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Abstract

MILP-aided Cryptanalysis of Some Block Ciphers

Muhammad ElSheikh, Ph.D.

Concordia University, 2021

Symmetric-key cryptographic primitives, such as block ciphers, play a pivotal role

in achieving confidentiality, integrity, and authentication – which are the core services

of information security. Since symmetric-key primitives do not rely on well-defined hard

mathematical problems, unlike public-key primitives, there are no formal mathemati-

cal proofs for the security of symmetric-key primitives. Consequently, their security is

guaranteed only by measuring their immunity against a set of predefined cryptanalysis

techniques, e.g., differential, linear, impossible differential, and integral cryptanalysis.

The attacks based on cryptanalysis techniques usually include searching in an ex-

ponential space of patterns, and for a long time, cryptanalysts have performed this task

manually. As a result, it has been hard, time-consuming, and an error-prone task. Indeed,

the need for automatic tools becomes more pressing.

This thesis is dedicated to investigating the security of symmetric-key cryptographic

primitives, precisely block ciphers. One of our main goals is to utilize Mixed Integer

Linear Programming (MILP) to automate the evaluation and the validation of block

cipher security against a wide range of cryptanalysis techniques. Our contributions can

be summarized as follows.

First, we investigate the security of two recently proposed block ciphers, CRAFT and

SPARX-128/256 against two variants of differential cryptanalysis. We utilize the simple
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key schedule of CRAFT to construct several repeatable 2-round related-key differential

characteristics with the maximum differential probability. Consequently, we are able to

mount a practical key recovery attack on full-round CRAFT in the related-key setting. In

addition, we use impossible differential cryptanalysis to assess SPARX-128/256 that is

provable secure against single-trail differential and linear cryptanalysis. As a result, we

can attack 24 rounds similar to the internal attack presented by the designers. However,

our attack is better than the integral attack regarding the time and memory complexities.

Next, we tackle the limitation of the current Mixed Integer Linear Programming

(MILP) model to automate the search for differential distinguishers through modular

additions. The current model assumes that the inputs to the modular addition and the

consecutive rounds are independent. However, we show that this assumption does not

necessarily hold and the current model might lead to invalid attacks. Accordingly, we

propose a more accurate MILP model that takes into account the dependency between

consecutive modular additions. As a proof of the validity and efficiency of our model, we

use it to analyze the security of Bel-T cipher—the standard of the Republic of Belarus.

Afterwards, we shift focus to another equally important cryptanalysis technique,

i.e., integral cryptanalysis using the bit-based division property (BDP). We present MILP

models to automate the search for the BDP through modular additions with a constant

and modular subtractions. Consequently, we assess the security of Bel-T block cipher

against the integral attacks. Next, we analyze the security of the tweakable block cipher

T-TWINE. We present key recovery attacks on 27 and 28 rounds of T-TWINE-80 and

T-TWINE-128, respectively.

Finally, we address the limitation of the current MILP model for the propagation

of the bit-based division property through large non-bit-permutation linear layers. The

current models are either inaccurate, which might lead to missing some balanced bits, or

inefficient in terms of the number of constraints. As a proof of the effectiveness of our

approach, we improve the previous 3- and 4-round integral distinguishers of the Russian

encryption standard—Kuznyechik, and the 4-round one of PHOTON’s internal permuta-

tion (P288). We also report a 4-round integral distinguisher for the Ukrainian standard

Kalyna and a 5-round integral distinguisher for PHOTON’s internal permutation (P288).
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Chapter 1

Introduction

1.1 Overview

Cryptology, the study of cryptosystems, could be imagined as a coin that has two

faces, namely, cryptography and cryptanalysis. On the one hand, cryptography addresses

the design issues of cryptosystems to achieve specific security goals. On the other hand,

cryptanalysis guarantees that these goals have been established by trying to violate them.

While the security goals considered in modern cryptography are application-specific, con-

fidentiality, integrity, authentication, and non-repudiation form a framework upon which

the others can be achieved [72]. The building blocks to construct cryptosystems are called

cryptographic primitives.

As depicted in Figure 1.1, basic cryptographic primitives can be classified as un-

keyed primitives, symmetric-key primitives, and public-key primitives.

Unkeyed primitives are aptly named; no key is used. Hash functions [76] are one

of the most important commonly used cryptographic primitives that can be considered

as unkeyed primitives. Using hash functions, we can compress a message of any arbitrary

length into a hash value of fixed length. In other words, a hash function generates a

fingerprint for the message where this fingerprint depends on all the bits of the message.
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Security
Primitives

Unkeyed
Primitives

Symmetric-key
Primitives

Public-key
Primitives

Hash functions

One-way permutations

Random sequences

Symmetric-key ciphers

Arbitrary length hash
functions (MACs)

Signatures

Pseudorandom
sequences

Identification primitives

Public-key ciphers

Signatures

Identification primitives

Block ciphers

Stream ciphers

Figure 1.1: A taxonomy of cryptographic primitives [72]

Therefore, hash functions are heavily used to provide data integrity. While The crypto-

graphic properties of hash functions could be application-specific, these properties should

include preimage resistance, second preimage resistance, and collision resistance [76].

Symmetric-key primitives are cryptographic primitives where a secret key is shared

between the communicating entities, i.e., both sender and recipient use the same key.

Block ciphers [58] are an example of these primitives. A block cipher consists of two

algorithms namely, encryption and decryption. The encryption algorithm, used by a

sender, takes two inputs; a block of data with a fixed length called plaintext and a secret

key, and maps them into another block of data with the same length called ciphertext.

The reverse process is performed using the decryption algorithm at the recipient, i.e., the

decryption algorithm maps the ciphertext back to its corresponding plaintext using the

same shared secret key. Block ciphers can be used to provide data confidentiality.
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Another example of symmetric-key primitives is Message Authentication Codes

(MAC) [77] which can be used to provide both data integrity and authenticity. In MAC,

a sender of a message computes an authentication tag of the message using a secret

key, and then sends the tag along with the message. Then, the recipient re-computes

the authentication tag corresponding to the received message using the same secret key,

and then compares the re-computed tag against the received one. If the re-computed

authentication tag matches the received one, then the sender is authenticated and the

message integrity is verified. Unlike block ciphers, MAC primitives do not have to be

invertible, as both sender and recipient perform the same operation to compute or verify

the authentication tag.

Public-key primitives, also called asymmetric-key primitives, rely on a kind of trap-

door one-way functions. A trapdoor one-way function is a function that is easy to compute

in one direction, but it is very difficult to invert without knowing special information called

the trapdoor. In cryptosystems that use these primitives, each entity has two different

keys, a public key and a private key. Since the private key is the trapdoor, it is kept

secret. In contrast, the public key is known to all other entities without compromising

security. A sender can encrypt a message using the recipient’s public key. Therefore, the

recipient is the only one who can decrypt the message because he/she knows the trapdoor

of the function; the private key.

1.2 Motivation

Since public-key primitives are based on hard mathematical problems such as the

discrete logarithm problem in the Diffie–Hellman [27] and the integer factorization prob-

lem in the RSA algorithm [79], their security is mathematically proven. In contrast,

symmetric-key primitives do not rely on well-defined hard mathematical problems. Thus,

there are no formal mathematical proofs for their security. Consequently, the security

3



of symmetric-key cryptographic primitives is ensured only by measuring their immunity

against a large set of predefined cryptanalysis techniques, e.g., differential [12], linear [69],

impossible differential [11], zero-correction [19], and integral cryptanalysis [57]. Among

all symmetric-key primitives, block ciphers are the most commonly used ones. This is be-

cause block ciphers can be also used as building blocks for other cryptographic primitives

such as hash functions and MAC schemes. Thus, evaluating the security of block ciphers

is a major aspect of the design process of secure block ciphers.

