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Precoding for Outage Probability Minimization

on Block Fading Channels

Dieter Duyck, Joseph J. Boutros, and Marc Moeneclaey

Abstract

The outage probability limit is a fundamental and achievable lower bound on the word error rate of

coded communication systems affected by fading. This limitis mainly determined by two parameters:

the diversity order and the coding gain. With linear precoding, the maximum achievable coding rate

yielding full diversity on a block fading channel can exceedthe upper limit given by the standard

Singleton bound. However, the effect of precoding on the coding gain is not well known, mainly due

to the complicated expression of the outage probability. This paper establishes simple upper bounds on

the outage probability, from which the optimal precoding matrices minimizing these upper bounds can

be determined. For discrete alphabets, it is shown that the combination of constellation expansion and

precoding is sufficient to closely approach the minimum possible outage achieved by an i.i.d. Gaussian

input alphabet, thus essentially maximizing the coding gain.

I. INTRODUCTION

In many applications, such as frequency-hopping (GSM, EDGE), time-interleaving (DVB-

T), OFDMA (WiMax and LTE), H-ARQ with cross-packet coding [16], [8], and cooperative

communications [25], [26], [19], [7], the channel can be modelled as a flat block fading (BF)

channel [2], where the fading gain is piecewise constant over the duration of a transmitted packet.
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Due to motion of the transmitter, receiver or objects between the transmitter and receiver, the

fading gains vary from one packet to the next and are considered unknown at the transmitter

side. The fraction of codewords where decoding fails to wipeout all errors is referred to as

the average word error rate (WER). When displayed on a log-scale versus the average signal-

to-noise ratio (SNR) in decibel, the high-SNR slope of the WER is called the diversity order.

Since the diversity order determines how fast the error ratedecreases with the SNR, it is then

a key parameter of the communication system.

The Singleton bound limits the coding rateRc of standard coded modulations achieving

full diversity [17], [21], [11]. Because of their reduced spectral efficiency, full-diversity error-

correcting codes are bandwidth consuming. Fortunately, the spectral efficiency can be increased

beyond the Singleton bound by using component interleavingcombined with linear precoding

[13], [14], [12], which modifies the marginal distribution of the components of a multidimensional

constellation at the channel input. When using linear precoding with component interleaving, full

diversity can be achieved without error-correcting code. Therefore, it has been almost exclusively

studied for uncoded schemes (see [2] and references therein, e.g. [3]), except for few papers [13],

[18] investigating coded transmission schemes. However, besides yielding full diversity with a

higher rate, linear precoding can also improve the coding gain of coded systems. So the effect

of linear precoding on the diversity order is well understood, but there is no sufficient insight in

the effect of linear precoding on coding gain of coded systems.

Before studying the optimization of the WER for practical schemes with linear precoding, it

is important to understand the influence of linear precodingon the performance limits of the

communication channel. The outage probability limit is an achievable lower bound on the WER

of coded systems in the limit of large block length [2], [22] and is given by [27, section 5.4],

Pout(γ, P, R) = Pr
(
I(α, γ, P ) < R

)
,

where I (α, γ, P ) is the instantaneous mutual information between transmitted symbols and

received symbols as a function of the set of fading gainsα observed during the transmission of

one codeword, the average SNRγ, and the precoding matrixP . By choosing a well designed

precoding matrixP , the outage probability can be minimized. But even in the simple case

of an independent and identically distributed (i.i.d.) Gaussian input alphabet of the channel, a
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closed form expression for the outage probability is not known yet. Therefore, only a brute

force optimization can be applied to optimize the outage probability. Such an optimization is

often intractable when the number of fading gains per codeword is larger than two and/or large

constellations (e.g. 16 points) are used. A simple approachcould be designingP such that the

mean ofI (α, γ, P ) over the fading distribution is maximized, in the hope that the area under

the left tail of its probability density function (pdf) would be minimized. However, the ergodic

mutual informationEα[I (α, γ, P )] contains no information on the diversity order, and, due to

the limited spectral efficiency of finite discrete input alphabets, for increasingγ rapidly converges

to a maximum that does not depend on the precoding matrix. Therefore, the maximization of

the ergodic mutual information fails to provide the optimumprecoding matrix [9].

In this paper, we first study the effect of linear precoding ofdiscrete input alphabets on

the outage probability. A unitaryB × B precoding matrix hasB2 degrees of freedom, so that

the optimization of the outage probability is multivariate. In a brute force optimization, Monte

Carlo simulations are required to take into account the distribution of all fading gains when

calculating the outage probability. Here, the analysis uses a geometric approach that leads to

upper bounds on the outage probability, which are easier to optimize, because it is no longer

necessary to perform a Monte Carlo simulation based on the fading gain distribution. Therefore,

with a minimal computational effort, the optimal precodingmatrix minimizing the upper bound

on the outage probability limit can be determined. These results serve as a basis for the design

of practical coded systems with linear precoding [6], whichis discussed in final section before

conclusions.

II. SYSTEM MODEL

At the transmitter output, a packet is represented as a real or complex column vectorχ =

[χ(1)T , . . . ,χ(B)T ]T of dimensionN , consisting ofB blocks that each containN/B symbols,

where (.)T indicates transposition; the b-th block of the packet isχ(b) = [χ(b)1, . . . , χ(b)N
B
]T

with E [|χ(b)n|2] = 1. The channel is memoryless with additive white Gaussian noise and

multiplicative real fading. The fading coefficients are only known at the decoder side. The

received signal vectorµ(b) corresponding to the transmitted blockχ(b) is

µ(b) = αbχ(b) + ω(b), b = 1, . . . , B. (1)
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The fading coefficients{αb, b = 1, . . . , B} are i.i.d. In the numerical results, we consider the

fading coefficients to be Rayleigh distributed, withE[α2
b ] = 1, but the analysis in this paper

is valid for arbitrary distributions. The noise vectorω(b) consists ofN/B independent noise

samples which are complex Gaussian distributed,ω(b)n ∼ CN (0, 2σ2). The average signal-to-

noise ratio isγ = 1
2σ2 .

The transmitted vectorχ is obtained from the information bits through a sequence of opera-

tions. Assuming a binary encoder with coding rateRc, a packet ofK information bits is encoded

into K/Rc coded bits. The binary codeword is split intoK/(mRc) strings each containingm

bits. In a standard coded communications system, the components of the transmitted vector

χ(b) are obtained by directly mapping each string ofm coded bits to one ofM = 2m points

belonging to a 1-dimensional real or complex space; the corresponding spectral efficiencyR

in bits per channel use (bpcu) is given byR = mRc. When using precoding combined with

component interleaving, each string ofm bits is mapped to one ofM = 2m points belonging to

a B-dimensional real or complex space; the corresponding B-dimensional M-point constellation

Ωz is denotedM-RB or M-CB , respectively. Denoting asz(n) = [z(n)1, . . . , z(n)B]
T the B-

dimensional vector that results from mapping the n-th string ofm coded bits, the linear precoding

involves the computation

x(n) = Pz(n), n = 1, . . . ,
N

B
(2)

whereP is a non-singular precoding matrix of dimensionB × B. The precoder output vectors

x(n) = [x(n)1, . . . , x(n)B] belong to a B-dimensional M-point constellationΩx which results

from a linear transformation (throughP ) of Ωz. Finally, component interleaving is applied:

the n-th component of the b-th block of the transmitted vector χ equals the b-th component

of the n-th precoder output vector, i.e.,χ(b)n = x(n)b (Fig. 1). Hence, theB components of

x(n) experience independent fading when transmitted over the BFchannel. Taking into account

that K information bits are transformed into a transmitted vectorχ with N = KB/(mRc)

components, the overall spectral efficiency isR = Rc
m
B

bpcu. Note that there are several ways

to achieve a given spectral efficiencyR. For example,R = 0.9 bpcu forB = 2 can be achieved

by a coded communication system with precoding and component interleaving (R = Rc
m
B

) by

choosingm = 3 andRc = 0.6, whereas a standard communication system (R = Rcm) achieves

R = 0.9 bpcu form = 1 andRc = 0.9. Also other combinations ofm andRc are possible.
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Fig. 1. The coded bits are mapped to multidimensional symbols z(n) in a constellationΩz . Each symbolz(n) is transformed
to x(n), where the different components are placed in the corresponding blocks inχ.

