
On the Key Schedule of Lightweight Block
Ciphers

Jialin Huang12, Serge Vaudenay1, and Xuejia Lai2?

1 EPFL, Switzerland
2 Shanghai Jiao Tong University, China

{serge.vaudenay}@epfl.ch, {xuejia.lai, jlhuang.cn}@gmail.com

Abstract. Key schedules in lightweight block ciphers are often highly
simplified, which causes weakness that can be exploited in many attacks.
Today it remains an open problem on how to use limited operations to
guarantee enough diffusion of key bits in lightweight key schedules. Also,
there are few tools special for detecting weakness in the key schedule.
In 2013 Huang et al. pointed out that insufficient actual key information
(AKI) in computation chains is responsible for many attacks especially
the meet-in-the-middle (MITM) attacks. Motivated by this fact, in this
paper we develop an efficient (with polynomial time complexity) and
effective tool to search the computation chains which involve insufficient
AKI for iterated key schedules of lightweight ciphers. The effectiveness
of this tool is shown by an application on TWINE-80.
Then, we formulate the cause of key bits leakage phenomenon, where the
knowledge of subkey bits is leaked or overlapped by other subkey bits
in the same computation chain. Based on the interaction of diffusion
performed by the key schedule and by the round function, a necessary
condition is thus given on how to avoid key bits leakage.
Therefore, our work sheds light on the design of lightweight key sched-
ules by guiding how to quickly rule out unreasonable key schedules and
maximize the security under limited diffusion.

Keywords: automatic tool, meet-in-the-middle, PRESENT, TWINE,
actual key information

1 Introduction

Today the demands of secure communication on source constrained en-
vironments such as RFID tags and sensor networks motivate the devel-
opment of many lightweight block ciphers. In these lightweight ciphers,
the security margin that conventional block ciphers are equipped with is
reduced as much as possible in order to optimize the software and hard-
ware efficiency. One obvious sacrifice is that the key schedules are highly
simplified for saving memory. Some key schedules have round-by-round

? This work was supported by the National Natural Science Foundation of China
(61073149 and 61272440 and 61472251).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148009071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Jialin Huang, Serge Vaudenay, and Xuejia Lai

iteration with low diffusion [20, 3, 21]. Some key schedules do simple per-
mutation or linear operations on master keys [17, 10]. Some have no key
schedule, and just use master keys directly in each round [9, 14]. These
key schedules are succinct but responsible for many attacks, especially
related-key attacks [18, 13], MITM attacks and their variants [19, 12, 5],
and special attacks such as the invariant subspace attack on PRINTcipher
[15].

Although causing so many risks, the key schedules in lightweight block
ciphers are still designed in a heuristic and ad-hoc way, especially when
a tradeoff between security and memory constraints should be made. Be-
cause of the lack of systematic guidelines, research on design principles of
lightweight key schedules is pressing.

1.1 Related work

Avoiding MITM attacks and key bits leakage are two of the goals in
the design of key schedules [16, 11]. Designers tend to exploit relatively
fast diffusion or avalanche to achieve these goals, which is infeasible for
lightweight key schedules. The resistance to MITM attacks is usually
claimed by ensuring that all master key bits are used within several
rounds. Huang et al. show that considering the diffusion of key bits in
the ”round” level is not enough by investigating the interaction of dif-
fusion between the key schedule and the round function [11]. They also
propose a measure called actual key information (AKI) to evaluate the
effective speed of diffusing key bits and claim that a computation path
should have as high AKI as possible.

From the other aspect, automatic tools have been developed to search
cryptanalytic properties relevant to key schedules. Most of these tools
focus on searching related-key differential characteristics [8, 1, 2], while
the tools aiming at other weaknesses of key schedules are much fewer.
Bouillaguet et al. propose automatic algorithms for searching guess-and-
determine and MITM attacks on round-reduced AES, using the linear
relations in the key schedule [4]. Derbez et al. give a way to automatically
search the kind of Demirci-Selçuk MITM attacks against AES [7]. Huang
et al. present a method to calculate the AKI for 2-round iterated key
schedules whose key size is double of the block size [11].

1.2 Our contribution

While the concept of AKI that considers the minimal information of in-
volved key bits in a computation path is meaningful, the algorithm de-
scribed in [11] targets a too particular type of key schedules. Firstly,
the master key size is double of the block size. Secondly, the number of
searched rounds is fixed to two. Additionally, the time complexity of this
2-round search is exponential to the key size. If this algorithm is extended



On the Key Schedule of Lightweight Block Ciphers 3

to R rounds, the time complexity is exponential to not only the key size
but also R, making practical applications infeasible.

Instead of computing AKI for conventional block ciphers, in this paper
we consider computing AKI for lightweight block ciphers. We target iter-
ated key schedules with low diffusion, as they exist in a certain amount of
lightweight block ciphers. Computing AKI for the static or permutation-
based key schedules is much easier, and thus not our concern here. We
generalize the problem of computing AKI to any number of rounds in
lightweight block ciphers. Then, we develop an efficient and effective al-
gorithm to solve it (Sect. 3). Based on the observation of characters of
lightweight iterated key schedules, we use a greedy strategy, resulting in
an algorithm with polynomial time complexity. The tools in [7] focus on
discovering a special kind of MITM attacks for AES (the Demirci-Selçuk
attack that depends on algebraic relations in AES), while our tool aims
to present a simple, efficient and generic approach to evaluate the design
of iterated key schedules in lightweight ciphers. We show the feasibility
of this algorithm by applying it to TWINE-80.