Furthermore, performing cryptanalysis techniques consists of two steps: finding

a distinguisher that covers some rounds to distinguish this reduced-round block cipher

from a random permutation, then converting this distinguishing attack to a key recov-

ery attack. Finding that distinguisher is usually the hardest and time-consuming step.

This step usually includes searching in an exponential space of patterns, and for a long

time, cryptanalysts have performed this task manually. As a result, it becomes more and

more hard, time-consuming, and error-prone. With the increasing complexity in mod-

ern symmetric-key ciphers, the need for automated tools becomes more pressing. Such

tools can play a significant role, not only in cryptanalysis but also in the design of these

symmetric key-primitives.

1.3 Thesis Contributions and Outline

In this thesis, we investigate the security of several block ciphers that are either

recently proposed or standardized by a standardization body, e.g., CRAFT [7], SPARX-

128/256 [28], Bel-T [10], T-TWINE [81], Kuznyechik [86], and Kalyna [74]. Moreover,

with the help of Mixed Integer Linear Programming (MILP), we are able to automate the

search process for finding distinguishers in differential cryptanalysis and integral attacks

based on the bit-based division property.

After providing a formal definition of block ciphers and a brief overview about some
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cryptanalysis techniques in Chapter 2, we focus in the first part of this thesis (Chapters 3,

4, and 5) on differential cryptanalysis and some of its variants. Afterwards, we shift our

focus in the second part (Chapters 6, 7, and 8) to developing and applying MILP-aided

integral attacks based on the bit-based division property. The contributions of this thesis

are as follows:

• Chapter 3 presents our security assessment of the lightweight block cipher CRAFT.

Precisely, we utilize the simple key schedule of CRAFT to propose a systematic method

for constructing several repeatable 2-round related-key differential characteristics

with the maximum differential probability 2−2. We then employ these characteristics

to mount a practical key recovery attack on full-round CRAFT in the related-key

setting.

• Chapter 4 provides our impossible differential attack against SPARX-128/256 block

cipher. Firstly, we present two 20-round impossible differential distinguishers. Then,

we use them to launch a key recovery attack against 24 rounds. Although our

attack covers the same number of rounds that the designers reach using the integral

cryptanalysis, our attack achieves better time and memory complexities.

• Chapters 5 and 6 provide our security assessment of Bel-T-256 which is a member

of the Bel-T block cipher family that has been adopted recently as the national

standard of the Republic of Belarus. In Chapter 5, we firstly propose our new

MILP model to describe the differential propagation through the modular addi-

tion/subtraction taking into account the dependency between the consecutive mod-

ular operations. Then, the proposed MILP model is used to find a 3-round dis-

tinguisher. Finally, we employ this distinguisher to launch a key recovery attack

against Bel-T-256. In Chapter 6, we present MILP models to automate the search

for the bit-based division property through the modular addition with a constant

and the modular subtractions. Consequently, we assess the security of Bel-T-256
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against integral attacks.

• Chapter 7 presents integral attacks on the two variants of the tweakable block ci-

pher T-TWINE. In particular, we study the implications of adding the tweak to the

structure of TWINE [94]. Then, we present several 19-round integral distinguishers

in both chosen tweak-plaintext and chosen tweak-ciphertext settings. Accordingly,

we mount key recovery attacks against 27 and 28 rounds of T-TWINE-80 and T-

TWINE-128, respectively.

• Chapter 8 introduces our new MILP model for the propagation of the bit-based

division property through large non-bit-permutation linear layers. The models in

the literature are either inaccurate or inefficient. As a proof of the effectiveness of

our model, we improve the previous 3- and 4-round integral distinguishers of the

Russian encryption standard — Kuznyechik, and the 4-round one of PHOTON’s

internal permutation (P288) [47]. We also report a 4-round integral distinguisher for

the Ukrainian standard Kalyna and a 5-round integral distinguisher for PHOTON’s

internal permutation (P288).

The above contributions have been published in [31, 33–35, 37, 38]. Other works

conducted during the tenure of this Ph.D. have been published in [3, 32,36,42,100].
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Chapter 2

Background

In this chapter, we provide a brief overview of block ciphers focusing on some of

their relevant cryptanalytic techniques.

2.1 Block Ciphers

One of the most widely used symmetric-key primitives is block ciphers which can

be considered as keyed permutations. More precisely, a block cipher is a deterministic

algorithm used to map a plaintext P to a ciphertext C, and vice versa, under a specific

secret key K. The formal definition of the block cipher is as follows:

Definition 2.1 (Block cipher[ [72], Definition 7.1]) An n-bit block cipher is a func-

tion E : Vn × K → Vn, such that for each key K ∈ K, E(P,K) is an invertible mapping

(the encryption function for K) from Vn to Vn, written EK(P ). The inverse mapping is

the decryption function, denoted DK(C). C = EK(P ) denotes the ciphertext C resulting

from encrypting plaintext P under K.

The concept of iterated round function is dominant to many modern block ciphers

where a simple weak key-dependent round function is iterated several times in order to

achieve a higher degree of security in terms of confusion and diffusion. Figure 2.1 gives
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a schematic view of an iterative block cipher. The formal definition of an iterative block

cipher is as follows:

Definition 2.2 (Iterative block cipher[ [17], Definition 4]) An n-bit block cipher E

is called an iterative block cipher with r rounds if for each key it can be represented as a

composition of keyed round permutations, that is, if for each K ∈ Fk2:

E(., K) = fr−1(., Kr−1) ◦ fr−2(., Kr−2) ◦ · · · ◦ f1(., K1) ◦ f0(., K0),

where ◦ denotes the superposition of permutations, fi(., Ki) : Fn2 → Fn2 are key-dependent

round permutations, Ki are round subkeys derived from the secret key K using a key

schedule algorithm:

ks : K → (K0, K1, · · · , Kr−2, Kr−1).

The iterated block cipher is an iterative block cipher with an identical round per-

mutation, i.e., fi = f . Typically, there are two widely used structures of the iterated

round function, namely Balanced Feistel Network (BFN) (e.g., DES [26]) and Substitu-

tion Permutation Network (SPN) (e.g., AES [30]) as depicted in Figure 2.2.

2.2 Block Ciphers Security

According to the definition of perfect security introduced by Shannon [85], the key

used in a perfectly secure block cipher must have entropy higher than or at least equal to

the entropy of the plaintext. In other words, the length of the key must be at least equal

to the length of the plaintext and it cannot be reused to encrypt another data (one-time

use) [25]. With the large amounts of data needed to be encrypted, such perfectly secure

block ciphers become impractical. Instead, we can use the concept of computational

security to achieve practical block ciphers. Computational security is defined as follows:

Definition 2.3 (Computational security [ [25], Definition 7]) A block cipher E us-
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Permutation Network

ing a k-bit secret key is called computationally secure if there exist no attacks on E with

a complexity less than the one of an exhaustive key search, i.e., 2k, where the complexity

of the attack comprises the time (work factor), memory (storage requirement), and data

(type and amount of data) complexities required to perform the attack.

According to the above definition, it is difficult to prove that a block cipher is computa-

tionally secure. Instead, we typically evaluate the security of block ciphers by considering
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their immunity against a large set of predefined cryptanalytic attacks. During this evalu-

ation, we use the following criteria, based on the definition of computational security, to

consider the effectiveness of different attacks:

1. Data complexity: the number of plaintexts and/or ciphertexts required for launching

the attack.

2. Memory (storage) complexity: the amount of memory used during the attack.

3. Time (computational) complexity: the amount of computation or time required for

executing the attack.

2.2.1 Attack Models

Attack models reflect the kind of available information to an attacker and which

operations could be applied by the attacker on the plaintexts and/or ciphertexts. Attack

models can be categorized as:

• Ciphertext-only: A set of ciphertexts is available to the attacker without knowing

the corresponding plaintexts.

• Known-plaintext: A set of both plaintexts and their corresponding ciphertexts is

available to the attacker.