Note that a standard communication system withR = m′Rc can be viewed as a special case of

a multidimensional modulation, whereΩz is a Cartesian product ofB identical constellations

belonging to2m
′

-R1 or 2m
′

-C1 andP = I, whereI is the identity matrix, so thatΩx = Ωz;

these B-dimensional constellations containM = 2m
′B points.

We can reformulate Eq. (1) in terms ofx(n) as

y(n) = α · x(n) +w(n), n = 1, . . . ,
N

B
, (3)

where y(n)b = µ(b)n, (α)b = αb, w(n)b = ω(b)n and α · x(n) denotes component-wise

multiplication: (α · x(n))b = αbx(n)b.

As precoding allows to increase the spectral efficiency associated with full diversity, this

technique has been extensively studied in previous works, but almost exclusively foruncoded

schemes [2], [3]. Here, we study this system forcodedschemes and we choose the precoding

matrix P and the constellationΩz minimizing the outage probability.

A precoding matrixP that is unitary is an obvious choice because it does not decrease the

capacity of a Gaussian channel. In this paper, we will mainlyrestrict our study to real symbols,

henceP is an orthogonal matrix. In Sec. VII-A2, we will show that an extension to complex

symbols can be easily made. WhenB = 2, P is a rotation matrix where the rotation angleθ is
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the degree of freedom:

P =




cos(θ) − sin(θ)

sin(θ) cos(θ)



 . (4)

However, rotation matrices are difficult to construct for higher dimensions. In Sec. III, it will

be shown that forB > 2 it is sufficient to consider orthogonal circulant precodingmatrices. We

denote its first row as(p0, ..., pB−1). The second row is a cyclic shift to the right of the first

row, and so on. Because the columns of theB × B Fourier matrixF are the eigenvectors of

any circulant matrix, we can constructP as follows:

P = FΛFH, (5)

where(F )m,n = 1√
B
exp

(−2jπmn
B

)
, m,n ∈ {0, . . . , B−1}, andΛ is a diagonal matrix containing

the eigenvalues ofP . The condition forP being orthogonal isΛHΛ = IB, or theB eigenvalues

of P must have a squared magnitude of 1. It is easy to find that

λn =
B−1∑

l=0

pl exp

(−j2πnl

B

)

. (6)

Now, it follows that

pl =
1

B

B−1∑

m=0

λm exp

(
j2πml

B

)

. (7)

As the eigenvalues must have a magnitude of 1, we haveλn = exp(jθn). In order to obtain a

real-valuedP , we takeλ0 real (i.e.,λ0 = 1 or λ0 = −1) andλB−n = (λn)
∗ (i.e., θB−n = −θn)

for n = 1, . . . , B − 1. WhenB is even, this impliesλB/2 = 1 or λB/2 = −1. For B > 2, P is

determined byb(B − 1)/2)c continuous parameters that can be optimized.

Note that forB = 3, P constructed as above, withλ0 = 1 andλ1 = exp(jθ1), corresponds

to a 3-dimensional rotation with angleθ1 around the fixed axis1√
3
(1, 1, 1),

P =
1

3








1 + 2k 1− k −
√
3l 1− k +

√
3l

1− k +
√
3l 1 + 2k 1− k −

√
3l

1− k −
√
3l 1− k +

√
3l 1 + 2k







, (8)

wherek = cos(θ1) and l = sin(θ1).

Fig. 2 illustrates the effect of a rotation forB = 2 when a4-R2 constellation is used asΩz.
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(−1,1)

(1,−1)(−1,−1)

θ

z(n) = (1, 1)

x(n) = Pz(n)

x(n)2

x(n)1

(a)

t(n)

t(n)1

t(n)2
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Fig. 2. Displaying the rotation at the transmitter (a) and atthe receiver (without noise) (b) forB = 2. The empty (filled)
circles representΩz (Ωx). The components oft(n) are obtained by scaling the componentsx(n) by their respective fading
gain (hereα2 < α1), as expressed by the component-wise multiplicationα · x(n). The crosses on the coordinate axes are the
transmitted and received vector components, respectively. At the receiver, the transmitted values have been multiplied with their
corresponding fading gain (hereα2 < α1), which is expressed by the component-wise multiplicationα · x(n).

The transmitted components are affected by their corresponding fading gain, which is expressed

by the component-wise multiplicationt(n) = α · x(n), which is shown at the right side in Fig.

2. We say thatt(n) belongs to thefadedconstellationΩt. The pointt(n) = [t(n)1, ..., t(n)B] is

shown for a particular fading pointα. Whenα1 6= α2, the constellationΩt can be interpreted

as a distorted QPSK constellation (i.e., a constellation inwhich both components do not have

the same magnitude).

Consideringt(n), an equivalent channel model can be formulated:

y(n) = t(n) +w(n), n = 1, . . . ,
N

B
, (9)

which yields more insight and will be useful in the proofs of propositions of this paper.

This system model represents a Gaussian vector channel withinput t(n). This means that for

a particular fading point, the block fading channel can be interpreted as a virtual1 Gaussian

channel, with a discrete input alphabetΩt.

1We use the termvirtual because the fading gains of the actual channel are incorporated in the constellationΩt.
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III. A NALYSIS OF OUTAGE PROBABILITY IN THE FADING SPACE

For the remainder of the paper, we will drop the indexn in the vectorsz(n), x(n), t(n),

y(n) andw(n), as the time index is not important when considering mutual information. We

write random variables using upper case letters corresponding to the lower case letters used

for their realizations. The mutual informationI (α, γ, P ) at a certain fading pointα between

the transmitted B-dimensional symbolx (uniformly distributed overΩx) and the corresponding

received vectory is given by [12], [10]

I (α, γ, P ) =
1

B
I(X;Y|α, γ), (10)

where the scaling factor1
B

is added because theB blocks in the channel timeshare a time-interval

[5, Section 9.4], [27, Section 5.4.4]. The mutual information I(X;Y|α, γ) is

I(X;Y|α, γ) = m− 2−m
∑

x∈Ωx

Ey|x



log2




∑

x
′∈Ωx

exp

[
d2(y,α · x)− d2(y,α · x′)

2σ2

]






 , (11)

whered2(v,u) =
∑B

b=1 |vb − ub|2. However, more insight can be gained when consideringt.

From Eq. (9), it is clear that for a certain fading point, the mutual information of this virtual

channel, with inputΩt, is the same as the mutual information of the actual channel,with input

Ωx,

I (α, γ, P ) =
1

B
I(T;Y|α, γ). (12)

Hence, the fading pointα maximizing (minimizing) the mutual informationI(X;Y|α, γ) corre-

sponds to the fading point that distorts constellationΩt in the best (worst) way at the input of a

Gaussian vector channel. This interpretation allows to exploit the many results from literature on

the mutual information of Gaussian channels. Therefore, Eq. (12) will be useful in the following.

The outage probability is the probability that the instantaneous mutual information is less than

the transmitted information bitrateR [27, section 5.4],

Pout(γ, P, R) = Pr
(
I (α, γ, P ) < R

)
. (13)

Our main goal is to find the precoding matrixP that minimizes the outage probabilityPout(γ, P, R),

Popt = Argmin
P

Pout(γ, P, R).
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(a) Examples of an outage boundary whenΩz = 4-
R2 and the rotation angle isθ = 0, 10, 27 degrees.
The regionVo is coloured red forθ = 27 degrees.

 0
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(b) The pointsαb,o, b = 1, . . . , B and αe are
shown forB = 2.

Fig. 3. The outage boundary limits the regionVo in the fading space which corresponds to an information theoretic outage
event. The information rate isR = 0.9 bpcu. The average SNR is fixed toγ = 8dB.

A closed form expression forI (α, γ, P ) does not exist and Eq. (11) is difficult to analyze

because of the presence of mathematical expectations. Therefore, in the following two sections,

we will develop simple bounds on the outage probability and will approximatePopt by the

optimal precoding matrix that minimizes the bounds on the outage probability.

