298 research outputs found

    Automatic Search for Key-Bridging Technique: Applications to LBlock and TWINE (Full Version)

    Get PDF
    Key schedules in block ciphers are often highly simplified, which causes weakness that can be exploited in many attacks. At ASIACRYPT 2011, Dunkelman et al. proposed a technique using the weakness in the key schedule of AES, called key-bridging technique, to improve the overall complexity. The advantage of key-bridging technique is that it allows the adversary to deduce some sub-key bits from some other sub-key bits, even though they are separated by many key mixing steps. Although the relations of successive rounds may be easy to see, the relations of two rounds separated by some mixing steps are very hard to find. In this paper, we describe a versatile and powerful algorithm for searching key-bridging technique on word-oriented and bit-oriented block ciphers. To demonstrate the usefulness of our approach, we apply our tool to the impossible differential and multidimensional zero correlation linear attacks on 23-round LBlock, 23-round TWINE-80 and 25-round TWINE-128. To the best of our knowledge, these results are the currently best results on LBlock and TWINE in the single-key setting

    Note of Multidimensional MITM Attack on 25-Round TWINE-128

    Get PDF
    TWINE is a lightweight block cipher proposed in SAC 2012 by Suzaki et al. TWINE operates on 64-bit block and supports 80 or 128-bit key, denoted as TWINE-80 and TWINE-128 respectively. TWINE has attracted some attention since its publication and its security has been analyzed against several cryptanalytic techniques in both single-key and related-key settings. In the single-key setting, the best attack so far is reported by BoztaƟ et al. at LightSec\u2713, where a splice-and-cut attack on 21-round TWINE-128 and a multidimensional meet-in-the-middle (MITM) attack on 25-round TWINE-128 are presented. Yet, the evaluation of the time complexity of the multidimensional MITM attack on 25-round TWINE-128 is somehow controversial in the way we understand. We here describe the attack in detail and explains our concerns about the time complexity of the attack. And it turns out that the multidimensional MITM attack on 25-round TWINE-128 may have a time complexity higher than exhaustive search

    On the Key Schedule of Lightweight Block Ciphers

    Get PDF
    Key schedules in lightweight block ciphers are often highly simplified, which causes weakness that can be exploited in many attacks. Today it remains an open problem on how to use limited operations to guarantee enough diffusion of key bits in lightweight key schedules. Also, there are few tools special for detecting weakness in the key schedule. In 2013 Huang et al. pointed out that insufficient actual key information (AKI) in computation chains is responsible for many attacks especially the meet-in-the-middle (MITM) attacks. Motivated by this fact, in this paper we develop an efficient (with polynomial time complexity) and effective tool to search the computation chains which involve insufficient AKI for iterated key schedules of lightweight ciphers. The effectiveness of this tool is shown by an application on TWINE-80. Then, we formulate the cause of key bits leakage phenomenon, where the knowledge of subkey bits is leaked or overlapped by other subkey bits in the same computation chain. Based on the interaction of diffusion performed by the key schedule and by the round function, a necessary condition is thus given on how to avoid key bits leakage. Therefore, our work sheds light on the design of lightweight key schedules by guiding how to quickly rule out unreasonable key schedules and maximize the security under limited diffusion

    Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints

    Get PDF
    International audienceCryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanaly-sis. However, the Demirci-Selçuk meet-in-the-middle (DS-MITM) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque's work on DS-MITM analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic DS-MITM attack based on general constraint programming, which allows the crypt-analysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distin-guishers but can also partly automate the key-recovery process. This approach makes the DS-MITM cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to off-the-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best DS-MITM attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of 8! = 40320 versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the 64 permutations showing the strongest resistance against the DS-MITM attack. The whole process is accomplished on a PC in less than 2 hours. The same process is applied to TWINE, and similar results are obtained

    Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA

    Get PDF
    Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by revealing the link between the related-key/tweak statistical saturation distinguishers and KDIB (Key Difference Invariant Bias) / TDIB (Tweak Difference Invariant Bias) ones. KDIB cryptanalysis was proposed by Bogdanov et al. at ASIACRYPT’13 and utilizes the property that there can exist linear trails such that their biases are deterministically invariant under key difference. And this method can be easily extended to TDIB distinguishers if the tweak is also alternated. The link between them provides a new and more efficient way to find related-key/tweak statistical saturation distinguishers in ciphers. Thereafter, an automatic searching algorithm for KDIB/TDIB distinguishers is also given in this paper, which can be implemented to find word-level KDIB distinguishers for S-box based key-alternating ciphers. We apply this algorithm to QARMA-64 and give related-tweak statistical saturation attack for 10-round QARMA-64 with outer whitening key. Besides, an 11-round attack on QARMA-128 is also given based on the TDIB technique. Compared with previous public attacks on QARMA including outer whitening key, all attacks presented in this paper are the best ones in terms of the number of rounds