• Chosen-plaintext (ciphertext): A set of plaintexts (ciphertexts) chosen by the at-

tacker and their corresponding ciphertexts (plaintexts) is available to the attacker.

• Adaptive chosen-plaintext: The attacker can adapt the next chosen-plaintext based

on some intermediate results obtained from the previous chosen-plaintext and its

corresponding ciphertext. This adaptation is performed during the attack.

• Adaptive chosen-ciphertext: Similar to the previous model, but the attacker can

adapt the next chosen-ciphertext.
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• Related-key: Combined with chosen-plaintext (ciphertext) model, the attacker is

able to choose the relation between the unknown master secrete key and the key

used by the oracle to encrypt (decrypt) the chosen-plaintext (ciphertext).

2.3 Cryptanalytic Techniques

In this section, we discuss some of the most powerful attacks to evaluate the security

of block ciphers.

2.3.1 Differential Cryptanalysis

Differential cryptanalysis, which was introduced by Biham and Shamir with appli-

cations on DES in 1990 [12], is one of the most powerful attacks that are used to evaluate

the security of symmetric-key primitives. Differential cryptanalysis is a chosen-plaintext

attack in which an attacker takes the advantage of existing a pair of inputs with a specific

difference that is highly correlated to their output difference after some rounds. In other

words, for an n-bit primitive, the attacker looks for a pair of inputs with input difference

∆X0 that gives, after r rounds, another pair with output difference ∆Xr with a probabil-

ity (p) higher than 2−n, independent of the secret key. The pair of differences (∆X0,∆Xr)

associated with the probability (p) is called an r-round differential.

Using this differential, a key recovery attack can be performed by appending

(prepending) some rounds after (before) the differential and guessing the round keys.

Therefore, finding this differential is essential for the attack. Since this task is not easy

for many ciphers, the attacker instead searches for a differential path with a significantly

high probability through linear and nonlinear components of the cipher under attack. In

other words, the attacker tries to construct a good differential trail:

∆X0
p0−→ ∆X1

p1−→ · · · pi−1−−→ ∆Xi
pi−→ · · · pr−1−−→ ∆Xr

11



where ∆Xi is the difference at the intermediate state of the cipher after i-round, and pi

is the probability of this differential trail in round i. Consequently, the probability of this

trail can be approximately calculated as the multiplication of its intermediate probabilities

(
∏r−1

i=0 pi), assuming the independence between them. As a result, the r-round differential

(∆X0
p−→ ∆Xr) can be considered as the set of all possible differential trails that have the

same input and output differences, and the probability of this differential can be calculated

as the sum of the probabilities of all these individual differential trails. However, the

enumeration of all possible differential trails is almost infeasible. Therefore, obtaining one

or two trails with a significantly high probability will be enough to lunch the attack in

many cases.

Since the propagation of the difference through the linear elements is deterministic,

the round function probability (pi) relies propagating the difference through the nonlinear

elements and how many of them are active (has nonzero input/output difference). When

the number of active nonlinear elements is low, the differential probability will be high

and then the data complexity will be low.

There are many variants of the basic form of differential cryptanalysis such as trun-

cated differential cryptanalysis [55], higher-order differential cryptanalysis [61], boomerang

cryptanalysis [102], and impossible differential cryptanalysis [11] that uses a differential

characteristic of probability zero to exclude wrong keys.

2.3.2 Linear Cryptanalysis

Linear cryptanalysis is another example of the powerful attacks that are used to

assess symmetric-key primitives. Matsui and Yamagishi applied this technique for the

first time to evaluate the security of FEAL [70] and then Matsui was able to break the full

round of DES using this technique [69]. Linear cryptanalysis is a known-plaintext attack

and its main idea relies on finding a linear approximation between some of the input and

output bits over a round-reduced version of a block cipher by linearizing the nonlinear

12



elements. Due to the nonlinear component, this approximation will hold with probability

p and if this probability is significantly high or low, i.e., the probability closes to 1 or

0, then the block cipher can be distinguished from a random permutation in which this

approximation holds with probability 0.5. More formally, for an r-round cipher with n-bit

block size, suppose (X0, Xr) denotes the input at round 0 and the output at round r, the

linear approximation can be expressed as:

Γ0 �X0 ⊕ Γr �Xr = 0

where � is the scalar product over F2, and Γi is an n-bit vector called a linear mask,

whose elements belong to F2. The linear mask Γi is used to specify which bits in Xi are

involved in the linear approximation.

A linear approximation with probability (p), written as (Γ0
ε−→ Γr) and so-called

an r-round linear hull, is characterized by its bias ε = |p− 1
2
| which measures how much

the cipher is diverted from a random permutation, which has zero bias. Similar to the

r-round differential, the most efficient method to construct a good linear approximation

is by searching for a chain of linear masks (Γ0,Γ1, . . . ,Γr), called a linear trail, through

the nonlinear component of cipher’s rounds such that the sub-linear approximation (Γi�

Xi ⊕ Γi+1 �Xi+1 = 0) holds with bias εi > 0. Accordingly, the overall bias of the linear

trail can be computed using the piling-up lemma [69] as (2r−1
∏r−1

i=0 εi) under the same

assumptions mentioned above in differential cryptanalysis. As a result, the r-round linear

hull (Γ0
ε−→ Γr) can be considered as a set of all possible linear trails that have the same

input and output linear masks, and the overall squared bias ε2 can be calculated as the

sum of the squared bias of each individual linear trail in this set.

The distinguishing attack described above can be turned into a key recovery at-

tack, like in differential cryptanalysis, by appending some rounds before or after the dis-

tinguisher and guessing the round keys. The data complexity of the linear cryptanalysis
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is inversely proportional to the squared bias ε2. Therefore, the minimum the number of

active nonlinear elements, the maximum the bias, and the minimum the data complexity.

Similar to differential cryptanalysis, many extensions and improvements of linear

cryptanalysis have been proposed. For example, the use of chosen-plaintexts instead of

known-plaintexts was proposed to reduce the data complexity [59]. In the same manner,

the multidimensional linear attacks were introduced in [49] to reduce the data complexity.

Analogous to impossible differential cryptanalysis, the concept of zero-correlation crypt-

analysis is proposed in [19] where a linear hull with zero bias, i.e., its probability is exactly

0.5 is exploited in order to exclude wrong keys.

2.3.3 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis is a variant of differential cryptanalysis as men-

tioned earlier. It was introduced independently by Biham et al. [11] and Knudsen [56].

While differential cryptanalysis exploits differentials with the highest probability, impos-

sible differential cryptanalysis relies on a differential with a probability exactly equal to

zero i.e., an attacker looks for a differential with an input difference that can never lead

to any particular output difference.

Miss-in-the-Middle is a general technique to construct an impossible differential

distinguisher where a block cipher E is divided into two cascaded sub-ciphers E0 and E1

such that E = E1 ◦E0, as depicted in Figure 2.3. Each sub-cipher has a differential with a

probability equal to 1. These two differentials are concatenated to construct an impossible

differential distinguisher covers E as follows. Suppose there exists a differential (α
p=1−−→ β)

through E0, and there exists another differential (δ
p=1−−→ γ) through (E1)

−1. When the

intermediate differences (β, γ) do not mach, the input difference (α) can not lead to the

difference δ at the output of E and we have an impossible differential (α 6→ δ)

Once an attacker finds this impossible differential, a key recovery attack can be

launched by prepending and/or appending a few additional rounds (called analysis rounds)
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Figure 2.3: Visualization of Miss-in-the-Middle technique.

before and/or after the distinguisher. The attack proceeds in two phases as follows. In the

first phase, the attacker collects a set of plaintext/ciphertext pairs with certain differences.