But first we will introduce a framework in this section that allows to gain insight on the

meaning of the outage probability. The considered framework is the fading space [4], which is a

subset of the B-dimensional Euclidean space,R
+B, of the real positive fading gains. The outage

probability equals the probability that the fading pointα belongs to a regionVo, which is such

that I (α, γ, θ) < R for all α in Vo (Fig. 3(a)):

Pout(γ, P, R) =

∫

α∈Vo

p(α)dα, (14)

wherep(α) is the joint pdf of the fading gainsα1, . . . , αB. We say that the regionVo is limited

by anoutage boundaryBo(γ, P, R) (see Fig. 3(a) forB = 2), defined by

I (α, γ, P ) = R, ∀ α ∈ Bo(γ, P, R).

In general, we can consider a certain boundary in the fading space limiting a regionV . This

March 28, 2011 DRAFT



10

boundary is denoted byB(V ). The outage boundaryBo(γ, P, R) corresponds to a regionVo, as

defined in (14), so that the outage boundary isBo(γ, P, R) = B(Vo).

Definition 1: We defineαb,o by the magnitude of the intersection between the outage boundary

and the axisαb. More precisely,I
(
α|αi=0,i 6=b,αb=αb,o

, γ, P
)
= R. By convention,αb,o = +∞ if

the axisαb is an asymptote for the outage boundary.

Definition 2: We defineαe as the value of the components of the intersection between the

outage boundary and the lineα1 = . . . = αB (also known as theergodic line). More precisely,

I
(
α|αi=αe,i∈[1,...,B], γ, P

)
= R.

The defined points are illustrated in Fig. 3(b) forB = 2. In the remainder of the paper, we

denote the pointsα|αi=0,i 6=b,αb=αb,o
by αb,o andα|αi=αe,i∈[1,...,B] by αe.

Proposition 1: On a BF channel withB = 2, with a discrete input alphabet and with linear

precoding, the magnitudes{αb,o, b = 1, 2} are equal if the constellation is invariant under a

rotation of 90 degrees and the precoding matrix is orthogonal.

On a BF channel withB > 2, with a discrete input alphabet and with linear precoding, the

magnitudes{αb,o, b = 1, . . . , B} are equal if the constellation is invariant under a cyclic shift

of the components of the points of the constellation and the precoding matrix is an orthogonal

circulant matrix.

Proof: See Appendix A.

Notice that the condition of Prop. 1 is a sufficient conditionand not a necessary condition. In the

remainder of this paper, it is assumed that the constellation used at the transmitter fulfils Prop.

1. The magnitudes{αb,o, b = 1, . . . , B} will then simply be denoted byαo. This also means that

the projection ofΩx on either coordinate axes yields the same set of points, which we denote

by Sp, wherep stands for projection.

Note that a multidimensional constellation that fulfils Prop. 1 (i.e., its projection on each

coordinate axis yields the same set of points, see Appendix A) has an interesting property.

For these constellations, the functionI (Xb; Yb|αb = α, γ), which is the mutual information of a

point-to-point channel with fading coefficientαb = α, average SNRγ and with discrete input

Xb, does not depend onb. As a consequence, we will represent this mutual information by

ISp
(α2γ, P ).

Definition 3: BoundaryB1 = B(V1) is said to outer bound outage boundaryB2 = B(V2) if

V2 ⊆ V1. The opposite holds for inner bounding.
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The outage boundary in the fading space has a simple but interesting property: if an outage

boundaryouter bounds (inner bounds)another outage boundary, than its corresponding outage

probability is larger (smaller) (see Eq. (14)). For example, consider the input alphabetZ ∼
N (0, I), which we denote as an i.i.d. Gaussian input alphabet, where0 is a column vector of

zeros andI is the identity matrix. The outage boundary corresponding to i.i.d. Gaussian inputs,

denoted byBo(gauss), inner bounds the outage boundary corresponding to a discrete input

alphabet, denoted byBo(discrete) [5]. Therefore, the outage probability corresponding to i.i.d.

Gaussian inputs is a lower bound on the outage probability corresponding to a discrete input

alphabet. Consequently, by minimizing the outage probability corresponding to a discrete input

alphabet,Bo(discrete) can at most approachBo(gauss) (see Fig. 4).

 0

 1.2

 2.4

 0  1.2  2.4

α 2

α1

Gaussian distributed continuous input
Discrete uniform distributed input

Fig. 4. The outage boundaryBo(discrete) is inner bounded byBo(gauss). Optimizing the precoding matrix can at most
makeBo(discrete) approachBo(gauss) as illustrated by the arrows.

In the following two sections, we will determine boundarieswith simple shapes outer bounding

Bo(discrete), which are then much easier to optimize. This can be done by determining a surface
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in the fading space,U(α) = 0, satisfying

I (α, γ, P ) ≥ R, for all α satisfyingU(α) = 0. (15)

For example, forB = 2, we will prove that a circular arc touchingBo(discrete) at α1 = αo (on

the horizontal axis) andα2 = αo (on the vertical axis) satisfies Eq. (15).

IV. BOUNDS ON THE OUTAGE PROBABILITY WITHOUT LINEAR PRECODING

As a first step, we will establish upper and lower bounds on theoutage probability of a

communication system without linear precoding. This will set the stage for the bounds with

linear precoding in Sec. V.

We will prove that the outage boundary is outer bounded by aB-hypersphere touching the

outage boundary on the axes of the fading space, hence with radiusαo. A B-hypersphereU(α) =

0 is a generalization of a sphere toB dimensions,

U(α) =
B∑

b=1

α2
b − α2

o.

Note that this is only possible for constellations fulfilling the conditions of Prop. 1. For other

constellations, the outer boundingB-hypersphere will have a radius ofmaxb∈[1,...,B] αo and will

therefore be less tight.

Lemma 1:On a BF channel with a discrete multidimensional input alphabet X, the mutual

informationI (α, γ, P ) is upper bounded as follows

I (α, γ, P ) ≤ 1

B

B∑

b=1

ISp

(
α2
bγ, P

)
. (16)

Proof: See Appendix B.

A special case is the case without precoding (P = I) so thatΩx = Ωz. If in that caseΩz is the

Cartesian product ofΩz1 , . . . , ΩzB
2, Ωz = (Sp)

B, then all variablesXb = Zb are independent

for all b, so that equality holds in Eq. (16). E.g.,Ωz = 4-R2, as shown in Fig. 2, is the Cartesian

product of two BPSK constellations, denoted as BPSK×BPSK.

For an i.i.d. Gaussian input alphabet, the instantaneous mutual information with linear pre-

coding is the same as the instantaneous mutual information without linear precoding, because

2We denote the projection ofΩz on theb-th coordinate axis asΩzb . For constellations fulfilling Prop. 1,Ωzb = Sp.
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Pz = x ∼ N (0, I) whenP is orthogonal, so that precoding does not change the distribution

of the input vector. Therefore, the instantaneous mutual information for an i.i.d. Gaussian input

alphabet is

I (α, γ, P ) = I (α, γ, P = I) =
1

B

B∑

b=1

0.5 log2(1 + 2γα2
b). (17)

Proposition 2: The outage boundaryBo(gauss) of a BF channel with an i.i.d. Gaussian input

alphabet is outer bounded by the hypersurface of theB-hypersphereα2
1+α2

2+ . . .+α2
B = 4BR−1

2γ

and inner bounded by the hypersurface of theB-hypersphereα2
1 + α2

2 + . . .+ α2
B = 4R−1

2γ
.

Proof: In Appendix C, it is proved that forα on a hypersurface:

• I (α, γ) |α1=...=αB
≥ I (α, γ)

• I (α, γ) |αb=αo
≤ I (α, γ),

because the mutual information is a sum of concave functionsof the instantaneous SNRsγα2
b

(Eq. (17)). Calculatingαo and αe, according to Definitions 1 & 2, yields the radii of both

B-hyperspheres.

The inner boundary touches the outage boundary in the pointαe, so that it does not depend on

B (the entire codeword is affected by the same fading gainαe). The outer boundary touches the

outage boundary in the pointsαb,o, ∀ b; its dependence onB follows from the fact thatB − 1

is equal to the number of erased channels.

