(somatosensory cortex region) [76].  A microscope and fine tip forceps were used to 

remove any residual skull fragments and peel away the dura mater.  After the underlying 

somatosensory cortex was properly exposed, two screws were implanted posteriorly and 

one screw was implanted anteriorly to the burr hole.  These screws would serve as a base 

for the package assembly and as anchoring points to fix the assembly to the skull.  Using 

a small amount of partially cured dental cement, the epoxy protected side of the device 

package was fixed to the posterior skull screws.  With the device package fixed to the 

skull screws, forceps can be used to position the probe islands such that the shanks are 

within the burr hole, just touching the surface of the cortex.  With the proper position and 

implantation angle verified, the forceps can be used to push the probe shanks into the 

cortex until the base of the probe shank island touches the skull surface.  At this point, the 

electrodes of the device should be located at the desired cortical positions according to 

the design parameters (see design chapter).  Gel foam, a hemostatic absorbable material, 

can be utilized to temporarily seal any remaining space within the burr hole surrounding 

the probe island.  After ensuring that the skull surface is reasonable dry, dental cement 

can be applied to the surface of the skull and the probe island of the device in an effort fix 

the probe island in place and bind the package with the skull screws.  The gel foam 

should prevent the dental cement from seeping into the burr hole, thus protecting the 

brain surface.  After the dental cement has cured such that the device package is secured 

in place, additional dental cement can be utilized to fully cover the exposed device 
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package, thus creating the head cap of the assembly.  The skin adjacent to the device 

package can be stapled via surgical staples to reduce the wound size.  Triple antibiotic 

ointment is applied along the wound surface to prevent bacterial infiltration into the 

wound site.  Post-operative continues as outlined in the animal protocol.  After surgery, 

the rat was monitored and allowed to recover for 5 days before attempting a recording 

study.   

 

Figure 6‐9: Rat placed in stereotactic frame; the ear bars and nose bar prevent motion of the rat’s head during 
surgery 

 

     

Figure 6‐10: Exposed skull with landmarks Bregma and Lambda (b) exposed skull after creation of burr hole and 
placement of skull screws 
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Figure 6‐11: Device package after being fixed to skull screws and (b) probe island in burr hole before being inserted 
into cortex 

 

 

Figure 6‐12: Implanted device package with probe island inserted into cortex and Gel foam covering burr hole 

Gel foam 

Probe Shanks 
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Figure 6‐13: (a) Initial application of dental cement which fixes and protects neural device and binds together skull 
screws and (b) device package head cap after surgery completion 

 

 

Figure 6‐14: Chronic device head cap package after 5 days of recovery; a reference wire was left attached to one of 
the skull screws to serve as a reference point for the device package 

 

6.8 Chronic	Device	Neural	Signal	Recording�

In order to connect with the Stellate EEG recording system, the lead wires of the 

mating Omnetics connector were soldered to lead wires with EEG-compatible 

connectors.  Due to limitations on the available Stellate EEG recording system, only 6 

channels (including 1 reference channel) were available for connection with the 20 

possible channels of the neural device.   As such, 6 electrode sites were chosen, with 3 

Dental cement 

Device Package Triple Antibiotic Ointment 

Omnetics Connector 

Omnetics 
Connector

Reference 
Wire  
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corresponding to layers 2/3 and 3 corresponding to layer 4 of the cortex.  After ensuring 

that the wound site was properly healed and the head cap was secure on the rat’s head, 

the mating Omnetics connector was attached to the connector on the rat’s head and the 

EEG connectors were plugged into the EEG recording system.  One of the electrode sites 

(channel 20 of the EEG data) was chosen to serve as a differential reference site to 

correspond with previous animal recording data.  With the animal freely moving in an 

acrylic cage, neural signals were recorded for one hour.  In addition, video of the animal 

was captured synchronously with the recorded data.  Figure 6-16 demonstrates rhythmic 

neural spiking on channel 21, which supposedly corresponds with layers 2/3 of the 

somatosensory cortex.  Figure 6-17 demonstrates neural signals occurring at different 

time points across all channels.  It is important to note that the neural signals results 

displayed correspond with time segments when the rat was stationary, thus excluding any 

erroneous signals that could be due to movement of the animal.  The neural probe 

electrode map to EEG channel correlation is seen below in Figure 6-15. 

 

Figure 6‐15: Neural electrode map corresponding electrode sites on the neural device to EEG channels in the 
recording system 
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Figure 6‐16: Neural recording demonstrating a rhythmic chain of spikes occurring on channel 21 which corresponds 
to an electrode located at layers 2/3 of the somatosensory cortex 

 

 

Figure 6‐17: Neural recording demonstrating various neural signals across multiple channels occurring at different 
time points 

 

391µV 

714µV 
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CHAPTER	7:	CONCLUSIONS/FUTURE	WORK	
 

In order to better understand neurological diseases such as epilepsy, it is important to 

develop tools that will enable neuroscientists to observe epileptic pathologies in higher 

resolution.  A novel intracortical neural probe technology based on a silicon island 

structure and a simple folding process has been proposed and successfully demonstrated.  