    MILP-aided Cryptanalysis of Some Block Ciphers

    Get PDF
    Symmetric-key cryptographic primitives, such as block ciphers, play a pivotal role in achieving confidentiality, integrity, and authentication – which are the core services of information security. Since symmetric-key primitives do not rely on well-defined hard mathematical problems, unlike public-key primitives, there are no formal mathematical proofs for the security of symmetric-key primitives. Consequently, their security is guaranteed only by measuring their immunity against a set of predefined cryptanalysis techniques, e.g., differential, linear, impossible differential, and integral cryptanalysis. The attacks based on cryptanalysis techniques usually include searching in an exponential space of patterns, and for a long time, cryptanalysts have performed this task manually. As a result, it has been hard, time-consuming, and an error-prone task. Indeed, the need for automatic tools becomes more pressing. This thesis is dedicated to investigating the security of symmetric-key cryptographic primitives, precisely block ciphers. One of our main goals is to utilize Mixed Integer Linear Programming (MILP) to automate the evaluation and the validation of block cipher security against a wide range of cryptanalysis techniques. Our contributions can be summarized as follows. First, we investigate the security of two recently proposed block ciphers, CRAFT and SPARX-128/256 against two variants of differential cryptanalysis. We utilize the simple key schedule of CRAFT to construct several repeatable 2-round related-key differential characteristics with the maximum differential probability. Consequently, we are able to mount a practical key recovery attack on full-round CRAFT in the related-key setting. In addition, we use impossible differential cryptanalysis to assess SPARX-128/256 that is provable secure against single-trail differential and linear cryptanalysis. As a result, we can attack 24 rounds similar to the internal attack presented by the designers. However, our attack is better than the integral attack regarding the time and memory complexities. Next, we tackle the limitation of the current Mixed Integer Linear Programming (MILP) model to automate the search for differential distinguishers through modular additions. The current model assumes that the inputs to the modular addition and the consecutive rounds are independent. However, we show that this assumption does not necessarily hold and the current model might lead to invalid attacks. Accordingly, we propose a more accurate MILP model that takes into account the dependency between consecutive modular additions. As a proof of the validity and efficiency of our model, we use it to analyze the security of Bel-T cipher—the standard of the Republic of Belarus. Afterwards, we shift focus to another equally important cryptanalysis technique, i.e., integral cryptanalysis using the bit-based division property (BDP). We present MILP models to automate the search for the BDP through modular additions with a constant and modular subtractions. Consequently, we assess the security of Bel-T block cipher against the integral attacks. Next, we analyze the security of the tweakable block cipher T-TWINE. We present key recovery attacks on 27 and 28 rounds of T-TWINE-80 and T-TWINE-128, respectively. Finally, we address the limitation of the current MILP model for the propagation of the bit-based division property through large non-bit-permutation linear layers. The current models are either inaccurate, which might lead to missing some balanced bits, or inefficient in terms of the number of constraints. As a proof of the effectiveness of our approach, we improve the previous 3- and 4-round integral distinguishers of the Russian encryption standard—Kuznyechik, and the 4-round one of PHOTON’s internal permutation (P288). We also report a 4-round integral distinguisher for the Ukrainian standard Kalyna and a 5-round integral distinguisher for PHOTON’s internal permutation (P288)

    Autoguess: A Tool for Finding Guess-and-Determine Attacks and Key Bridges

    Get PDF
    The guess-and-determine technique is one of the most widely used techniques in cryptanalysis to recover unknown variables in a given system of relations. In such attacks, a subset of the unknown variables is guessed such that the remaining unknowns can be deduced using the information from the guessed variables and the given relations. This idea can be applied in various areas of cryptanalysis such as finding the internal state of stream ciphers when a sufficient amount of output data is available, or recovering the internal state and the secret key of a block cipher from very few known plaintexts. Another important application is the key-bridging technique in key-recovery attacks on block ciphers, where the attacker aims to find the minimum number of required sub-key guesses to deduce all involved sub-keys via the key schedule. Since the complexity of the guess-and-determine technique directly depends on the number of guessed variables, it is essential to find the smallest possible guess basis, i.e., the subset of guessed variables from which the remaining variables can be deduced. In this paper, we present Autoguess, an easy-to-use general tool to search for a minimal guess basis. We propose several new modeling techniques to harness SAT/SMT, MILP, and Gröbner basis solvers. We demonstrate their usefulness in guess-and-determine attacks on stream ciphers and block ciphers, as well as finding key-bridges in key recovery attacks on block ciphers. Moreover, integrating our CP models for the key-bridging technique into the previous CP-based frameworks to search for distinguishers, we propose a unified and general CP model to search for key recovery friendly distinguishers which supports both linear and nonlinear key schedules

    Triathlon of Lightweight Block Ciphers for the Internet of Things

    Get PDF
    In this paper, we introduce a framework for the benchmarking of lightweight block ciphers on a multitude of embedded platforms. Our framework is able to evaluate the execution time, RAM footprint, as well as binary code size, and allows one to define a custom "figure of merit" according to which all evaluated candidates can be ranked. We used the framework to benchmark implementations of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED, Piccolo, PRESENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and TWINE, on three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results bring some new insights into the question of how well these lightweight ciphers are suited to secure the Internet of things. The benchmarking framework provides cipher designers with an easy-to-use tool to compare new algorithms with the state of the art and allows standardization organizations to conduct a fair and consistent evaluation of a large number of candidates
    • 

    corecore