Proposition 3: On a BF channel with a discrete input alphabetΩz that is a Cartesian product

of one-dimensional constellations, the outage boundaryBo(discrete) is outer bounded by the

hypersurface of theB-hypersphereα2
1+α2

2+ . . .+α2
B = α2

o touching it at the axes of the fading

space atαb,o, ∀ b. Also,Bo(discrete) is inner bounded by the hypersurface of theB-hypersphere

α2
1 + α2

2 + . . .+ α2
B = α2

e touching it atαe.

Proof: Lemma 1 proved that the mutual information is upper bounded by 1
B

∑B
b=1 ISp

(α2
bγ, P ),

where this upper bound coincides with the exact expression in the case thatΩz is a Cartesian

product. Using the relation between the mutual informationI(SNR) = ISp
(α2

bγ, P ) and the

minimum mean-square error (MMSE) in estimating the input symbol,Xb ∈ Sp, given the output

symbolYb [15],
d

d SNR
I(SNR) =

1

2
MMSE(SNR), (18)

it is easily proved thatISp
(α2

bγ, P ) is a concave function (the second derivative is negative) of
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the instantaneous SNRγα2
b , because the MMSE is a decreasing function of the SNR. Therefore,

the proof is the same as for Prop. 2.

Notice that the techniques of the proofs of Props. 2 and 3 cannot be used for discrete input

alphabetsΩz that are not a Cartesian product of one-dimensional constellations, because in that

case the upper bound1
B

∑B
b=1 ISp

(α2
bγ, P ) does not coincide with the exact expression of the

mutual information. However, this case is merely a particular case (P = I) of a precodeddiscrete

input alphabet, which is covered in the next section.

V. BOUNDS ON THE OUTAGE PROBABILITY WITH LINEAR PRECODING

Propositions 2 and 3 mainly state that the outage boundary for a channel with an i.i.d. Gaussian

input alphabet or a discrete input alphabet without precoding is outer bounded by the hypersurface

of aB-hypersphere touching it at the axes of the fading space, atαb,o, ∀ b. We conjecture that this

property still holds for a communication system with a discrete alphabet with linear precoding

at the input of the channel. First, we will give new detailed proofs for low and high SNR of

this property. Then, a more intuitive explanation will be given to provide more insight.

Proposition 4: On a BF channel at low and high SNR, with a discrete input alphabet and

with linear precoding, the outage boundaryBo(discrete) is outer bounded by the hypersurface

of theB-hypersphereα2
1 + α2

2 + . . .+ α2
B = α2

o touching it at the axes of the fading space.

Proof: See Appendix D.

This outer boundary corresponds with an upper bound on the outage probability. Minimizing

this upper bound is simply achieved by minimizingαo. In the following proposition, we will

establish an inner bound on the outage probability.

Proposition 5: On a BF channel at low and high SNR, with a discrete input alphabet and

with linear precoding, the outage boundaryBo(discrete) is inner bounded by the hypersurface

of theB-hypersphereα2
1 + α2

2 + . . .+ α2
B = Bα2

e.

Proof: See Appendix E.

This inner boundary corresponds with a lower bound on the outage probability. Minimizing this

lower bound is simply achieved by minimizingαe.

To get more insight, we give an illustration of Props. 4 and 5.We consider the4-R2 constel-

lation Ωx from Fig. 2(a), withθ = π/6. Further, we takeα1 = αocos(λ) andα2 = αosin(λ),

i.e., |α| = αo, so thatα is on the outer boundary of the outage boundary. Fig. 5 shows the
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corresponding mutual informationI(α, γ, θ) as a function ofγ for various values ofλ. We

observe that the mutual information increases whenλ increases from0 to π/4. The projections of

the constellationΩt on the horizontal and vertical coordinate axes have variancesα2
1 = α2

ocos
2(λ)

andα2
2 = α2

osin
2(λ) respectively, whereas the total variance ofΩt equalsα2

o, irrespective ofλ.

When λ = π/4, Ωt is equivalent to a common QPSK constellation: the variancesof both

projections equalα
2
o

2
, and the corresponding mutual information is maximum. Whenλ decreases

from π/4 to 0, the difference between the two variances increases,Ωt becomes an increasingly

more distorted QPSK constellation, and the mutual information decreases. Atλ = 0 we get

α1 = αo and α2 = 0; Ωt (which is now a scaling ofSp) reduces to a 4-PAM constellation

and the corresponding mutual information is minimum. This illustrates the general principle that

performance is optimized when the transmit power is equallysplit over the available identical

channels and the performance is worst when the transmit power is completely used for only

one channel, which is exactly what is claimed in Props. 4 and 5for high and low SNR. More

specifically, forα on the hypersurface of a hypersphere, it is proved in Prop. 4 that the mutual

information is the smallest atαb,o, and it is proved in Prop. 5 that the mutual information is the

largest atαe.

Finally, we show that the precoded constellations achieve full diversity for a rateR, provided

that2BR does not exceed the number of points contained in the projection of Ωx on a coordinate

axis.

Proposition 6: For any coding rate0 < Rc < 1, the outage probability of a Rayleigh

distributed block fading channel with a discrete input alphabet and linear precoding exhibits

full diversity, i.e.,Pout(γ, P, R) ∝ 1/γB.

Proof: See Appendix F.

It should be noted that the proof of Prop. 6 assumes the existence ofI−1
Sp

(BR,P ); hence, the

number of points inSp must not be less than2BR. When considering the4-R2 constellation

from Fig. 2(a),Sp contains only2 points when the rotation angleθ is a multiple ofπ/2, and

4 points otherwise. Therefore, the maximum rate that corresponds to full diversity isR = 0.5

when the rotation angleθ is a multiple ofπ/2, andR = 1 otherwise.
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Fig. 5. The mutual information is monotonically non-increasing as the constellation becomes more distorted. The upperand
lower curve correspond toλ = π/4 andλ = 0 respectively.

VI. OPTIMIZATION OF THE OUTAGE PROBABILITY OF PRECODED CONSTELLATIONS

In the previous section, we proved for high and low SNR that the outage boundary of

block fading channels with precoded constellations is outer bounded by a hypersurface of a

B-hypersphere with center in the origin and touching the outage boundary on the axes of the

fading space. This hypersurface corresponds to an upper bound on the outage probability of the

channel (see the paragraph after Def. 3). Instead of minimizing the actual outage probability, it

is easier to minimize the upper bound on the outage probability. This optimization will allow

the actual outage probability to closely approach a lower bound on the outage probability, i.e.,

the outage probability corresponding to an i.i.d. Gaussianinput alphabet, as we will see in the

numerical results.

The B-hypersphere is completely determined by one variable, itsradiusαo. We denote the

outer boundary on the outage boundary byBup(αo) and the corresponding upper bound on the

outage probability byPup(αo):

Pup(αo) =

∫

α∈Vup(αo)

p(α)dα, (19)
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x1

x2

(a) The transmitted symbols are the componentsxb

of the constellationΩx.

t1

t2

(b) The received symbolstb are the faded compo-
nentsαbxb. Collecting the different componentstb,
the faded constellationΩt is constructed, which is
expressed byΩt = α · Ωx.

Fig. 6. The transmitted (Ωx) and faded constellation (Ωt) are shown for the case of the transmission of real symbols,B = 2
andΩz = 8-R2. ForΩt = α ·Ωx, the fading point(α1,o, 0), the intersection between the outage boundary and the axisα2 = 0,
is used.

whereVup(αo) is the consideredB-hypersphere limited byBup(αo). From Eq. (19), it is clear

that the regionVup(αo) has to be made as small as possible to minimizePup(αo). Therefore, the

optimization target is to minimize the radiusαo.

BecauseISp
(α2

oγ, P ) = BR, the minimization ofαo (and, therefore, the minimization of the

upper bound on the outage probability) is achieved by selecting the constellationSp requiring the

least energy to achieve a rateBR, ISp
(., P ) = BR on a Gaussian channel. This involves a proper

selection of both the constellationΩz and the precoding matrixP . Note that this optimization is

much simpler than the direct minimization of the outage probability as given by Eqs. (13) and

(10), because the outage probability is hard to evaluate, especially when the number of fading

gains and constellation points is large. Furthermore, no insight is gained by the latter approach,

so that it would not be clear which constellationΩz should be taken.