Although the key bits leakage has been mentioned in [11, 16], it does
not achieve deserving attention in cipher design as other properties. This
phenomenon is revisited in Sect. 4, and found in almost all the computa-
tion paths that contain insufficient information of key bits. We analyze the
major cause of key bits leakage by explicitly relating the incidence matrix
of the diffusion in key schedules to that of round functions. Furthermore,
a formulated necessary criterion for key schedule design is proposed to
guide to avoid key bits leakage within a given number of rounds. This
necessary criterion can be a guidance of quickly ruling out unreasonable
key schedules at first step, and then our tool can be used to do further
examination.

2 Preliminary

2.1 Notations

The lightweight block ciphers studied here have a block size of n bits and
a master key size of k bits. Each round function includes a key extraction
and incorporation layer (AK), and a cipher permutation layer F that up-
dates the n-bit internal state with confusion and diffusion after adding
key bits. The output internal state in round i is denoted as si. The iter-
ated key schedule updates each k-bit key state round-by-round from the
previous one. That is, ki = KS(ki−1), where ki is the output subkey bits
in the ith round of the key schedule, and k0 is the master key. Normally
KS is invertible, thus the size of all ki is k. An rk-bit round key rki is
extracted from ki in the key extraction phase and added to the internal
state. The most common case is to apply parts of the subkey ki directly
to the round key rki. Other notations include:



4 Jialin Huang, Serge Vaudenay, and Xuejia Lai

– ki[j] (resp. si[j]) denotes the jth bit of bit-string ki (resp. si).
– Ms is the incidence matrix representing the diffusion of F. In the

encryption direction, Ms[j
′, j] = 1 means that the si[j

′] depends on
si−1[j], where Ms[j

′, j] denotes the (j′, j) entry in matrix Ms. In the
decryption direction, Ms[j

′, j] = 1 means that si−1[j
′] depends on

si[j].
– Mk is the incidence matrix for the diffusion of KS, defined in a similar

way with Ms.
– ei is a vector with the ith bit equal to 1 and other bits equal to 0.
– | · | denotes the size of a set, or the Hamming weight of a bit-string,

depending on the context.

2.2 Definitions

Definition 1. Given an input set ∆input ⊂ {x1,x2,...,xn}, and the set
∆sk of all subkey bits that are generated from the master key, a compu-
tation chain3 in a block cipher is a sequence o1, o2,...,oh, in which each
oj is either an element of ∆input, or the output of fj(o

i1, oi2, ..., oip,∆jk),
where ∆jk ⊂ ∆sk, for 1 ≤ i1, i2, ..., ip < j, and fj depends on the cipher
structure and round function. Consider ∆output ⊂ {oj |j = 1, . . . , h, oj /∈
∆input} as the output set of this chain.

Definition 2. ([11, Definition 3]) According to a key schedule, the min-
imal amount of subkey bits from which one can derive all subkey bits in
a computation chain is called actual key information (AKI).

The n-bit {x1,x2,...,xn} could be n-bit plaintexts (P) or ciphertexts (C).
A forward computation chain has a calculation direction consistent

with the encryption process, while the backward chain is consistent with
the decryption process. The length of a chain is denoted as r if it covers r
rounds of the block cipher. AKI(K) is the AKI of a set K of subkey bits.
Normally, AKI(K) is the key length, but it could be smaller. We give a
simple example to explain the above definitions.

In Fig.14, n = k = 6, ∆input = {s0[0], s0[1]}, and ∆output = {oh}, where

oh = s4[1] = fh(s0[0], s0[1], s1[4], s1[5], s2[0], s2[1], s3[4], ∆hk). Obviously,
fh is specifically defined by Ms. Also, ∆hk = {k0[0],k0[1],k1[4],k1[5],k2[0],
k2[1],k3[4]}. According to the key schedule (defined by Mk), with the
knowledge of {k0[0], k0[1], k0[2], k0[3], k0[5]}, we can deduce all 7 subkey
bits in ∆hk.

Obviously AKI is always not larger than k since the knowledge of
all master key bits is enough to produce all subkey bits. For a static
key schedule or a permutation-based key schedule, since each subkey is

3 For convenient explanation in our context, we use this terminology similar but not
the same as [11].

4 In this example, we don’t need to give the detailed description of F, and just need
to concern its input, output and diffusion pattern Ms.



On the Key Schedule of Lightweight Block Ciphers 5

Fig. 1: The 4-round forward computation chain determined by Ms is
marked by grey boxes, both in the round function and the key sched-
ule. Here F represents a round transformation.

directly derived from some master key bits, it is relatively simple to find
the AKI.

2.3 A brief description of meet-in-the-middle (MITM) attack

Among the risks caused by the insufficient AKI in a computation chain,
the most serious and relevant ones are MITM attacks and their variants.
A basic MITM attack uses the fact that the cipher can be decomposed
into two consecutive parts and the computation of each part only involves
partial master key (or its mapping). Then, a check point is calculated by
each part independently, and used to filter a number of wrong key pairs.

Thus, for mounting an (rf +rb)-round MITM attack, we need at least:

an rf -round forward computation chain with oh = Ef (∆f ,Kf ) where ∆f

⊂ P, and Kf is all involved subkey bits in this forward chain; an rb-round

backward computation chain with oh = Eb(∆b,Kb) where ∆b ⊂ C, and
Kb is all subkey bits in this backward chain. The total time complexity
Ccomp using N plaintext/ciphertext pairs is:

Ccomp = max(2AKI(Kf ), 2AKI(Kb)) ·N + 2AKI(Kf )+AKI(Kb)−N ·|oh|−|Kcommon|

where Kcommon is the common key bits shared by Kf and Kb. The MITM
attack works faster than the brute force attack when Ccomp is less than

2k, which is the required computations for the brute force attack in the
worst case.