In the second phase, the attacker guesses some key bits involved in the analysis rounds

and checks whether the guessed key leads any pair of the collected ones to the impossible

differential. If this happened, the guessed key bits must be wrong. Accordingly, the

attacker can discard as many wrong keys as possible and exhaustively search on the

remaining key bits. One method to improve the time complexity of the attack is by using

the early abort technique [67] that allows us to guess some of the involved key bits, not all

of them, and discard unuseful pairs as early as possible and therefore reducing the time

complexity of the attack.

2.3.4 Integral Cryptanalysis

Daemen et al. proposed a new cryptanalysis technique to analyze the security

of the block cipher SQUARE [23]. Subsequently, Knudsen and Wagner [57] formalized

this technique and called it integral attack. The integral attack has several variants with

different names such as collision attack [45], multiset attack [15], and saturation attack

[68].
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The integral attack starts by finding an integral distinguisher where a set of plain-

texts is chosen such that it has a constant value at some bits while the other bits vary

through all possible values. This set gives after r rounds another set. If the XOR sum of

all bits (or some of them) on the new set is always 0 irrespective of the used secret key,

we denote these bits as balanced bits and conclude that the block cipher under test has

an r-round integral distinguisher.

The techniques to construct an integral distinguisher include estimating the alge-

braic degree of the nonlinear parts of the cipher, and evaluating the propagation of the

following integral properties [57]:

• ALL (A) : Every member appears the same number of times in the set.

• BALANCE (B) : The XOR of all members in the set is 0.

• CONSTANT (C) : The value is fixed to a constant for all members in the set.

• UNKNOWN (U) : The set is indistinguishable from one of n-bit random values.

The propagation rules of these integral properties can be summarized as the fol-

lowing:

Though Linear layer

A⊕A → B

A⊕ B → B

A⊕ U → U

B ⊕ U → U

Though non-linear Function(F)
F(A)→ A

F(B)→ U

F(U)→ U

A key recovery attack can be launched based on the integral distinguisher as follows.

First, we append some additional rounds after the distinguisher. Then, we collect the

set of plaintexts and obtain the corresponding ciphertexts. After that, for each set of

plaintexts/ciphertexts, we guess some key bits involved in the analysis rounds and partially

decrypt the ciphertexts to reach the distinguisher. If the set of the partially decrypted
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ciphertexts does not satisfy the balance condition i.e., have XOR sum of 1, then the

guessed key bits must be wrong. Like in impossible differential cryptanalysis, we can

discard as many wrong keys as possible and exhaustively search over the remaining key

bits.

2.3.5 Division Property

The division property is a generalized integral property that utilizes the hidden

properties between the traditional A and B by exploiting the algebraic degree of the

nonlinear components of block ciphers [95]. Since it was proposed by Todo at Eurocrypt

2015, it has become one of the most efficient methods to build integral distinguishers.

It has been used to analyze the security claims of many symmetric-key primitives, e.g.,

the full round MISTY1 was broken using a 6-round integral distinguisher found by the

division property [96]. The division property was succeeded by a more precise version

called the bit-based division property (BDP) in [98] which exploits the internal structure

of the nonlinear components to analyze block ciphers at the bit level.

Definition 2.4 (Bit product function [95]) For two n-bit vectors xxx and uuu, the bit

product function πuuu(xxx) : Fn2 → F2 is defined as

πuuu(xxx) =
n−1∏
i=0

xuii

where xi and ui are the i-th bits of xxx and uuu, respectively.

Definition 2.5 (Bit-based Division Property [98]) Let X be a multiset whose ele-

ments take a value of Fn2 . When the multiset X has the division property DnK, where

K denotes a set of n-dimensional vectors whose i-th element takes 0 or 1, it fulfills the
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following conditions for any uuu ∈ Fn2 :

⊕
xxx∈X

πuuu(xxx) =


unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

Even though the BDP is more accurate and can find better integral distinguishers,

handling its propagation is computationally intensive. The first search tool utilized the

bit-based division property was limited to building integral distinguishers for block ciphers

with block size less than 32 bits since the complexity of the search is around O(2n) where

n is the block size [98]. Xiang et al. [104] have overcome the problem of the restriction on

the block size by proposing the division trails. Using the division trial, the search process

for an integral distinguisher can be converted to checking whether a specific division trail

exists or not.

Definition 2.6 (Division Trail [104]) Let f denote the round function of an iterated

block cipher. Assume that the input multiset to the block cipher has the initial division

property Dn{k}, and denote the division property after i-round propagation through f by

DnKi
. Thus, we have the following chain of division property propagations: {k} def

= K0
f−→

K1
f−→ K2

f−→ · · · f−→ Kr. Moreover, for any vector k∗i ∈ Ki(i ≥ 1), there must exist a vector

k∗i−1 ∈ Ki−1 such that k∗i−1 can propagate to k∗i by the division property propagation rules.

Furthermore, for (k0,k1, . . . ,kr) ∈ K0×K1× · · · ×Kr, if ki−1 can propagate to ki for all

i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

Using the division trial, the search process for an integral distinguisher is converted

to check if the division trail k0 → · · · → ei (a unit vector whose i-th element is 1) does

exist or not. If it does not exist, then the i-th bit of r-round output is balanced.

In the following, we summarize the propagation rules of the BDP through the

basic operations. Suppose Kxxx and Kyyy denote the input and output division property of

the function yyy = f(xxx).
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• Rule of COPY: let xxx = (x0) and yyy = (y0, y1) where (y0, y1) = (x0, x0). Therefore,


Kyyy = {(0, 0)}, if Kxxx = {(0)}

Kyyy = {(1, 0), (0, 1)}, if Kxxx = {(1)}

• Rule of XOR: let xxx = (x0, x1) and yyy = (y0) where y0 = x0 ⊕ x1. Therefore,


Kyyy = {(0)}, if Kxxx = {(0, 0)}

Kyyy = {(1)}, if Kxxx = {(0, 1)}

Kyyy = {(1)}, if Kxxx = {(1, 0)}

• Rule of AND: let xxx = (x0, x1) and yyy = (y0) where y0 = x0x1. Therefore,

Kyyy = {(0)}, if Kxxx = {(0, 0)}

Kyyy = {(1)}, if Kxxx = {(0, 1)}

Kyyy = {(1)}, if Kxxx = {(1, 0)}

Kyyy = {(1)}, if Kxxx = {(1, 1)}

2.3.6 MILP-aided Cryptanalysis

As mentioned earlier, attacks based on cryptographic techniques usually include

searching for a distinguisher that is used to differentiate the output of a block cipher

from the output of a random permutation. In general, the process of finding this distin-

guisher includes searching for a specific pattern in exponential space where the meaning

of this pattern is different from one technique to another. In general, the core idea behind

many automated tools is to convert this search problem into a well-defined optimiza-

tion/satisfiability problem, then utilize some existing solvers to catch a solution. The

automated tools can be divided into the following three categories:
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• Boolean Satisfiability Problem (SAT)/Satisfiability Modulo Theories(SMT) [54,89].

• Constraint Programming (CP) [43,44].

• Mixed Integer Linear Programming (MILP) [22,73,82,88,92,104].

Mixed Integer Linear Programming (MILP). Mixed Integer Linear Programming

(MILP) problem is a mathematical optimization problem whose variables are restricted

to be integers and its goal is to optimize a linear objective function with respect to a set

of linear constraints. For example:

maximize (x+ y + z), subject to


x+ y + 5z ≤ 2

x+ y ≥ 1

x, y, z as binary.