Also, the outage boundary of block fading channels with precoded constellations is inner

bounded by a hypersurface of aB-hypersphere with center in the origin and touching the outage

boundary in the pointαe. Hence,αe determines the radius of thisB-hypersphere,
√
Bαe. In

this point, the faded constellationΩt is balanced, as in Fig. 6(a). We will denote this balanced

constellationΩt = αe ·Ωx by Se. Hence, the hypersurface corresponds to a lower bound on the

outage probability which is minimized by optimizing the mutual information ofSe.

In this section, we will show that the radius of the outer boundary,αo, and the radius of the
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inner boundary,
√
Bαe, can be minimized by combining a simple optimization of the precoding

matrix P with a constellation expansion.

A. Optimization of the precoding matrix

Because it follows from Eq. (10) that the valueαe is insensitive to orthogonal transformations,

the selection of the precoding matrixP affects only the radius of the outer boundaryαo. Let

us denote byO the set of parameters fromP over which we will minimizeαo. For B = 2

and B = 3, the only degree of freedom is the rotation angle (see (4) and(8)). For B > 3,

more degrees of freedom can be exploited to minimizeαo. For the numerical results, we restrict

ourselves toB ≤ 3.

The mutual information ofSp can be rewritten asISp
(α2

oγ,O), which yieldsα2
o =

I−1

Sp
(BR,O)

γ
.

Changing the value ofO (e.g. the rotation angleθ for B = 2) will change the distances between

the points inSp and so change its mutual information. For a fixed spectral efficiency R and

fixed average SNRγ, minimizing the radius yields the optimization criterion

Oopt = arg min
O

I−1
Sp

(O, BR).

The optimization is performed by means of a simulation, due to the lack of closed form expres-

sions of the mutual information. Because the constellationis one-dimensional, the computational

effort is minimal. We apply this optimization for differentscenarios in Sec. VII.

B. Constellation expansion

As the number of information bits per channel use isR = mRc/B, there are different

combinations ofm andRc yielding the sameR. Taking into account thatRc ≤ 1, the minimum

value ofm equalsdBRe, with a corresponding coding rateRc =
BR
dBRe .

The number of points in the constellation is|Ωt|. Increasing the constellation size ofΩz will

render a constellationΩt with more points, both forSe andSp. This higher order constellation

may need less energy to achieve the same rate, both for the balanced case (optimization of

αe) as the distorted case (optimization ofαo). However, the decoding complexity increases as

well as the complexity of optimization, so that there is a trade-off between performance and

complexity. The higher the constellation size, the smallerthe horizontal SNR-gap between the

outage probabilities corresponding to a precoded discreteinput alphabet and i.i.d. Gaussian input

March 28, 2011 DRAFT



19

alphabet. However, the improvement in performance becomessmaller and smaller, as illustrated

in Sec. VII.

VII. N UMERICAL RESULTS

A. Numerical results forB = 2

When B = 2, O = θ, and the optimization criterion for the upper bound on the outage

probability is to find θ so that I−1
Sp

(θ, BR) is minimized. Next, a constellation expansion is

performed to further minimize the upper bound as well as the lower bound on the outage

probability.

1) Real constellations:Assume that a transmission rateR = 0.9 bpcu is aimed. First, we

consider the optimization of the rotation angleθ, see Fig. 7. On the lefty-axis, we show the

instantaneous SNR per symbol,γs = α2
oγ, so thatISp

(γs, θ) = BR. The minimum SNR per

symbolγs that is needed to transmitR = 0.9 bpcu forγ = 8dB is achieved by an i.i.d. Gaussian

input alphabet:

γs =
24R − 1

2
.

This fundamental minimum can be approached when using a precoded discrete inputΩz = 4-

R2 (Rc = 0.9) with rotation angleθ = 27 degrees. Now, we apply a constellation expansion to

further reduceαo (see Fig. 7) andαe (see Fig. 8(a)). For example,γs for the rotated constellation

Ωz = 8-R2 (Rc = 0.6) approaches the theoretical minimum very closely for rotation angles

within [0 . . . 9] degrees. An expansion toΩz = 16-R2 (Rc = 0.45 and θopt ∈ [35, 45] degrees)

only slightly improves the performance. The optimization of γs decreases the volume of the

regionVo, which is illustrated in Fig. 3(a) forΩz = 4-R2. Fig. 8(a) illustrates that constellation

expansion is sufficient to reduce the valueαe, which is very close to the theoretical minimum.

Therefore, the constellation is not further shaped to minimize the lower bound of the outage

probability.

The information theoretic approach used in this paper does not lead to the same optimized

rotations as in the case of algebraic constructions of uncoded constellations. In [3] and [1],

multidimensional rotations have been optimized for uncoded infinite constellations transmitted

on ergodic fading channels. As a simple illustration, we show in Fig. 7 the minimum product

distancedp,min [27] of the uncoded8-R2 versus the rotation angle. The optimum and the profile

March 28, 2011 DRAFT



20

 6

 8

 10

 12

 14

 16

 18

 0  5  10  15  20  25  30  35  40  45

 0

 0.2

 0.4

 0.6

 0.8

 1

γ s
 (

dB
)

M
in

 P
ro

du
ct

 D
is

ta
nc

e

θ (degrees)

γs for Rotated 16-ℜ 2

γs for Rotated 8-ℜ 2

γs for Rotated 4-ℜ 2

γs for Gaussian
dp,min for Rotated 8-ℜ 2

Fig. 7. The optimization of the radius of the outer boundary is shown forΩz = 4-R2, R = 0.9 bpcu andγ = 8dB. The
y-axis at the left denotes the instantaneous SNR per symbol,γs = α2

oγ, and the right y-axis denotes the minimum product
distance. The thick black line without markers represents the fundamental minimum SNR per symbol,γs, that is needed to
transmitR = 0.9 bpcu forγ = 8dB, i.e., when using an i.i.d. Gaussian input alphabet. The effect of constellation expansion on
the radiusαo is shown by optimization ofΩz = 8-R2 andΩz = 16-R2. The profile of the minimum product distance,dp,min,
is shown forΩz = 8-R2.

 0

 0.6

 1.2

 0  0.6  1.2

α 2

α1

Gaussian mod.
Ωx=rot 4-ℜ 2 θ=27

Upperbound of rot 4-ℜ 2 θ=27
Ωx=rot 8-ℜ 2 θ=[0..9]

Ωx=rot 16-ℜ 2 θ=0
Ωx=rot 16-ℜ 2 θ=[38..45]

(a)

10-3

10-2

10-1

100

 7  10  13  16  19  22

O
ut

ag
e 

pr
ob

ab
ili

ty

Eb/N0 [dB]

Ωx=rot 4-ℜ 2 θ=0

Ωx=rot 4-ℜ 2 θ=27

Ωx=rot 8-ℜ 2 θ=0

Ωx=rot 16-ℜ 2 θ=45

Real Gaussian

(b)

Fig. 8. The outage boundaries (left) and outage probabilities (right) ofΩz = 4-R2, Ωz = 8-R2 andΩz = 16-R2 with and
without optimized rotation angle are shown. The spectral efficiency isR = 0.9 bpcu andγ = 8dB.

of dp,min and those ofγs do not match. The minimum product distance approach is not suitable

for coded schemes. For example, the minimum product distance is zero forθ = 0 degrees, while

this rotation angle is optimal in terms of outage probability.

The outage probabilities of the considered multidimensional constellations are shown in Fig.

8(b). This confirms that constellation expansion together with the optimization of the precoding
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parameter is sufficient to approach the outage probability with an i.i.d. Gaussian input alphabet

very closely. It also shows that the constellationΩx = 8-R2 with θ ∈ [0 . . . 9] degrees represents

the best trade-off between performance and complexity.

2) Extension to complex constellations:All the proofs in this paper are valid for complex

constellations. This means that also for complex constellations, the outage boundary is outer

bounded by aB-hypersphere, determined by one variable, its radius. We restrict our attention

to real precoding matrices. Consider Eq. (2), wherez is now a complex vector andP is real.