3 Automatic Search Tool for Detecting Weakness on
Iterated Key Schedules

3.1 AKI computation problem

The core of our algorithm is to calculate the AKI of one r-round com-
putation chain. With this algorithm, all r-round computation chains are



6 Jialin Huang, Serge Vaudenay, and Xuejia Lai

examined (given a fixed r), so that the one with the least AKI can be
found. And by repeating this algorithm with different r, the longest chain
with AKI less than k can be determined.

Let V be the set of all subkey bits, and they are linked according to
the diffusion of key schedules. Record all subkey bits involved in an r-
round computation chain as a set AVr ⊂ V . Our aim is to find a set
BVr ⊂ V such that the subkey bits in BVr can derive all subkey
bits in AVr, and find the BVr with the smallest size. More precisely,
BVr should satisfy the following property: for each bit bi ∈ AVr, either
bi ∈ BVr, or bi can be reached by the bits in BVr, where we define that
a subkey bit can be reached iff all its parent subkey bits can be reached.
AKI(AVr) is equal to the size of the smallest BVr.

AVr is determined by the cipher structure, the round function and the
key extraction phase. BVr is decided based on AVr and the key schedule.
Our tool contains two phases: the precomputation phase and the online
phase, which are described in the next two sections. All explanation is
for the forward direction, and for the backward direction we only need to
exchange the terms of i and i− 1 in our analysis.

3.2 Precomputation

The precomputation phase determinesAVr of r-round computation chains.
In a forward r-round chain, AVr is the set of involved subkey bits (see
Kf in Sect. 2.3), and decided by the diffusion of round functions (i.e.,
Ms) and the key extraction phase. Based on our representation of Ms,
the direction of deducing AVr is opposite to the direction of its corre-
sponding computation chain. That is, a forward computation chain uses
∆f (plaintext bits) and Kf as inputs to compute the output oh, while in

the process of computing AVr, we start from the output oh and date back
round-by-round to find all related inputs of oh so that Kf can be figured
out. An r-round computation chain is obtained by multiplying Ms r times
with an initial state determined by oh. Note that in this way, what we
obtain is the involved round key bits in a chain, and they should be traced
back to the corresponding subkey bits in the key schedule according to
the key extraction phase. For byte or nibble-oriented ciphers, one byte or
one nibble can be represented with one bit.

For a fixed length r, there are 2n possible initial states, hence corre-
sponding to 2n r-round computation chains. Normally, all these 2n chains
require to be checked to find the one with minimal AKI. However, in fact
we only need to enumerate n computation chains based on the following
observation: the minimum AKI will be found among the chains whose
output are only one bit. Since the AVr starting from one bit in round r
are always subsets of the remaining, the initial states with only one active
bit (i.e., oh is one bit) always lead to computation chains with less AKI
than the chains with more than one active bit in the initial states. In



On the Key Schedule of Lightweight Block Ciphers 7

practical attacks, exploitable chains are often among these n ones. The
pseudocode that computes AVr starting from the ith bit of the rth round
internal state is as Algorithm 1, which will be called n times for different
i, i = 1, . . . , n. Hereafter we use AVr[j] (AVr[j1..j2]) to represent the set
of related subkey bits in the jth (from j1th to j2th) round of the r-round
chain.

Algorithm 1 Compute AVr
1: procedure ComputeAVr(r, Ms, i)
2: BlockState[r] = ei; . Start from the initial state with the ith bit active.
3: for j = r − 1→ 1 do . Deduce all related input bits round-by-round.
4: BlockState[j] = BlockState[j + 1] × Ms; . Derive the state bits in round j.
5: AVr[j] = KeyExtraction(BlockState[j]); . Relate round key to subkey.

6: return AVr;

3.3 Online phase

Given AVr and Mk, the online phase looks for BVr for AVr. The simplest
approach is to brute-force search all predecessors of all subkey bits in AVr
as well as themselves, and among these bits find the smallest subset that
can derive AVr. Using such method, the time complexity is exponential
to the number of all bits, about 2r·k. For a lightweight block cipher, if the
diffusion in the round function is not very fast, the size of AVr is limited
by r to a great extent. Also, the low diffusion in the key schedule results
in a sparse Mk. Thus, the exhaustive search can be pruned efficiently.
However, the time complexity is still too high.

In practical situations, most of the time a discovery of weakness is
already able to demonstrate insecurity of the design. Hence, instead of
exhaustively searching to guarantee finding the optimal solution, we can
relax our goal to find sub-optimal results which still can satisfy our re-
quirements. This inspires us to exploit a greedy algorithm that makes the
best choice at each step with the hope of approximating the optimum
finally. It is easier to find a BVr satisfying |BVr| ≤ |AVr| at each step.
We expect that with our greedy strategy, the size of final BVr is small
enough, and always not larger than the size of AVr and k. Thanks to the
characters of iterated lightweight key schedules, our greedy method gen-
erates sub-optimal results, while consumes much less time compared with
the brute-force searching. If the sub-optimal results we find are already
enough to suggest weaknesses in the design, then the real situation of the
design may be worse. Since the optimal AKI may indicate fewer key bits
involved in a chain, which is even more undesirable for a secure design.