MILP-aided Differential Cryptanalysis. The first attempt to utilize MILP tech-

nique in symmetric-key cryptanalysis was developed by Mouha et al. [73] in which they

applied a MILP technique to prove security bounds against both differential and linear

cryptanalysis. Later, Sun et al. [91] proposed MILP models that represent exactly the

propagation of the differential through SPN block ciphers in order to automate the search

for high probability (related-key) differential or linear characteristics. Cui et al. [22] pro-

posed a MILP model for both impossible differential and zero-correlation attacks. Sasaki

and Todo [82] developed a new search tool for impossible differential using MILP. One of

the downsides of these MILP models was the inability to efficiently describe the Differ-

ence Distribution Table (DDT) of large (8-bit) S-boxes which was tackled by Abdelkhalek

et al. [1]. Regarding ARX-based block ciphers, Fu et al. [41] represented the conditions

developed by Lipmaa and Moriai [65] by a set of MILP constraints in order to automate

the search for the best differential trail through the modular addition. Throughout the

work presented in this thesis, we study the model by Fu et al. in details and highlight
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some limitations on it. Then, we propose a more accurate model for the propagation of

the XOR difference through modular addition and subtraction.

MILP-aided Bit-based Division Property. With the help of the division trail, it

becomes easy to employ MILP for constructing the integral distinguisher using the BDP.

Xiang et al. [104] provided an accurate model for the propagation of the BDP through

the basic operations; COPY, XOR, and AND, in addition to an accurate model for S-boxes.

Sun et al. complement this work by handling ARX-based ciphers (modular addition

operation) [88]. Recently, Todo et al. utilize MILP model of the BDP to improve the cube

attacks [97]. For ciphers with non-bit-permutation linear layers, Sun et al. [90] proposed

a model relying on decomposing the matrix corresponding to the linear layer into its basic

operations; COPY and XOR. Another model for the propagation of the BDP through non-

bit-permutation linear layers is presented by Zhang and Rijmen in [106]. Throughout the

work presented in this thesis, we complement the work by Sun et al. [88] for ARX-based

ciphers by proposing MILP models for the propagation of the BDP through a modular

addition with a constant and a modular subtraction. Moreover, we propose a new MILP

model for the propagation of the BDP through large non-bit-permutation linear layers.
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Chapter 3

Related-key Differential

Cryptanalysis of Full Round CRAFT

CRAFT [7] is a lightweight tweakable block cipher introduced at FSE 2019. In this

chapter, we utilize the simple key schedule of CRAFT to propose a systematic method

for constructing several repeatable 2-round related-key differential characteristics with

probability 2−2. We then employ one of these characteristics to mount a key recovery

attack on full-round CRAFT using 231 queries to the encryption oracle, 285 encryptions,

and 241 64-bit blocks of memory. Additionally, we manage to use 8 related-key differential

distinguishers, with 8 related-key differences, in order to mount a key recovery attack

on the full-round cipher with 235.17 queries to the encryption oracle, 232 encryptions and

about 26 64-bit blocks of memory. Furthermore, we present another attack that recovers

the whole master key with 236.09 queries to the encryption oracle and only 11 encryptions

with 27 blocks of memory using 16 related-key differential distinguishers.

3.1 Introduction

Modern symmetric-key cryptographic primitives such as the Advanced Encryption

Standard (AES), which are likely designed for desktops and servers, cannot be easily
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implemented on resource-constrained devices, e.g., sensor networks, healthcare equipment,

Internet of Things (IoT) devices, and RFIDs. With the rapidly increasing demand for

such devices, the National Institute for Standards and Technology (NIST) has initiated a

standardization process for new lightweight cryptographic algorithms for use in resource-

constrained devices. SKINNY [6], PRESENT [18], SIMON [5], and GIFT [4] are examples

of such lightweight block ciphers that have been recently proposed.

At FSE 2019, Beierle et al. presented CRAFT [7], a new lightweight tweakable

block cipher with a block size of 64 bits and a key length of 128 bits associated with 64

bits as a tweak. One of the main design criteria of CRAFT is the efficient protection of

its implementations against differential fault analysis. In the design paper, the authors

provide the security analysis of CRAFT against several cryptanalysis techniques such as

differential, linear, impossible differential, zero correlation, and integral cryptanalysis in

the single-key and related-tweak settings. They also presented a deterministic related-

key/related-tweak differential characteristic. However, this characteristic cannot be used

to mount a key recovery attack. In this chapter, we study in details the security of CRAFT

against the related-key differential attack. More precisely,

1. We utilize the simple key schedule of CRAFT to present a systematic method of how

to select the key difference in addition to the input and the output differences of

the 2-round structure of CRAFT such that the input difference is the same as the

output difference. Thus, the resulting 2-round characteristic is repeatable. In the

same time, we also try to maximize the probability of that characteristic. Thereby,

we use it as a building block for constructing a longer characteristic. To illustrate

the effectiveness of this method, we present 17 repeatable 2-round characteristics,

each one of them has only one active S-box and holds with probability equals to the

maximum differential probability of an active S-box of CRAFT (2−2).

2. We extend one of these characteristics to a 28-round related-key differential char-

acteristic with probability 2−28. After that, we employ it to mount a key recovery

23



attack on full-round CRAFT using 231 queries to the encryption oracle and 285 en-

cryptions, and 241 64-bit blocks of memory.

3. We can speed up the key recovery attack against the full-round CRAFT using 235.17

queries to the encryption oracle and 232 full-round encryptions. To this end, we

manage to use 8 different related-key differential characteristics (with 8 related-key

differences) in order to recover 96 bits from the secret master key and then we get

the full master key by testing the right 96-bit key along with the remaining 32 bits

of the key using a plaintext/ciphertext pair.

4. Furthermore, we can perform the previous attack without the exhaustive search step

and recover the whole master key with 236.09 queries to the encryption oracle and

only 11 full-round encryptions (instead of 232 in the above attack) using 16 different

related-key differential characteristics (with 16 related-key differences). This attack

has been verified experimentally.

The rest of this chapter is organized as follows. In Section 3.2, we briefly revisit

the specifications of CRAFT. A systematic method to build a repeatable 2-round related-

key characteristic is explained in Section 3.3. In Section 3.4, we describe the key recovery

attack against the full rounds of CRAFT using a single related-key differential characteristic.

Then, the details of our attack using multiple related-key differential characteristics are

presented in Section 3.5. Finally, the chapter is summarized in Section 3.6.

3.2 Specifications of CRAFT

CRAFT [7] is a lightweight tweakable block cipher with a block size of 64 bits, a key

length (K) of 128 bits, and a tweak (T ) of 64 bits. The internal state of the cipher can be

represented as a 4 × 4 square array of nibbles or as a 16-nibble vector by concatenating

the rows of the square array. The notation Ii,j is used to denote the nibble located at row
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Figure 3.1: Structure of CRAFT

i and column j of the 4 × 4 array. Also, a single subscript Ii denotes the nibble in the

i-th position of 16-nibble vector, i.e., Ii,j = I4i+j.

Tweakey Schedule. The 128-bit key K is split into two 64-bit subkeys K0 and K1.

Similar to the internal state, the subkeys K0 and K1 in addition to the 64-bit input tweak

T are represented as 4×4 square arrays of nibbles or as a 16-nibble vectors using a similar

indexing technique as for the internal state. Then, four 64-bit tweakeys TK0, TK1, TK2

and TK3 are derived from K0 and K1 with the associated T as follows:

TK0 = K0 ⊕ T, TK1 = K1 ⊕ T, TK2 = K0 ⊕Q(T ), TK3 = K1 ⊕Q(T ).

where Q(T ) is a permutation on the nibbles of the input tweak T using a permutation

Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]. In other words, the i-th nibble of Q(T )

(T (Q)i, 0 ≤ i ≤ 15) is equal to the Q(i)-th nibble of T (Q(T )i = TQ(i)). The tweakey

TKi mod 4 (0 ≤ i ≤ 31) is used during the i-th round of the encryption operation in order

to update the internal state.