This technology simplifies the fabrication and assembly process, leading to high density 

3D arrays of electrodes with integrated microchannels.   Neural devices have been 

designed and developed with parameters specific to a rat model of epilepsy.  

Characterization studies have demonstrated low impedance, reliable electrode channels 

and functional, low pressure fluidic channels.  Animal studies have demonstrated 

functionality of the electrode channels in enabling recording of various neural signals.  

Biocompatibility studies have demonstrated the limited gliosis after implantation of the 

devices.  Reliable chronic 3D devices and chronic device packages have been 

successfully designed, developed, packaged, and implanted.  Preliminary chronic 

package animal recordings have demonstrated functionality of the recording electrodes. 

 

This work has demonstrated the design, development, and packaging of 3-

dimensional intracortical neural interfaces designed towards the study of epilepsy.  Now 

that a reliable chronic device package has been created, much remains to be done.  The 

EEG recording system must be modified to allow for recording of more channels.  This 

will require the integration of some type of commutator that will allow the rat to freely 

move without getting tangled on any wires.  The recording system setup (currently few 

channels for several animals) may also need modification to enable recording of several 
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channels for one animal. Further biocompatibility studies are also required to determine 

the effect of long-term implantation of the devices.   

 

The microfluidic devices must be tested in a live animal for functionality of fluidic 

drug delivery.  Various dyes can be utilized to enable visualization of drug delivery into 

the cortex.  Once the microfluidic functionality is verified, several chronic animal 

surgeries should be conducted utilizing the tetanus toxin animal model of epilepsy.  

Utilizing the integrated microfluidic channels, tetanus toxin can be delivered at specific 

locations after the animal has fully recovered.  Immediately after drug delivery, the 

electrodes can be utilized to enable real-time observation of the progression of the 

epileptic focus.  In addition to its usefulness for the study of epilepsy, these devices can 

be easily modified for use in the study of various other neurological diseases, such as 

tinnitus.  As with the animal model of epilepsy, the combined ability to deliver fluidic 

drugs and observe real-time changes in neurological activity may allow elucidation of 

several other neurological pathologies. 

 

In addition to the potential for various types of neurological studies, further 

improvements can be added to the current device design.  Since the MEMS process is 

post-CMOS compatible, various on-chip features can be added including amplifiers, 

filters, and wireless interfaces.  Additional features can be added to improve the 

reliability of the electrode tracings such as spring-based tracing design.  Other features 

may be added to the microchannels including pumps, reservoirs, and flowmeters to 

enhance delivery of fluidic drugs. 
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Appendix: Animal Welfare Assurance Form 
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Epilepsy is a chronic disease characterized by recurrent, unprovoked seizures, where 

seizures are described as storms of uncontrollable neuro-electrical activity within the 

brain.  Seizures are therefore identified by observation of electrical spiking observed 

through electrical contacts (electrodes) placed on the scalp or the cortex above the 

epileptic regions.  Current epilepsy research is identifying several specific molecular 

markers that appear at specific layers of the epilepsy-affected cortex.  However, 

technology is limited in allowing for live observation of electrical spiking across these 

layers.  The underlying hypothesis of this project is that electrical interictal activity is 

generated in a layer- and lateral-specific pattern.   

This work reports a novel neural probe technology for the manufacturing of 3D arrays 

of electrodes with integrated microchannels.  This new technology is based on a silicon 

island structure and a simple folding procedure.  This method simplifies the assembly or 

packaging process of 3D neural probes, leading to higher yield and lower cost.  Various 

types of 3D arrays of electrodes, including acute and chronic devices, have been 

successfully developed.  Microchannels have been successfully integrated into the 3D 
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neural probes via isotropic XeF2 gas phase etching and a parylene resealing process.  

This work describes in detail the development of neural devices targeted towards the 

study of layer-specific interictal discharges in an animal model of epilepsy.  Devices were 

designed utilizing parameters derived from the rat model of epilepsy.  The progression of 

device design is described from 1st prototype to final chronic device.  The fabrication 

process and potential pitfall are described in detail.  Devices have been characterized by 

SEM (scanning electron microscope) imaging, optical imaging, various types of 

impedance analysis, and AFM (atomic force microscopy) characterization of the 

electrode surface.  Flow characteristics of the microchannels were also analyzed.  Various 

animal tests have been carried out to demonstrate the recording functionality of the 

probes, preliminary biocompatibility studies, and the reliability of the final chronic 

device package.  These devices are expected to be of great use to the study of epilepsy as 

well as various other neurological diseases. 
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