To obtain the final solution, we divide the problem into a series of
subproblems, make a choice that is best at the moment, and then keep on
applying the greedy strategy to the current result. The choice made each
time depends on the choices made so far but not on the future choices. Our



8 Jialin Huang, Serge Vaudenay, and Xuejia Lai

greedy choice is based on the following assumption and characteristics of
lightweight key schedules. For a forward computation chain:

– Property 1. The orientation of key information is along the encryp-
tion direction, i.e., from ki−1 to ki. Thus, we assume that the knowl-
edge of a bits of subkey ki can bring about the knowledge of b bits of
kj iff i < j, and a ≥ b5.

– Property 2. KS is a bijective and invertible mapping, and each round
of subkey has k bits information. A subkey bit cannot be derived from
other subkey bits in the same round.

– Property 3. A majority of rows in Mk have Hamming weight 1, and
the number of these rows is denoted as None. In most lightweight key
schedules, None is close to k. The remaining tiny part of the rows
in Mk have weight larger than 1, while still very small. Denote the
maximal Hamming weight among all rows as MAXweight.

Note that Property 1 is made for conveniently explaining our greedy
strategy, instead of placing restrictions on the key schedules. Without
this assumption, the results may be better but more time complexity is
required, i.e., a smaller BVr for the same AVr may be found, since more
relations in the key schedule can be utilized among the subkey bits. What
we obtain with Algorithm 2 is in fact an upper bound of real AKI. If the
upper bound of real AKI is insufficient, then real AKI is more insufficient.

We explain how our approach works (see also Algorithm 2) according
to the general components required in a greedy algorithm. We start from
the given AVr, and each time we try to reduce the size of current AVr
while making sure that we still can derive all subkey bits in the original
AVr from it according to Mk. The subkey bits in the top round6 of AVr
require no process due to Property 1. Thus, we only need to deduce the
subkey bits within 2 to r rounds, denoting the number of these bits as
na. At each step we trace the currently remaining na subkey bits as back
as possible. That is, for the bits in round i of AVr (i.e., AVr[i]), we try to
deduce them with the least amount of bits in round j, where j < i and
j should be as small as possible. If any subset of AVr can be represented
with fewer (then the size of AVr is reduced) or equal subkey bits in former
rounds7, then we remove the original subset from AVr and add these new
bits of former rounds to AVr. According to Property 1 and Property 2,
deducing the same amount of subkey information to former rounds will
increase the chance of leaking other subkey bits, while the total number of
subkey bits in AVr doesn’t increase. The above process continues until no
bits in the current state of AVr can be deduced to former rounds without
increasing |AVr|. The final state of AVr is the BVr we want to find. In

5 This is because of the diffusion direction we consider here.
6 In an r-round forward chain, w.l.o.g., the top round is the round 1, and the bottom

round is the round r.
7 In a forward chain, round j is a former round of round i iff j < i.



On the Key Schedule of Lightweight Block Ciphers 9

Algorithm 2, the function GenNextCombination(num) is to generate a
combination of num subkey bits from AVr, and each time a subset of
num subkey bits selected from the current na bits is considered.

Algorithm 2 Compute AKI

1: procedure ProcessAVr(num) . Deduce num key bits to former rounds.
2: S = GenNextCombination(num); . S is the set of currently chosen num bits.
3: while S != NULL do
4: MINround = ChooseMinRound(S);
5: for i = 1→MINround do
6: S[i] = DeduceS(i); . Deduce the bits in S to round i according to Mk.
7: tmpAVr[i] = AVr[i] ∪ S[i];
8: if (|tmpAVr[i]| - |AVr[i]|) ≤ num then
9: AVr[i] = tmpAVr[i]; . Include the new bits in round i to AVr.

10: AVr = AVr - S; . Remove the original num bits from AVr.
11: break;

12: S = GenNextCombination(num);

13: na = |AVr[2..r]|; . Update the number of remaining bits to be processed.
14: return AVr;

15: procedure ComputeAKI(MAXweight, None, AVr)
16: num = 1; . Consider all subsets with size one at first.
17: while (AVr is reducible) do . Process until AVr is unchangable.
18: ProcessAVr(num); . Select num bits from current AVr[2..r] to process.
19: Choose num according to na, MAXweight, None;

20: BVr = AVr; . The final state of AVr is what we want.
21: AKI = |BVr|;
22: return AKI;

Our method is suitable for both forward and backward directions by
using corresponding matrices. We compute the AKI of all computation
chains with the same length to find the minimal AKI.

3.4 The complexity

The memory complexity of matrix Mk is k2. The time complexity to build
n AVr is O(nr). The memory cost to store AVr corresponds to the diffu-
sion of the round function Ms. The total time complexity is dominant by
the online phase. The main trick in our algorithm is that we process the
subkey bits which can be derived by former one bit (i.e., the in-degree is
one) at first. Since most bits in AVr have in-degree one (Property 3), these
subkey bits can be deduced to the top rounds directly. Hence, the number
of remaining subkey bits that require processing (i.e., na) reduces greatly.
Because of this sharp decrease of na, as well as limited MAXweight in



10 Jialin Huang, Serge Vaudenay, and Xuejia Lai

lightweight key schedules, GenNextCombination(num) only enumerates
the combinations with a time complexity polynomial to na. When deduc-
ing any combinations of current AVr cannot help to reduce the size of
AVr, AVr is non-reducible. The total time complexity to obtain the final
AKI for one AVr is polynomial to nar

2. Examples to explain the time
complexity are given in Appendix B. Our results listed in the following
sections are obtained within seconds on a PC.