Encryption Operation. The encryption operation proceeds as follows. First, the plain-

text m = m0||m1|| · · · ||m14||m15 (where mi is a 4-bit nibble) is loaded into the internal

state. Then, the internal state is updated by applying the full round function of CRAFT

31 times (Ri, 0 ≤ i ≤ 30). Finally, one more linear round(R′31) is applied on the internal

state to compute the ciphertext as shown in Figure 3.1, where RCi is the round constant.
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The full round of CRAFT (Ri) consists of the following five operations: MixColumn,

AddConstanti, AddTweakeyi PermuteNibbles and SubBox as described in Figure 3.2. The

last round (R′31) omits PermuteNibbles and SubBox operations from the full round. The

used five operations are defined as follows:

• MixColumn (MC): Each column of the internal state is multiplied by a binary matrix

M where

M =



1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1


This operation can be described using the XOR operation as follows. For each

column j (0 ≤ j ≤ 3), 

I0,j

I1,j

I2,j

I3,j


7→



I0,j ⊕ I2,j ⊕ I3,j

I1,j ⊕ I3,j

I2,j

I3,j


• AddConstantsi (ARCi): In the i-th round (0 ≤ i ≤ 31), the internal state nibbles

I4 and I5 are XOR-ed with the two nibbles (a and b), respectively, where a and

b represented the 2-nibble round constant RCi = (a, b). These round constants

are generated using 4-bit and 3-bit LFSRs. The details of generating the round

constants can be found in [7].
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Table 3.1: 4-bit S-box of CRAFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

• AddTweakeyi (ATKi): Each nibble of the internal state is XOR-ed with the corre-

sponding nibble of the tweakey TKi mod 4.

• PermuteNibbles (PN): An permutation P is applied on the nibble positions of the

internal state. In particular, for all 0 ≤ i ≤ 15, Ii is replaced by IP(i), where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0].

• SubBox (SB): A nonlinear bijective mapping applied on every nibble of the internal

state in parallel using the S-box given in Table 3.1.

3.3 Related-key Differential Characteristic of CRAFT

In this section, we describe our technique to build a repeatable 2-round related-key

characteristic with a high probability p. A repeatable characteristic is a characteristic

where the input difference is the same as the output difference. Hence, we can construct

a long characteristic by repeating the short one n times and the probability of the long

one will be pn.

Denote the state at the input and the output of round i of CRAFT by xi and xi+1,

respectively, and the state after MC, ARCi and ATKi operations by yi. Thus we have

yi = ATKi ◦ ARCi ◦ MC(xi)

xi+1 = SB ◦ PN(yi)

In the related-key with a single tweak setting, the tweak (T ) has zero difference and

the subkeys (K0, K1) have the nonzero differences ∆K0 and ∆K1, respectively. Thereby,
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the four tweaks have nonzero differences as follows:

∆TK0 = ∆TK2 = ∆K0, ∆TK1 = ∆TK3 = ∆K1

A 2-round Characteristic. Consider two consecutive rounds of CRAFT, i and i + 1,

where i is even. Thus ∆TKi mod 4 = ∆K0 and ∆TK(i+1) mod 4 = ∆K1. We start building

a repeatable 2-round characteristic by setting the input and the output differences (∆xi

and ∆xi+2) of the 2-round with arbitrary nonzero values such that ∆xi = ∆xi+2. Then,

we deterministically propagate the input difference ∆xi forward through the MC and ARCi

operations and choose ∆K0 such that ∆K0 = ARCi ◦ MC(∆xi). Thereby, we ensure that

∆yi = 0, ∆xi+1 = 0 and ∆yi+1 = ∆K1. From the other direction, we propagate the output

difference ∆xi+2 backward through SB and PN operations to obtain ∆yi+1 and select ∆K1

such that ∆K1 = ∆yi+1 = PN−1i ◦ SB−1(∆xi+2). It should be noted that the probability

of propagating ∆xi+2 backward to ∆K1 is the same as the probability of propagating

∆K1 forward to ∆xi+2 due to the properties of the S-box of CRAFT. Therefore, the overall

probability of this characteristic depends on the probability of propagating ∆xi+2 through

SB−1 operation. In order to maximize the overall probability, we have to minimize the

number of active nibbles in the input/output differences to only one active nibble with

a difference value (α). Therefore, ∆K1 also has a single active nibble with a difference

value (β) such that Pr[SB−1(α)→ β] = p. Finally, we select the value of the tuple (α, β)

so that p is equal to the maximum differential probability for an active S-box which is

2−2.

Figure 3.3 depicts an example of such characteristics in which we set the in-

put/output differences to zero except for the two nibbles ∆xi12 and ∆xi+2
12 , which we

set to α. Therefore, we select the difference of the subkey K0 such that it has zero dif-

ference except the nibbles ∆K0
0 , ∆K0

4 and ∆K0
12 have a nonzero difference (α). For the

subkey K1, it will have zero difference in 15 nibbles and nonzero difference β in the nibble
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Figure 3.3: A repeatable 2-round related-key characteristic of CRAFT with probability 2−2.

∆K1
1 such that Pr[SB−1(α)→ β] = 2−2.

Based on the differential distribution table (DDT) of the CRAFT’s S-box, the un-

ordered tuples (α, β) can take one of the values from the following set:

(α, β) or (β, α) ∈ {(1, 2), (2, 4), (2, 9), (2, c), (3, 6), (5, 7), (5, a),

(7, d), (a, a), (a, d), (a, f), (b, b), (e, e), (f, f)}.
(3.1)

We can also build a repeatable 2-round characteristic by setting the input and the

output differences to zero differences (∆xi = ∆xi+2 = 0), then selecting ∆K0 such that

it has only one active nibble with nonzero difference (α). After that, we obtain the value

of the difference ∆K1 which has only one active nibble with nonzero difference (β) such

that ∆K1 = ARCi+1 ◦ MC ◦ SB ◦ PN(∆K0). Finally, we select the value of the tuple (α, β)

from the previously mentioned set. Table 3.2 summarizes some examples for the obtained

2-round related-key differential characteristics.

In the following sections, we utilize the repeatable 2-round related-key differential

characteristics derived here to mount two key recovery attacks against the full round of

CRAFT.
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Table 3.2: Examples of repeatable 2-round related-key differential characteristics of CRAFT,
all of them hold with probability 2−2 starting from an even round i. and (α, β) can take
one of the values given by equation (3.1).

∆K0 = ∆TK0 = ∆TK2 ∆K1 = ∆TK1 = ∆TK3 ∆xi = ∆xi+2

RK0 (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, β, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, β, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK1 (α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0) (0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0)

RK2 (0, α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0) (0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0)

RK3 (0, 0, α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0) (0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0)

RK4 (0, 0, 0, α, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α) (β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α)

RK5 (α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0)

RK6 (0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0)

RK7 (0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0) (0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0)

RK8 (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0)

RK9 (0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0) (0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK10 (0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK11 (0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK12 (0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0)

RK13 (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β) (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK14 (0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0, 0) (0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK15 (0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0, 0) (0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

RK16 (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, β, 0) (0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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3.4 Related-key Differential Attack Using Single Dif-

ference

In this section, we employ the repeatable 2-round characteristic (RK0) with the

tuple (α, β) = (4, 2) to present a related-key differential attack against the full round of

CRAFT. By repeating RK0 (14) times as depicted in Figure 3.4, we are able to construct

a 28-round related-key differential characteristic (covered from round 0 to round 27) with

probability (2−2)14 = 2−28. We have verified this characteristic experimentally.

Since the characteristic ends at x28 where all nibbles have zero differences, we prop-

agate this difference through the last 4 rounds and obtain the difference at the ciphertext

(∆C) in the form of

(δ4, δ3, δ9, δ6, δ4, 0, δ8, δ6, 0, δ3, 0, 0, δ4, 0, δ7, δ6).

Thus, we can derive the following conditions on the ciphertext (∆C):

∆C5 = ∆C8 = ∆C10 = ∆C11 = ∆C13 = 0,

∆C1 = ∆C9,

∆C0 = ∆C4 = ∆C12,

∆C3 = ∆C7 = ∆C15.

Our attack has two phases: Data Collection phase and Key Recovery phase.