For complex symbols, this can be rewritten as

x = PR{z}+ jP I{z}, (20)

wherej2 = −1, R{.} andI{.} take the real and complex part respectively. This means thatthe

real and imaginary part of the complex vector are each precoded by the same matrixP .

Assume that a transmission rateR = 1.8 bpcu is aimed. Initially, we take the constellation

Ωz = 16-C2 (Rc = 0.9), which can be build as the Cartesian product of two 4-QAM constellations

(16-C2=4-QAM×4-QAM). As for real constellations, the rotation angleθ can be optimized, see

Fig. 9(a). The gap to the outage probability corresponding with an i.i.d. Gaussian input alphabet

can be closed by a constellation expansion and a new optimization of the rotation angle. The same

strategy as for real constellations could be applied by onlyadding one bit in the multidimensional

constellation, which would extendΩz = 16-C2 to Ωz = 32-C2. However,Ωz = 32-C2 cannot

be written as the Cartesian product of two constellations and is therefore less convenient to

generate (32 points would have to be placed properly in a4-dimensional space). For simplicity,

the constellation expansion is done by adding one bit per component which extendsΩz = 16-C2

(=4-QAM×4-QAM, Rc = 0.9) to Ωz = 64-C2 (8-QAM×8-QAM 3, Rc = 0.6). The optimization

of θ and the optimized outage probabilities are shown in Fig. 9.

Note that, forΩz = 16-C2, the profile of the rotation angleθ, and so the optimum rotation

angle, is the same as forΩz = 4-R2 andR = 0.9 bpcu. This can be explained as follows. When

R{z} andI{z} are drawn from the same real constellationΨz, thenz belongs to a constellation

Ωz = Ψz + jΨz. Consequently,x belongs to a constellationΩx = Ψx + jΨx, whereΨx is

obtained by applying the precoding matrixP to the constellationΨz. From the chain rule of

3The 8-QAM constellations have the same form as in Fig. 6(a).
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Fig. 9. The optimization ofθ and the optimized outage probabilities are shown when complex symbols are transmitted. The
transmitted rate isR = 1.8 bpcu.

mutual information [5], we obtain

IΩx
(γ) = 2IΨx

(γ

2

)

. (21)

Hence, the precoding matrixP that is optimum for a real constellationΨz and rateR is also

optimum for a complex constellationΩz = Ψz + jΨz and rate2R. The corresponding SNR

for the complex constellation is3 dB higher than for the real constellation. ForΩz = 16-C2

andR = 1.8 bpcu, the corresponding real constellation isΨz = 4-R2. Therefore, the profiles

in Figs. 9(a) and 7 are the same for both constellations, except for an upward translation of3 dB.

We also tested the performance for higher spectral efficiencies. Consider for example a system

requiring a spectral efficiency ofR = 3.6 bpcu. Here, the same techniques can be used. First,

Ωz = 256-C2 (16-QAM×16-QAM, Rc = 0.9) is optimized, followed byΩz = 1024-C2 (32-

QAM×32-QAM 4, Rc = 0.72). The results are given in Fig. 10. The same observations hold as

for the previous numerical results.

B. Numerical results forB = 3

WhenB = 3, O = θ1 (see Eq. (8)), and the optimization criterion for the upper bound on the

outage probability is to findθ1 so thatI−1
Sp

(θ1, BR) is minimized. Next, a constellation expansion

4The well known cross 32-QAM constellations are used.
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Fig. 10. Outage probabilities of the BF channel with inputΩz = 256-C2 andΩz = 1024-C2. The spectral efficiency isR = 3.6
bpcu.

is performed to further minimize the upper bound as well as the lower bound on the outage

probability.

We aim to transmitR = 0.9 bpcu. We construct constellationsΩz that are invariant to a cyclic

shift of the components of the constellation points. Hence,the constellations are invariant to a

rotation of 2π/3 with respect to the bisector(1, 1, 1) (this can be verified by evaluatingP in

Eq. (8) for this rotation angle). An example of such constellations are the Cartesian products of

three identical one-dimensional constellations, such as8-R3 =(BPSK)3 (constellation points are

corners of a cube) and64-R3 = (4-PAM)3 (constellation points are the corners of four nested

cubes). More sophisticated constellations can also be considered. For example,16-R3 can be

constructed by considering 5 sets of three constellation points{(aj , bj , cj), (bj, cj , aj), (cj, aj , bj)}
5 for j = 1, ..., . . . , 5, and adding a constellation point located on the bisector. To build the actual

constellations, a few design parameters have to be specified, such as the distances between

the planes perpendicular to the bisector, the radii of the circles containing three points of the

constellation in the planes, how many points on the bisectorare taken and how many points in

groups of three are taken. These design parameters will impact on the final performance.

Because it is not the main topic of the paper, we will not elaborate on many different designs

5The three constellation points are in a plane perpendicularto the bisector.
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Fig. 11. The optimization ofθ1 and the optimized outage probabilities are shown forB = 3. The transmitted rate isR = 0.9
bpcu.

for the multidimensional constellations. We compare the performance of8-R3 (Rc = 0.9), 16-

R3 (Rc = 0.675) and 64-R3 (Rc = 0.45) in Fig. 11. Note that the symmetry point in Fig.

11(a) is notθ1 = 45 degrees, as forB = 2, but it is 60 degrees. The8-R3 constellation

is equal to the Cartesian product of three BPSK constellations and the64-R3 constellation is

the Cartesian product of three 4-PAM constellations. For the 16-R3 constellation, we chose

to take a circle of three points in a plane containing the origin perpendicular to the bisector,

and two circles with 6 points, each in a plane next to the first plane, perpendicular to the

bisector. Finally the origin is also chosen as a constellation point. The rounded coordinates of

the points of the constellationΩz are {(0.0, 1.0,−1.0), (1.9, 0.12, 0.12), (1.3,−0.5, 1.3), (0.5−
1.3− 1.3), (−1.9,−0.1,−0.1), (0, 0, 0)} as well as the cyclic shifts of these coordinates.

C. Practical implications

Although this work may seem very theoretical, it has an important practical consequence.

The WER of a practical system is lower bounded by the outage probability (the lower bound

is achievable). To minimize the WER, first its lower bound must be minimized. Therefore, the

multidimensional constellationΩz and the rotation angle interval for the practical code should

be taken as obtained in this work. Next, the labelling, the rotation angle within the rotation angle

interval obtained in this paper, and the error-correcting code must be determined. Of course, the

last three optimizations are the topics of another work [6],but it is important to understand that

these optimizations are based on what is presented in this paper. In Fig. 12, we show forB = 2
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andR = 0.9 bpcu that the optimized outage probability can be approached very closely by the

WER of a practical system.

VIII. C ONCLUSIONS

We have studied the effect of linear precoding on the outage probability of block fading

channels. We have analyzed the outage boundaries in the fading space and established outer

boundaries with simple shapes which yield an easy optimization of the outage probability for a

discrete constellation, for an arbitrary number of blocks in the fading channel, real or complex

constellations, low or high spectral efficiency. The combination of a constellation expansion

and an optimized precoding matrix, has shown to be sufficientto closely approach the outage

probability corresponding to an i.i.d. Gaussian input alphabet. With this work, the practical code

performance can be optimized by admitting the parameters obtained here.
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APPENDIX

A. Symmetry conditions for multidimensional constellations

The points{αb,o, b = 1, . . . , B} correspond to the case that all fading gains are zero, except

one, whose value is the scaling factor of the projection of the multidimensional constellation on

the b-th coordinate axisxb, so that the mutual information between the B-dimensional symbol

x and the corresponding received signal vectory is equal to the spectral efficiencyR. In other

words, if the projection of the multidimensional constellation on each coordinate axis yields the

same set of points, then the magnitudes of the points{αb,o, b = 1, . . . , B} are equal.