3.5 Application to TWINE-80

To show the strength of our tool, we apply it to TWINE-80 [20] and
mount a MITM attack based on the found results. The number of rounds
we can reach is 14 rounds, while the designers confirmed that the subkeys
for the first 3 rounds contain all 80 master key bits. This result is far
from reaching the number of rounds of the best known attack in a single
key model, which is a 23-round impossible differential attack. However,
our attack is the first one with very low data complexity on TWINE-80.
Indeed, as pointed out in [6, 4], it is important to determine the number
of rounds that can be attacked with only a few available data, for a better
security understanding. Since the attack is not our main concern in this
paper and just an example to show the application of the tool, we refer
to more details about TWINE-80 and our attack in Appendix A.

4 Key Bits Leakage

4.1 The least AKI in TWINE and PRESENT

As we mentioned before, low data complexity attack is an important re-
search direction to make us understand the security of block ciphers in a
”real-life” scenario. If a forward and a backward computation chain with
insufficient AKI are discovered, then an adversary is likely to mount an
MITM attack even the available data is restricted to only a few pairs of
plaintext/ciphertext. Therefore, the least AKI among all forward (back-
ward) chains provides a probable security bound for the low data com-
plexity attack, particularly, the MITM attack. For example, if we know
the smallest AKI is 58 bits in all 6-round forward chains, and the smallest
AKI is 60 bits in all 6-round backward chains, then basically, we cannot
mount any 12-round MITM attacks with time complexity less than about
260. Also, if the least AKI has reached to k bits after r rounds for both
forward and backward directions, then the cipher is resistant against 2r-
round basic MITM attacks.

In this section, we concern the approximately smallest AKI given the
number of rounds, for TWINE and PRESENT. Both of these two ciphers
have 64 bits of block size, and 80/128-bit master key. For PRESENT, a
64-bit round key is extracted from the 80/128-bit subkey in each round,



On the Key Schedule of Lightweight Block Ciphers 11

Table 1: The least AKI of the forward computation chains in TWINE
and PRESENT, and corresponding theoretical AKI.

TWINE-128(nibbles) PRESENT-128(bits) TWINE-80(nibbles) PRESENT-80(bits)

round theoretical AKI theoretical AKI theoretical AKI theoretical AKI
1 0 0 4 4 0 0 4 4
2 1 1 20 20 1 1 20 20
3 2 2 84 77 2 2 80 64
4 4 4 128 125 4 4 80 80
5 7 7 128 128 7 6 80 80
6 12 11 128 128 12 10 - -
7 19 17 - - 19 15 - -
8 27 23 - - 20 18 - -
9 32 27 - - 20 19 - -
10 32 30 - - 20 20 - -
11 32 31 - - - - - -
12 32 32 - - - - - -

while for TWINE a 32-bit (8 nibbles) round key is extracted from the
80/128-bit subkey in each round. Again, we use one bit to represent one
nibble for TWINE.

Our search covers different rounds until the AKI is larger than k. The
results are in Table 1. Details of some chains with the least AKI in Table
1 are given in Appendix B. The theoretical value of AKI can be computed
by the diffusion of round function. Indeed, it is the total number of round
key bits we expect to have in a computation chain, i.e., |AVr|, and is not
larger than k. Take Fig.1 as an example again, the number of involved
round key bits (the grey boxes) in the chain is 7. However, all 6 bits of
the master key should be enough to derive these 7 bits, which means that
the theoretical AKI of this chain is 6 bits.

Remark. As we mentioned before, the real AKI of a chain could be
less than what we find, thus our results in fact indicate a necessary but
not sufficient security bound.

The authors in [11] mention three causes responsible for poor key
schedules: the size of round keys is too small, no avalanche effect, and
key bits leakage. However, no details about these causes are discussed
carefully. In the next, we will focus on the key bits leakage.

4.2 Key bits leakage and three examples

We find that, almost all chains whose practical AKI are less than the
theoretical one have a particular phenomenon, where the knowledge of
subkey bits are leaked by some other subkey bits in the same chain. This
phenomenon is denoted as key bits leakage.



12 Jialin Huang, Serge Vaudenay, and Xuejia Lai

Besides the structure of the cipher, for iterated key schedules the in-
terplay of diffusion patterns between key schedules and round functions
plays a crucial role on this phenomenon. In this section, we use three ex-
amples to demonstrate different levels of key bits leakage caused by differ-
ent interaction of Ms and Mk. Recall that Ms and Mk are the incidence
matrices of diffusion in round functions and key schedules, respectively.

(a) Ms (b) Case 1: Mk (c) Case 2: Mk (d) Case 3: Mk

Fig. 2: The Ms and different Mk of these three cases.

Assume that we already have the round transformation for a block
cipher, and now we need to compare the security of three candidate key
schedules that have the same level of diffusion (i.e., to some extent they
have the same efficiency). Here, we use the same cipher structure as Fig.1.
The block size is equal to the key size and every internal state bit is
XORed by one bit of the round key. All these three cases share the same
Ms, as in (a) of Fig.2, and the three key schedules correspond to different
Mk as in (b), (c) and (d) of Fig.2. They have the same level of diffusion:
three subkey bits are respectively derived from two subkey bits of the
previous round, and the remaining three subkey bits only depend on one
bit in the previous round. Therefore, a common property in three Mk is
that they all have three rows with weight 2 and three rows with weight
1.

