25,854 research outputs found

    Multidimensional Scaling on Multiple Input Distance Matrices

    Full text link
    Multidimensional Scaling (MDS) is a classic technique that seeks vectorial representations for data points, given the pairwise distances between them. However, in recent years, data are usually collected from diverse sources or have multiple heterogeneous representations. How to do multidimensional scaling on multiple input distance matrices is still unsolved to our best knowledge. In this paper, we first define this new task formally. Then, we propose a new algorithm called Multi-View Multidimensional Scaling (MVMDS) by considering each input distance matrix as one view. Our algorithm is able to learn the weights of views (i.e., distance matrices) automatically by exploring the consensus information and complementary nature of views. Experimental results on synthetic as well as real datasets demonstrate the effectiveness of MVMDS. We hope that our work encourages a wider consideration in many domains where MDS is needed

    Disaggregating Input-Output Tables by the Multidimensional RAS Method

    Full text link
    An unknown input-output table can be estimated by the RAS method when only its row and column sums are known and some initial structure is assumed. The RAS approach can also be utilized for disaggregation of an annual national table to more detailed tables such as regional, quarterly and domestic/imported tables. However, the regular RAS method does not ensure that the sums of disaggregated tables are equal to the total table. For this problem, we propose to use the multidimensional RAS method which besides input and output totals also ensures regional, quarterly and domestic/imported totals. Our analysis of the Czech industry shows that the multidimensional RAS method increases the accuracy of table estimation as well as accuracy of input-output applications such as the Leontief inverse, the regional Isard's model and the quarterly value added

    Multidimensional Scaling Using Majorization: SMACOF in R

    Get PDF
    In this paper we present the methodology of multidimensional scaling problems (MDS) solved by means of the majorization algorithm. The objective function to be minimized is known as stress and functions which majorize stress are elaborated. This strategy to solve MDS problems is called SMACOF and it is implemented in an R package of the same name which is presented in this article. We extend the basic SMACOF theory in terms of configuration constraints, three-way data, unfolding models, and projection of the resulting configurations onto spheres and other quadratic surfaces. Various examples are presented to show the possibilities of the SMACOF approach offered by the corresponding package.

    Precoding for Outage Probability Minimization on Block Fading Channels

    Get PDF
    The outage probability limit is a fundamental and achievable lower bound on the word error rate of coded communication systems affected by fading. This limit is mainly determined by two parameters: the diversity order and the coding gain. With linear precoding, full diversity on a block fading channel can be achieved without error-correcting code. However, the effect of precoding on the coding gain is not well known, mainly due to the complicated expression of the outage probability. Using a geometric approach, this paper establishes simple upper bounds on the outage probability, the minimization of which yields to precoding matrices that achieve very good performance. For discrete alphabets, it is shown that the combination of constellation expansion and precoding is sufficient to closely approach the minimum possible outage achieved by an i.i.d. Gaussian input distribution, thus essentially maximizing the coding gain.Comment: Submitted to Transactions on Information Theory on March 23, 201

    Empirical Analysis of the Necessary and Sufficient Conditions of the Echo State Property

    Full text link
    The Echo State Network (ESN) is a specific recurrent network, which has gained popularity during the last years. The model has a recurrent network named reservoir, that is fixed during the learning process. The reservoir is used for transforming the input space in a larger space. A fundamental property that provokes an impact on the model accuracy is the Echo State Property (ESP). There are two main theoretical results related to the ESP. First, a sufficient condition for the ESP existence that involves the singular values of the reservoir matrix. Second, a necessary condition for the ESP. The ESP can be violated according to the spectral radius value of the reservoir matrix. There is a theoretical gap between these necessary and sufficient conditions. This article presents an empirical analysis of the accuracy and the projections of reservoirs that satisfy this theoretical gap. It gives some insights about the generation of the reservoir matrix. From previous works, it is already known that the optimal accuracy is obtained near to the border of stability control of the dynamics. Then, according to our empirical results, we can see that this border seems to be closer to the sufficient conditions than to the necessary conditions of the ESP.Comment: 23 pages, 14 figures, accepted paper for the IEEE IJCNN, 201
    corecore