3.4.1 Data Collection

We select a set of 2m 64-bit plaintexts associated with a 64-bit tweak in which

the plaintexts and the tweak can take any arbitrary values. Each plaintext is encrypted

twice, using the secret master key (K0||K1) and using the secret master key XORed with

the key differences ((K0 ⊕ ∆K0)||(K1 ⊕ ∆K1)). Then, we compute the difference at
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Figure 3.4: The related-key differential attack against Full CRAFT using the repeatable
2-round related-key differential characteristic (RK0) where the colored cells are known
values and differences.

the ciphertext (∆C) and filter out the plaintext/ciphertext pairs that do not satisfy the

conditions, obtained above, on ∆C. This step provides a 5× 4 + 4 + 2× 4 + 2× 4 = 40

bits filtration. Suppose the number of the remaining plaintext/ciphertext pairs after this

filtration is 2m
′
, then on average, 2m

′
= 2m × 2−40 = 2m−40.
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3.4.2 Key Recovery

We first prepare 211×4 = 244 counters corresponding to the 44 bits of the key

involved in the analysis. After that, for each ciphertext pair in the filtered 2m
′

pairs

obtained in the data collection phase, we apply the following procedure:

1. Guess the key nibbles (K1
9 , K

1
12) and partially decrypt the ciphertext to obtain the

differences (∆y301 ,∆y
30
5 ). The average number of the guessed keys that satisfy the

condition (∆y301 = ∆y305 ) is 22×4 × 2−4 = 24.

2. Guess the key nibbles (K1
6 , K

1
14, K

1
15) and partially decrypt the ciphertext to obtain

the values and differences at the nibbles (y300 , y
30
3 , y

30
8 ) and discard any key that does

not lead to satisfy the condition of (∆y300 = ∆y308 ). The average number of the keys

passing this filtration is 24 × 23×4 × 2−4 = 212.

3. Guess the value of (K1
2⊕K1

10) with associated value ofK1
14 passed the filtration on the

previous step (step 2) and partially decrypt the ciphertext to obtain the value and

the difference at the nibble (y3013). Then filter out the keys if the difference(∆y3013) is

not the same as the differences (∆y301 ,∆y
30
5 ) that are obtained in the step (1). Thus,

the average number of keys suggested by a pair after this step is 212×24×2−4 = 212.

4. Guess the key nibbles (K0
8 , K

0
13) and partially decrypt the nibbles (y308 , y

30
13) ob-

tained on steps (2,3), respectively, and get the differences (∆y292 ,∆y
29
6 ). The av-

erage number of the guessed keys that satisfy the condition of (∆y292 = ∆y296 ) is

212 × 22×4 × 2−4 = 216.

5. Guess the key nibble (K1
7) and use the previous guessed value of K1

15 to partially

decrypt the ciphertext in order to obtain the value of y3011. Also, guess the value of

(K1
0 ⊕K1

8) and use the previous guess of K1
12 to obtain the value of y3015. The average

number of keys suggested by a pair after this step is 216 × 22×4 = 224.
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6. Use the value and the difference at (y303 ) from step (2) with the values (y3011, y
30
15) ob-

tained from the previous step to get the value and the difference at (y2914) by guessing

the value of (K0
3 ⊕K0

11⊕K0
15). We then filter out the keys if the difference(∆y2914) is

not the same as the differences (∆y292 ,∆y
29
6 ) that are obtained in the step (4). Thus,

the average number of keys suggested by a pair after this step is 224×24×2−4 = 224.

7. Use the previously guessed value of the key nibble (K1
14) to partially decrypt the

nibble y2914 to obtain the difference ∆y283 and discard the keys if the condition of

(∆y283 = 4) is not satisfied. Consequently, the average number of keys suggested by

a pair after this procedure will be decreased to 224× 2−4 = 220. Thus, we increment

the corresponding 220 counters.

After repeating the above procedure for 2m
′

pairs, we select the key corresponding

to the highest counter as a 44-bit right key. Then, we recover the 128-bit master key by

testing the 44-bit right key along with the remaining 84 bits of the master key that are

not involved in the analysis using 2 plaintext/ciphertext pairs.

3.4.3 Attack Complexity and Success Probability

In what follows, we present the complexity analysis of the attack in order to deter-

mine the required number of chosen plaintexts and the memory required to launch this

attack.

Data Complexity. We utilize the concept of signal-to-noise ratio (S/N) [13] in order

to determine the required number of chosen plaintext/ciphertext pairs (2m). S/N = 2k×p
ω×φ ,

where k is the number of key bits involved in the analysis, p is the probability of the

differential characteristic, ω is the number of guessed keys by a pair, and φ is the ratio

of the pairs that are not discarded. In our analysis, k = 44, p = 2−28, ω = 220 , and

φ = 2−40. Therefore, we have S/N = 244×2−28

220×2−40 = 236. Due to this high S/N , we can

use the recommendation of Biham and Shamir [13] that 3 ∼ 4 right pairs are sufficient
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enough to mount a successful differential attack. Therefore, we select the number of

plaintext/ciphertext pairs (2m) equal to 4×p−1 = 230. Consequently, the data complexity

will be 231 chosen plaintexts.

During the data collection phase, we discard the pairs that do not satisfy the con-

ditions on the differences of the ciphertext. The probability of satisfying these conditions

is 2−40, i.e., there are, on average, 2m−40 = 230−40 = 2−10 remaining pairs. This means

that the right pairs only pass this filtration and 2m
′
= 4.

According to [84] and due to the high S/N , the success probability of the attack (Ps)

can be calculated as Ps ≈ Φ(
√
p× 2m) where Φ is the cumulative distribution function

of the standard normal distribution. Therefore, our differential attack will succeed with

probability Ps ≈ 0.9772.

Time Complexity. During the key recovery phase, we perform several partial decryp-

tion of some nibbles in which we can consider each nibble decryption as 1
16

of 1-round

decryption. The dominant time complexity of the key recovery procedure comes from

step 6 in which we perform 2m
′ × 24 × 224 × 2 = 231 partial decryption of one nibble.

This time equals to 1
16
× 1

32
× 231 = 222 32-round encryptions. Then, we perform the

exhaustive search over the remaining 284 keys using 2 plaintext/ciphertext pairs. The

time complexity of this step is 2 × 284 = 285 32-round encryptions. Therefore, the total

time complexity of the attack is 222 + 285 ≈ 285 encryptions.

Memory Complexity. The dominant part of the memory complexity comes from stor-

ing 244 counters. Since the upper limit of each counter is 2m
′
= 4, we can store each counter

in one byte. Therefore, we need 244 × 8
64

= 241 64-bit blocks of memory.
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3.5 Related-key Differential Attack Using Multiple

Differences

In this section, we present a key recovery attack in the related-key model against the

full-round CRAFT with 235.17 queries to the encryption oracle and 232 full-round encryptions.

To this end, we manage to use 8 different related-key differential characteristics in order

to recover 96 bits (represented in 24 nibbles) from the secret master key and then we get

the full master key by testing the right 96-bit key along with the remaining 32 bits of the

key using 2 plaintext/ciphertext pairs. Moreover, we can omit the exhaustive search step

and recover the whole master key with 236.09 queries to the encryption oracle and only 11

full-round encryptions.

30-round Related-key Differential Characteristics. We employ the repeatable 2-

round characteristics (RK1 – RK8) (see Table 3.2) with the tuple (α, β) = (4, 2) in order

to build eight 30-round characteristics as follows. First, we repeat each RKi (1 ≤ i ≤ 8)

14 times to build a 28-round characteristic with probability (2−2)14 = 2−28. Then, we

append another 2 rounds with probability of (2−2). Thus, we are able to construct a

30-round characteristic with total probability (p) of 2−30. Figure 3.5 depicts the 30-round

characteristic that is built using RK1.