The first case (replace the Mk in Fig.1 with (b) of Fig.2) is a typical
and extreme example for key bits leakage, where Ms and Mk are identical.
Recall that according to the diffusion of round function F (decided by
Ms), a 4-round computation chain for calculating s4[1] (i.e., we can use
e1 to represent the involved and non-involved bits of s4 in this chain) is
marked by the grey boxes. That is, k0 = e1·M4

s = (1, 1, 0, 0, 0, 0), k1 =
e1·M3

s = (0, 0, 0, 0, 1, 1), k2 = e1·M2
s = (1, 1, 0, 0, 0, 0), k3 = e1·Ms =

(0, 0, 0, 0, 1, 0). The vector ki represents the involved and non-involved
subkey bits with 1 and 0, respectively. M4

s is Ms to the power of 4. The
involved subkey bits are: k0[0], k0[1], k1[4], k1[5], k2[0], k2[1] and k3[4], 7
bits in total. Thus, what we expect is that 6 bits of the master key are
all exploited in this 4-round chain. However, k3·M3

k = k0, k2·M2
k = k0,

k1·Mk = k0. This reveals the situation far from our anticipation: once



On the Key Schedule of Lightweight Block Ciphers 13

k0[0] and k0[1] are known, the remaining five key bits are not required to
guess. Therefore, this computation chain actually contains only two key
bits, and the AKI is 2. The ratio between AKI and the theoretical value
(6 bits) now is 1

3 , meaning that only 33.3% of the key bits in this chain
are effective.

Above is the worst case of key bits leakage in a block cipher. Appar-
ently, this is a bad example for cipher design when Ms and Mk have
incomplete diffusion. More generally, we should avoid constructing ho-
mologous Ms and Mk in lightweight block ciphers, since the low diffusion
will make the consequence of key bits leakage worse.

For the second case, similarly we compute AKI according to Mk in
(c) of Fig.2 and find that all 4-round computation chains have 5 bits of
AKI. Again for the third case, the AKI of all 4-round chains are 6 bits,
meaning that the whole key space is covered now. The security of these
two cases is much better than the first case. Thus, we can conclude that
not only the amount of diffused bits but also the positions of diffused bits
can affect the number of actual key information in a computation chain.
With the same amount of diffusion operations, some diffusing patterns
will cause severe key bits leakage, while others will not.

5 How to Avoid Key Bits Leakage

In practical design, we hope that key bits leakage does not occur in
any round and the AKI can be guaranteed as large as possible in ev-
ery chain. Hereafter, in our multiplication between matrices and vectors,
bit-addition is OR and bit-multiplication is AND. The sum of binary
matrices or vectors, denoted as

∑
, is a bitwise OR of these vectors or

matrices.

5.1 The cause of key bits leakage

After examining the computation chains with least AKI in Table 1, as
well as other chains having much lower AKI compared to the theoretical
value, we find that almost all of them have the following property: for the
computation chain starting from ej , we can always derive subkeys in this
chain from fewer key bits in the top round8. That is,

|
r∑

i=1

ej ·M i
s ·M r−i

k | <
r∑

i=1

|ej ·M i
s|. (1)

Recall that | · | is the Hamming weight of the binary vector, M i
s is the

matrix of Ms to the power of i, the sum of weight (
∑

in the right side)
is a sum over integers. The same notations are used hereafter.

8 In a forward computation chain, the top round is the round with the smallest index.
In a backward computation chain, the top round is the round with the biggest index.



14 Jialin Huang, Serge Vaudenay, and Xuejia Lai

Also, the number of finally involved key bits in the top round that can
derive all subkey bits in the chain is less than the master key size. i.e.,

|
r∑

i=1

ej ·M i
s ·M r−i

k | < k. (2)

For example, in Table 1, Eq.(1) and Eq.(2) hold for the 6 to 11 rounds
of TWINE-128. The theoretical value is min(

∑r
i=1 |ej ·M i

s|, k). Thus, in
these rounds,

AKI ≤ |
r∑

i=1

ej ·M i
s ·M r−i

k | < min(

r∑
i=1

|ej ·M i
s|, k), (3)

where the ratio of AKI and the theoretical value is smaller than 1.
Note that

∑r
i=1 ej ·M i

s ·M r−i
k is just the upper bound of AKI, since

we may be able to find a set of fewer subkey bits from different rounds
(instead of only from the top round) that also can be used to compute
all key bits in the chain. However, the first equality sign in Eq.(3) can be
obtained for most of the cases we checked for PRESENT and TWINE.
This means that the smallest set of subkey bits that can derive all key
bits in the chain is selected from the top round. There are two probable
reasons responsible for this. Firstly, a large number of rows have weight
1 in Mk so that most subkey bits can directly date back to previous
rounds without diffusing. Also, even for the remaining small quantity of
rows having weight larger than 1, these weights are low and sometimes
neighboring (e.g. the key schedule of PRESENT).

5.2 Necessary condition for avoiding key bits leakage

Based on the above cause, we explicitly formulate a necessary condition
for avoiding key bits leakage, i.e., gaining the maximal AKI in each com-
putation chain. The tool in Sect. 3 can compute the AKI for each chain
and check the ratio. However, this only can be done after the key sched-
ule has been designed. Here we give a design principle only in terms of
Ms and Mk, so that we can use it as a guideline when designing the key
schedule for a known Ms. For convenience and w.l.o.g., we take the case
that Ms and Mk have a equal size k again. In the case where they have
different sizes, Ms just needs to be merged or converted according to the
key extraction phase.

Corollary 3. For a block cipher, if there is no key bits leakage within R
rounds, then, ∀r ∈ [2 . . . R] and ∀j ∈ [0 . . . k − 1] |

∑r
i=1M

i
s ·M r−i

k |j ≥
∑r

i=1 |M i
s|j , if

∑r
i=1 |M i

s|j < k

|
∑r

i=1M
i
s ·M r−i

k |j = k, if
∑r

i=1 |M i
s|j ≥ k

(4)

where | · |j represents the Hamming weight of the jth row of the matrix.