First, we restrict our attention to the case thatB = 2. Consider the constellation pointz(i) =

(u
(i)
1 , u

(i)
2 ) ∈ Ωz. The projection of the multidimensional constellation on each coordinate axis

yields the same set of points if for each pointz(i), the pointsz(j) = (u
(j)
1 , u

(j)
2 ) and z(q) =

(u
(q)
1 , u

(q)
2 ) exist, i, j, q ∈ [1, . . . , 2m]; j, q 6= i, so that







cos(θ)u
(i)
1 − sin(θ)u

(i)
2 = sin(θ)u

(j)
1 + cos(θ)u

(j)
2

sin(θ)u
(i)
1 + cos(θ)u

(i)
2 = cos(θ)u

(q)
1 − sin(θ)u

(q)
2 .

In other words,x(i)
1 = x

(j)
2 andx(i)

2 = x
(q)
1 , wherex(i),x(j) andx(q) are the corresponding points

of z(i), z(j) andz(q) in Ωx. It can be easily verified that this is always fulfilled if






(u
(i)
1 , u

(i)
2 ) = (u

(j)
2 ,−u

(j)
1 )

(u
(i)
1 , u

(i)
2 ) = (−u

(q)
2 , u

(q)
1 ),

or in other words, the constellation is invariant under a rotation ofπ/2, which is obtained after a

cyclic shift and a reflection, which proves what was claimed.An example of such a constellation

is the constellation shown in Fig. 2(a).

Now consider the case thatB > 2. Consider theB-dimensional constellationΩz that contains

M points. Whenz belongs toΩz, then alsoz(1), . . . , z(B−1) belong toΩz, wherez(b) is obtained

from z by a b-fold upward cyclic shift of the components ofz: z(b) = Cbz, whereC is obtained

as a cyclic shift to the right of the columns of theB×B identity matrix. Note that the number

of constellation points does not need to be a multiple ofB: a subset of the constellation may

consist of an arbitrary number of constellation points of the type [z, z, . . . , z]T which remain

invariant under a cyclic shift.

Consider an orthogonal circulantB × B precoding matrixP . Therefore,P = CPCT (a
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circulant matrix remains the same when applying a left cyclic shift to the columns and an

upward cyclic shift to the rows). The transformation ofz(b) is

Pz(b) = PCbz = (CPCT )Cbz = CPCb−1z = . . . = CbPz = Cbx = x(b), (22)

where we exploit thatC is an orthogonal matrix.

Consider the matrix
(
x,x(1), . . . ,x(B−1)

)
. As the(i+1)-th row is obtained as a cyclic shift to

the left of thei-th row, the set of components in a row is the same for each row.A constellation

point in Ωz of the type(z, z, ..., z)T is transformed into a constellation point inΩx of the type

(x, x, ..., x)T . We conclude that the projection of the constellationΩx on any of the coordinate

axes yields the same set of points.

B. Proof of Lemma 1

The mutual informationI (α, γ, P = I) is equal to1
B
I(X;Y|α, γ), which is equal to1

B
I(Y;X|α, γ).

This can be split in the sum ofB terms through the chain rule [5]:

I (α, γ, P = I) =
1

B
(I (Y1;X|α1, γ) + I (Y2;X|Y1, α1, α2, γ) + I (YB;X|Y1, . . . , YB−1,α, γ)) .

The mutual information

I (Yb;X|Y1, . . . , Yb−1,α, γ) = E

[

log
Pr(x|y1, . . . , yb)

Pr(x|y1, . . . , yb−1)

]

= E

[

log
p (yb|y1, . . . , yb−1,x)

p (yb|y1, . . . , yb−1)

]

= E

[

log
p (yb|xb)

p (yb|y1, . . . , yb−1)

]

= I (Xb; Yb|Y1, . . . , Yb−1,α, γ) ,

which can be further elaborated to

I (Xb; Yb|Y1, . . . , Yb−1,α, γ)

= H (Yb|Y1, . . . , Yb−1,α, γ)−H (Yb|Xb, Y1, . . . , Yb−1,α, γ) .

Because

H (Yb|Y1, . . . , Yb−1,α, γ) ≤ H (Yb|α, γ) (23)
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and

H (Yb|Xb, Y1, . . . , Yb−1,α, γ) = H (Yb|Xb,α, γ) , (24)

it is clear that

I (Xb; Yb|Y1, . . . , Yb−1,α, γ) ≤ I (Xb; Yb|αb, γ) , (25)

where the upper bound equalsISp
(α2

bγ, P ).

C. Proof of Props. 2 and 3

Consider a functionF (x) that is concave forx ≥ 0. Hence, for arbitraryL,

F

(
L∑

l=1

plγl

)

≥
L∑

l=1

plF (γl), (26)

for
∑L

l=1 pl = 1, pl ≥ 0 andγl ≥ 0 for l = 1, . . . , L, by Jensen’s inequality. In addition, assume

thatF (0) = 0.

We construct the function
∑B

b=1 F (γb) where
∑B

b=1 γb = C, γb ≥ 0 and γb = γα2
b for

b = 1, . . . , B. Hence,α is on the surface of a hypersphere with squared radiusC/γ.

From Eq. (26) withL = B, we obtain

B∑

b=1

F (γb) = B

(

1

B

B∑

b=1

F (γb)

)

≤ BF

(

1

B

B∑

b=1

γb

)

= B.F

(
C

B

)

The maximum valueB.F
(
C
B

)
is achieved forγb = C

B
, b = 1, . . . , B.

Further, using Eq. (26) withL = 2,

F (γb) = F

(
γb
C
C +

C − γb
C

0

)

≥ γb
C
F (C) +

C − γb
C

F (0) =
γb
C
F (C)

Summing overb yields
B∑

b=1

F (γb) ≥
F (C)

C

B∑

b=1

γb = F (C).

The minimum valueF (C) is achieved when, for givenl ∈ {1, . . . , B}, γl = C andγb = 0, for

b 6= l.
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D. Proof of Prop. 4

High SNR:

Recall thatI (α, γ, P ) = 1
B
I(T;Y|α, γ). In [20] and [23], it is proven that for high SNR,

maximizing (minimizing) the minimal Euclidean distancedmin of a constellation maximizes

(minimizes) the mutual information on a Gaussian channel. For high SNR, the mutual information

is [23]

I (α, γ, P ) ≈ m

B
− 2

B

Kπ

2md2min(α)
Q(dmin(α)

√

γ/2), (27)

wheredmin(α) is the minimal distance of the constellationΩt andK is the number of pairs of

points at minimum distance in the constellationΩt.

Consider two pointsx(i) = (u
(i)
1 , . . . , u

(i)
B ) andx(j) = (u

(j)
1 , . . . , u

(j)
B ) from the constellationΩz.

The corresponding pointst(i) andt(j) from the faded constellationΩt have a squared Euclidean

distance given by
∣
∣t(i) − t(j)

∣
∣
2
=

B∑

b=1

α2
b

(

u
(i)
b − u

(j)
b

)2

. (28)

Let us denote byb∗ the value ofb ∈ {1, . . . , B} for which
(

u
(i)
b − u

(j)
b

)2

is minimum. For the

B-hypersphere
∑B

b=1 α
2
b = α2

o, we obtain

∣
∣t(i) − t(j)

∣
∣
2 ≥ α2

o

(

u
(i)
b∗ − u

(j)
b∗

)2

, (29)

where equality in Eq. (29) is achieved whenαb∗ = αo. Whenb∗ is not unique, equality in Eq.

(29) holds whenαb∗ = αo holds for anyb∗ that minimizes
(

u
(i)
b − u

(j)
b

)2

. Hence, the minimum

distancedmin(α) for the constellationΩt is given by

dmin(α) = αo min
i,j∈{1,...,M}

i 6=j

min
b∈{1,...,B}

∣
∣
∣u

(i)
b − u

(j)
b

∣
∣
∣ (30)

As the constellationΩx is such that its projection on either coordinate axis yieldsthe same set

of points, the minimum distancedmin(α) is achieved for either fading gain equal toαo (and the

remainingB − 1 fading gains equal to0).