On the Key Schedule of Lightweight Block Ciphers 15

Proof. In order to prove that Eq.(4) is a necessary condition for avoiding
key bits leakage, we need to prove that once Eq.(4) doesn’t hold, there is
key bits leakage within R rounds.

We discuss the case that
∑r

i=1 |M i
s|j < k firstly. When Eq.(4) doesn’t

hold, then ∃r, ∃j so that |
∑r

i=1M
i
s ·M r−i

k |j <
∑r

i=1 |M i
s|j . Since ej ·M i

s ·
M r−i

k is equal to the jth row of M i
s ·M r−i

k , and ej ·M i
s is equal to the

jth row of M i
s, hence this r and j satisfies that |

∑r
i=1 ej ·M i

s ·M r−i
k | <∑r

i=1 |ej ·M i
s|, which is the same as Eq.(1). This means that, considering

the rounds from R− r+ 1 (resp. R+ r− 1) to R in a forward (resp. back-
ward) chain which computes the jth bit of round R, the involved subkey
bits between these rounds can leak each other through some subkey bits
in round R− r + 1 (resp. R+ r − 1).

The second case is that
∑r

i=1 |M i
s|j ≥ k. Note that since Mk and Ms

are k×k matrices, |
∑r

i=1M
i
s ·M r−i

k |j is always not larger than k, for all j.

Hence, when Eq.(4) doesn’t hold, then ∃r, ∃j so that |
∑r

i=1M
i
s ·M r−i

k |j <
k. Similarly, this r and j satisfies that |

∑r
i=1 ej ·M i

s ·M r−i
k | < k. In this

case, we can find that the r-round chain, which computes the jth bit in
the beginning round, contains fewer than k bits of AKI. However, this
chain should have contained k bits of AKI. ut

Note that in a computation chain that calculates the jth bit of the internal
state, indeed AKI can be smaller than |

∑r
i=1M

i
s ·M r−i

k |j , i.e., |
∑r

i=1M
i
s ·

M r−i
k |j only provides an upper bound for AKI. This is why Corollary 3

is not a sufficient condition for key bits leakage.

Based on Corollary 3, we can design diffusion of a lightweight key
schedule in a more targeting way when the round function has been de-
cided, so that a computation chain is able to diffuse as many key bits as
possible even though the number of diffusion operations is limited.

6 Conclusion

In this paper, we develop a effective and efficient tool to automatically
search AKI in iterated key schedules of lightweight block ciphers. Also, we
formulate the cause of key bits leakage phenomenon from the point of the
relation of incidence matrices that represent diffusion of round functions
and key scheduling. Based on this cause, a necessary condition on how
to avoid key bits leakage in design of lightweight key schedules is given,
which can be a guidance of quickly ruling out unreasonable key schedules
and maximizing security under low diffusion. In further research we will
consider using our algorithm and the necessary condition to examine more
designs of lightweight key schedules.



16 Jialin Huang, Serge Vaudenay, and Xuejia Lai

References

1. Alex Biryukov and Ivica Nikolić. Automatic Search for Related-Key Differential
Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia,
Khazad and Others. In EUROCRYPT 2010, volume 6110, pages 322–344. 2010.

2. Alex Biryukov and Ivica Nikolić. Search for Related-Key Differential Characteris-
tics in DES-Like Ciphers. In Fast Software Encryption, volume 6733, pages 18–34.
2011.

3. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES, pages 450–466, 2007.

4. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search
of Attacks on Round-Reduced AES and Applications. In CRYPTO 2011, volume
6841, pages 169–187. 2011.

5. Özkan Boztaş, Ferhat Karakoç, and Mustafa Çoban. Multidimensional Meet-in-
the-Middle Attacks on Reduced-Round TWINE-128. In Lightweight Cryptography
for Security and Privacy, volume 8162, pages 55–67. 2013.

6. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-Middle:
Improved MITM Attacks. In CRYPTO, pages 222–240, 2013.

7. Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selcuk Meet-in-the-
Middle Attacks against Reduced-Round AES. In FSE 2013. 2013.

8. Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation
of AES and Chosen-Key Distinguisher of 9-Round AES-128. In CRYPTO 2013,
volume 8042, pages 183–203. 2013.

9. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED Block
Cipher. In CHES 2011, volume 6917, pages 326–341. 2011.

10. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In CHES, volume 4249, pages 46–59. Springer, 2006.

11. Jialin Huang and Xuejia Lai. Revisiting Key Schedule’s Diffusion in Relation with
Round Function’s Diffusion. Designs, Codes and Cryptography, pages 1–19, 2013.

12. Takanori Isobe and Kyoji Shibutani. Security Analysis of the Lightweight Block
Ciphers XTEA, LED and Piccolo. volume 7372, pages 71–86. 2012.

13. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Lei Wang, and Shuang Wu. Security
Analysis of PRINCE. In FSE 2013. 2013.

14. Lars Knudsen, Gregor Leander, Axel Poschmann, and MatthewJ.B. Robshaw.
PRINTcipher: A Block Cipher for IC-Printing. In CHES 2010, volume 6225, pages
16–32. 2010.

15. Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack. In
CRYPTO, pages 206–221, 2011.

16. Lauren May, Matt Henricksen, William Millan, Gary Carter, and Ed Dawson.
Strengthening the Key Schedule of the AES. volume 2384, pages 226–240. 2002.

17. Roger M. Needham and David J. Wheeler. TEA Extensions. Report, Cambridge
University, Cambridge, UK, October 1997.

18. Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight Block
Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. vol-
ume 5594, pages 90–107. 2009.



On the Key Schedule of Lightweight Block Ciphers 17

19. Gautham Sekar, Nicky Mouha, Vesselin Velichkov, and Bart Preneel. Meet-in-the-
Middle Attacks on Reduced-Round XTEA. In CT-RSA 2011, volume 6558, pages
250–267. 2011.

20. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A Lightweight Block Cipher for Multiple Platforms. In Selected Areas in
Cryptography, volume 7707, pages 339–354. 2013.

21. Wenling Wu and Lei Zhang. LBlock: A Lightweight Block Cipher. In Applied
Cryptography and Network Security, volume 6715, pages 327–344. 2011.

Appendix

A A MITM attack on 14 rounds of TWINE-80

TWINE is a lightweight block cipher using a variant of Type-2 generalized
Feistel scheme. TWINE-80 iterates 36 rounds to encrypt 64-bit block
message with 80-bit master key. We refer to [20] for more details about
this cipher.

Here we choose similar notations as in [20],Xi = Xi
0||Xi

1|| . . . ||Xi
14||Xi

15

and Xi+1 = Xi+1
0 ||Xi+1

1 || . . . ||Xi+1
14 ||X

i+1
15 as the input and output of

round i, and P = X1. RKi is the round key used in round i, extracted
from WKi, where WKi is the key state after running i rounds of the
key schedule. Note that WK0

0 || . . . ||WK0
19 is the master key, and RKi =

WKi−1
1 ||WKi−1

3 ||WKi−1
4 ||WKi−1

6 ||WKi−1
13 ||WKi−1

14 ||WKi−1
15 ||WKi−1

16 .
Here we use a forward computation chain which computes X8

5 from the
plaintext (X1), and a backward chain computing X8

5 from the ciphertext
(X15). The AKI of this forward chain is 17 nibbles, i.e., Kf can be decided
by all nibbles in WK0 except WK0

10, WK0
11 and WK0

12. The AKI of the
backward chain is 18 nibbles, that is,Kb can be known fromWK12

4 , and all
nibbles in WK13 except WK13

0 , WK13
7 and WK13

12 . Note that according
to the key schedule, after guessing all nibbles in WK13 except WK13

0 ,
WK13

7 and WK13
12 , 10 nibbles in WK0 can be known (WK0

0 , WK0
1 , WK0

3 ,
WK0

6 , WK0
8 , WK0

10, WK0
11, WK0

13, WK0
15, WK0

19). Thus, these two
computation chains share 8 nibbles of key information, which means that
we can filter 32 bits of information from the key. The attack process is as
Algorithm 3. We use 9 pairs of plaintext/ciphertext, providing a 36-bit
filter from the internal state.

The time complexity of the meeting phase is 9 · 218·4 · 0.5 = 274.17

encryptions. The number of remaining candidate keys is 2(17+18)·4−32−36

= 272. Thus, 272 trivial encryptions are needed in the search phase. The
total time complexity is about 274.46 encryptions of 14-round TWINE-80.
For simplicity, we omit the cost of memory access for finding a match in
T1, assuming that the time complexity of one table look-up is negligible
compared with that of one encryption. This assumption is quite natu-
ral and reasonable in most cases. However, strictly speaking, those costs
should be considered. The memory complexity is 217·4 = 268 blocks.



18 Jialin Huang, Serge Vaudenay, and Xuejia Lai

Algorithm 3 The 14-round MITM attack on TWINE-80

1: for each possible value of 17 nibbles for Kf do
2: Encrypt P(i) to get X8

5(i), i = 1 . . . 9.

3: Store corresponding key values for Kf in T1 indexed by X8
5(1)|| . . . ||X8

5(9).

4: for each possible values of 18 nibbles for Kb do
5: Decrypt C(i) to get X8

5(i), i = 1 . . . 9.

6: if this X8
5(1)|| . . . ||X8

5(9) exists in T1 then
7: Take the corresponding key values for Kf as well as current key value for
Kb as candidate keys.

8: Exhaustively search each remaining candidate key.

B Details of computation chains in Table 1

For TWINE-128, oh is the output nibble of the chain, si[j] here is the jth
nibble of the internal state in round i, and ki[j] (ki[j1 − j2]) is the jth
(j1 to j2) output subkey nibble(s) in the ith round of key schedule. For
PRESENT-128, the results are bit-oriented. The subkey bits (nibbles) in
BVr are enough to compute the output oh of the r-round chain.

Table 2: The BVr corresponding to TWINE128 for r = 7, 8, 9 in Table 1.

round the output oh BVr AKI

7 s7[10] k5[23],k6[2− 3],k6[8− 15],k6[17],k6[22], 17
k6[24− 25],k6[28],k6[28],k6[31]

8 s8[14] k6[23],k7[0],k7[2− 4],k7[7− 15],k7[17− 18], 23
k7[22],k7[24− 25],k7[27− 28],k7[30− 31]

9 s9[4] k8[0],k8[2− 3],k8[5− 15],k8[17− 18],k8[20],k8[22− 31] 27

Table 3: The BVr corresponding to PRESENT128 for r = 3, 4 in Table 1.

round the output oh BVr AKI

3 s3[3] k2[51− 127] 77
4 s4[0] k2[3− 127] 125

For PRESENT-128, 120 rows of Mk have weight 1, and 8 rows have
weight 4. We consider the 4-round chain with the least AKI, which is 125
bits. The size of original AV4 is 148 bits, and na is 84. After we deduce all
one in-degree cases, na decreases to 4. Then we can quickly deduce these
4 bits 2-by-2, 3-by-3, and 4-by-4.