Low SNR:

Consider the mutual informationI (α, γ, P ) of the constellationΩt, given the fading gainsα
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(Eq. (10)). This expression can be reformulated in terms ofγ:

I (α, γ, P ) =
m

B
− 2−m

B

∑

x∈Ωx

Ey|x

[

log2

(
∑

x′∈Ωx

exp
[
γ
(
d2(y,α · x)− d2(y,α · x′)

)]

)]

,

whereEy|x can be replaced by an expectation over the noise,Ew, wb ∼ N (0, 1/(2γ)). The

argument of the exponential functions can be simplified, so that

I (α, γ, P ) =
m

B
− 2−m

B

∑

x∈Ωx

Ew

[

log2

(
∑

x′∈Ωx

exp

[

−γd2(α · x,α · x′) +

B∑

b=1

(2γwbf(b))

])]

,

where f(b) = αb(xb − x′
b). This expression can be further simplified by approximatingthe

exponential functions and logarithms by their respective Taylor series. Next, the expectation of

the expression over the random vectorw can be replaced by an expectation overγw, where

γw ∼ N (0, γ
2
I) (I is the identity matrix). Therefore, we can drop all terms that are proportional

to Eγwb
[γwb] and replaceEγwb

[(γwb)
2] in all terms proportional toEγwb

[(γwb)
2] by γ

2
. Now,

after some calculus, the limitlimγ→0 I (α, γ, P ) is

lim
γ→0

I (α, γ, P ) =
γ

B22mlog(2)

∑

x,x′∈Ωx

d2(α · x,α · x′)

2
+ o(γ2).

It is easy to prove that

1

22m

∑

x,x′∈Ωx

d2(α · x,α · x′)

2
=

B∑

b=1

α2
bV ar(Xb), (31)

whereV ar(Xb) is the variance of theb-th component of the points of constellationΩx. As

the projection ofΩx on either coordinate axis yields the same set of points, thisvariance is

independent ofb. Hence, for smallγ, the mutual information remains constant for the set of

fading points where
∑B

b=1 α
2
b is constant. By the definition ofαo, it is clear that for low SNR,

the outage boundary coincides with the hypersurface of the B-hypersphere
∑B

b=1 α
2
b = α2

o.

E. Proof of Prop. 5

For low SNR, the outage boundary coincides with the hypersurface of the B-hypersphere
∑B

b=1 α
2
b = α2

o (see proof op Prop. 4), which in turn coincides with the hypersurface of the

B-hypersphere
∑B

b=1 α
2
b = Bα2

e in this case.
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For high SNR, we must prove that the minimal distance ofΩt is maximized inαe, or

αe = arg max
α

|α|2=Bα2
e

(

min
i,j

B∑

b=1

α2
b

(

u
(i)
b − u

(j)
b

)2
)

(32)

For α = αe, we obtain
∑B

b=1 α
2
b

(

u
(i)
b − u

(j)
b

)2

= α2
e

∑B
b=1

(

u
(i)
b − u

(j)
b

)2

, which is mini-

mized toα2
ed

2 when x(i) and x(j) are points at minimum distanced in the constellationΩx.

For anyα with |α|2 = Bα2
e, α 6= αe, we will prove thatmini,j

∑B
b=1 α

2
b

(

u
(i)
b − u

(j)
b

)2

≤
α2
ed

2, which is what is claimed. We first restrict our attention to the caseB > 2. We con-

siderB pairs
{(

x(n),x′(n)
)

, n = 0, . . . , B − 1
}

of points inΩx and their corresponding points
{(

t(n), t′(n)
)

, n = 0, . . . , B − 1
}

in Ωt, such thatx(n) = T nx and x′(n) = T nx′, with T

denoting the matrix operator that causes a downward cyclic shift. We selectx andx′ such that

|x−x′| = d; obviously,|x(n)−x′(n)| = d for n = 0, . . . , B−1. Because
∑B

b=1

(

u
(n)
b − u

′(n)
b

)2

=
∑B−1

n=0

(

u
(n)
b − u

′(n)
b

)2

, we obtain that, for anyα with |α|2 = Bα2
e, the average distanceEn|t(n)−

t′(n)|2 is

1

N

B−1∑

n=0

(
B∑

b=1

α2
b

(

u
(n)
b − u

′(n)
b

)2
)

=
1

N

B∑

b=1

α2
b








B−1∑

n=0

(

u
(n)
b − u

′(n)
b

)2

︸ ︷︷ ︸

d2








= d2α2
e. (33)

Hence,minn

∑B
b=1 α

2
b

(

u
(n)
b − u

′(n)
b

)2

≤ d2α2
e. ForB = 2, the proof has to be slightly modified:

we consider 4 pairs
{(

x(n),x′(n)
)

, n = 0, . . . , B − 1
}

of points inΩx, such thatx(n) = T nx

andx′(n) = T nx′, with T denoting the matrix operator representing a counter clockwise rotation

of π/2. We selectx andx′ such that|x−x′| = d; obviously,|x(n)−x′(n)| = d for n = 0, . . . , 3.

For anyα with |α|2 = 2α2
e, we have, considering thatT 2 = −I,

1

4

3∑

n=0

(
1∑

b=0

α2
b

(

u
(n)
b − u

′(n)
b

)2
)

=
1

4

1∑

b=0

α2
b








3∑

n=0

(

u
(n)
b − u

′(n)
b

)2

︸ ︷︷ ︸

2d2








= d2α2
e. (34)

The remainder of the proof follows the same lines as forB > 2.
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F. Proof of Prop. 6

Let us find an expression forαo. Therefore, we consider that all fading gains are zero, but

one, so that the rate achieved byΩt (which is now a scaling ofSp) over that single slot must

be at leastRB, or ISp
(α2

oγ, P ) = BR, so that

α2
o =

I−1
Sp

(BR,P )

γ
, (35)

Now, as the outage boundaryB(Vo) is outer bounded by the hypersurface of the hypersphere

with radiusαo, we have

Pout(γ, P, R) ≤ Pr(α2
1 + α2

2 + . . .+ α2
B < α2

o). (36)

Because the fading gains{αb, b = 1, . . . , B} are i.i.d. Rayleigh, the cumulative distribution

function of the chi-square distribution with2B degrees of freedom is [24]

Pr(α2
1 + α2

2 + . . .+ α2
B < x) = 1− e−x

B−1∑

k=0

xk

k!
.

The right hand side can be manipulated as follows:

1− e−x

B−1∑

k=0

xk

k!
=

ex −∑B−1
k=0

xk

k!

ex
=

∑∞
k=B

xk

k!∑∞
m=0

xm

m!

=
xB
∑∞

k=0
xk

(B+k)!
∑∞

m=0
xm

m!

≤ xB,

so that from Eqs. (35) and (36)

Pout(γ, P, R) ≤ α2B
o ∝ 1

γB
. (37)

Hence, with increasingγ the outage probability goes to zero not slower thanγ−B, so the diversity

order is at leastB. As there are onlyB i.i.d. fading gains involved in the transmission of a

codeword, the diversity order is exactlyB.
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[4] J.J. Boutros, A. Guillén i Fàbregas, and E. Calvanese,“Analysis of coding on non-ergodic block fading channels,”Allerton

Conf. on Communication and Control, Illinois, 2005.

[5] T.M. Cover and J.A. Thomas,Elements of Information Theory, New York, Wiley, 2006.

[6] D. Duyck, J.J. Boutros, and M. Moeneclaey, “Coded modulations for block fading channels,”IEEE Symposium on

Communications and Vehicular Technology in the Benelux, Twente, The Netherlands, Nov. 2010.

[7] D. Duyck, J.J. Boutros, and M. Moeneclaey, “Low-DensityGraph Codes for Slow Fading Relay Channels,”Accepted in

IEEE Trans. on Inf. Theory, Download from telin.ugent.be/˜ dduyck/publications/paperldpc cooperative.pdf

[8] D. Duyck, D. Capirone, C. Hausl, M. Moeneclaey, “Design of Diversity-Achieving LDPC Codes for H-ARQ with Cross-

Packet Channel Coding,”Personal Indoor Mobile Radio Communications (PIMRC), Istanbul, Turkey, Sept. 2010.

[9] D. Duyck, J.J. Boutros, M. Moeneclaey, “Rotated Modulations for Outage Probability Minimization: a fading space

approach,” ISIT (Intern. Symp. on Inf. Theory), Texas, June2010.
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