Consequently, we use these characteristics one by one to collect 8 datasets (Di, 1 ≤

i ≤ 8) (Data Collection phase) and then apply a partial-key recovery process to determine

a part of the master secret key (Key Recovery phase).

3.5.1 Data Collection

We use the 30-round characteristic based on the repeatable 2-round characteristic,

e.g., RK1 to build the dataset D1 as follows. This characteristic ends at x30 with zero

differences in all nibbles except ∆x3012 = 1 as depicted in Figure 3.5. After that, by
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propagating this difference through the last two rounds, we are able to obtain the difference

at the ciphertext (∆C) in the form

(0, δ0, β0, γ0, 0, 0, 0, γ0, 0, 0, β0, 0, 0, 0, 0, γ0)

where δ0 = α0⊕2 and based on the DDT of CRAFT’s S-box, α0, β0, γ0 ∈ {0, 4, 7, 9, a, c}.

Thus, we can derive the following conditions on the difference of the ciphertext:

∆Ci = 0, i ∈ {0, 4, 5, 6, 8, 9, 11, 12, 13, 14}, ∆C1 = δ0,

∆C2 = ∆C10 = β0, ∆C3 = ∆C7 = ∆C15 = γ0.

Consequently, we first select a set of 4 × p−1 = 4 × 230 = 232 arbitrary plaintexts

(L0) and then we create another set of 232 plaintexts (L1) by XORing each plaintext in

the first set L0 with the input difference. After encrypting the two sets (L0,L1) using

(K0||K1) and ((K0 ⊕ ∆K0)||(K1 ⊕ ∆K1)), respectively, we discard the pairs when the

output difference does not match the required output difference (∆C). The probability of

getting (∆C) is 2−(10×4+4+2×4) × ( 6
16

)3 ≈ 2−56.25. In other words, only the right pairs can

pass this filtration. Thus, we collect, on average, 4 right pairs that follow the characteristic.

We repeat the same approach using the same set of plaintexts (L0) with other

sets of plaintexts Li, (2 ≤ i ≤ 8), selected like L1, in order to construct the datasets Di,

(1 ≤ i ≤ 8) using the 30-round characteristic that has been built using RKi, (1 ≤ i ≤ 8)

in order to get 4 right pairs per each dataset.

3.5.2 Key Recovery

We first prepare 24 groups of counters in which each group consists of 16 counters.

Each group corresponds to a nibble of the key involved in the analysis. After that, we

perform the attack in three sequential stages as follows.
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Figure 3.5: Related-key differential attack against Full CRAFT using the dataset (D1) to
recover K1

1 , K
1
10, K

1
15, and K0

12.

First Stage. In this stage, we manage to determine the nibbles K1
i , (8 ≤ i ≤ 15). For

example, we determine the right value of K1
15 as follows. We consider the group of coun-

ters corresponding to K1
15, then for each right pair in the datasets D1 and D5, we guess

K1
15 and decrypt the ciphertext nibble (C15) (see Figures 3.5 and 3.6), then increment the

counter corresponding to the guessed value if the difference ∆y300 = 5. After repeating
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Table 3.3: Key recovery

Key Nibble Dataset Used Key Nibble Dataset Used

K0
0 D13 K1

0 D4

K0
1 D14 K1

1 D1

K0
2 D15 K1

2 D2

K0
3 D16 K1

3 D3

K0
4 D9 K1

4 D7

K0
5 D10 K1

5 D6

K0
6 D11 K1

6 D5

K0
7 D12 K1

7 D8

K0
8 D5 K1

8 D3

K0
9 D6 K1

9 D2

K0
10 D7 K1

10 D1

K0
11 D8 K1

11 D4

K0
12 D1 K1

12 D2, D6

K0
13 D2 K1

13 D3, D7

K0
14 D3 K1

14 D4, D8

K0
15 D4 K1

15 D1, D5

these steps for all the pairs, we select the value corresponding to the highest counters as

the right value for K1
15.

By repeating these steps, we are able to obtain the right values of the nibbles

K1
i , (8 ≤ i ≤ 15). Table 3.3 summarizes which datasets are used to recover these nibbles.

Second Stage. After finishing the first stage, we have the right value of the key nibbles

K1
8 , K

1
9 , K

1
10, K

1
11, K

1
12, K

1
13, K

1
14, K

1
15. During this stage, we obtain the right value of an-

other 8 nibbles K1
0 , K

1
1 , K

1
2 , K

1
3 , K

0
12, K

0
13, K

0
14, K

0
15. To this end, we consider, for example,

the groups of counters corresponding to the key nibbles K1
1 and K0

12, respectively. After

that, we reuse the dataset D1 (see Figure 3.5) in order to carry out the following steps:
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1. Use the key nibbles K1
9 and K1

13 determined in the first stage to partially decrypt

the ciphertext nibbles (C9, C13) and obtain the values of the nibbles x319 and x3113,

respectively.

2. Guess K1
1 and partially decrypt the ciphertext nibble C1 to get the value and the

difference at y3012, after that, increment the counter corresponding to the value of K1
1

in case of ∆y3012 = 5.

3. Determine the right value of the key nibble K1
1 by observing the highest counter.

4. Guess K0
12 and decrypt y3012 to get the difference ∆y291 , then increment the counter

corresponding to the value of K0
12 if ∆y291 = 2.

5. Determine the right value of the key nibble K0
12 by observing the highest counter.

In the same manner, we reuse the datasets D2,D3 and D4 to determine the right

values of the key nibbles (K1
2 , K

0
13), (K1

3 , K
0
14), (K1

0 , K
0
15), respectively.

Third Stage. Similar to the second stage, we reuse the datasets D5,D6, D7 and D8 to

recover the key nibbles K1
i , (4 ≤ i ≤ 7) and K0

j , (8 ≤ j ≤ 11) as follows. To recover the

nibbles K1
6 and K0

8 , we consider the groups of counters corresponding them, and we reuse

the dataset D5 (see Figure 3.6) in order to carry out the following steps:

1. Use the key nibble K1
14 determined in the first stage to partially decrypt the cipher-

text nibbles (C14) to obtain the value of the nibble x3114.

2. Guess K1
6 and get the value and the difference at y308 , then increment the counter

corresponding to the value of K1
6 in case of ∆y308 = 5.

3. Determine the right value of the key nibble K1
6 by observing the highest counter.

4. Guess K0
8 and decrypt y308 to get the difference ∆y296 , then increment the counter

corresponding to the value of K0
8 if ∆y296 = 2.
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Figure 3.6: Related-key differential attack against Full CRAFT using the dataset (D5) to
recover K1

6 , K
1
15, and K0

8 .

5. Determine the right value of the key nibble K0
6 by observing the highest counter.

Using the same approach, we are able to determine the right values of the key

nibbles (K1
5 , K

0
9), (K1

4 , K
0
10) and (K1

7 , K
0
11) using the datasets D6,D7 and D8, respectively.
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3.5.3 Attack Complexity

Each set of plaintexts L0, . . . ,L8 contains 232 plaintexts. Thus, we need 9× 232 ≈

235.17 queries to the encryption oracle.

During the first stage of the key recovery phase, we determine 4 nibbles using 32

right pairs and another 4 nibbles using 16 right pairs, therefore, we execute 2×(32+16)×

24 = 210.58 single nibble encryptions. For the second stage, we recover another 8 nibbles

using 4 right pairs per each nibble. This process needs 2× 4× 4× (2 + 24 + 24) = 210.08

single nibble encryptions. The third stage needs 2× 4× 4× (1 + 24 + 24) = 210.04 single

nibble encryptions. Therefore, these three stages need 212.32 single nibble encryptions

which is equivelant to 211.83 × 1
16
× 1

32
≈ 8 full-round encryptions. After these stages, we

run exhaustive search over the remaining 232 keys using one plaintext/ciphertext pair and

this step needs 232 full-round encryptions.

The dominant part of the memory complexity of these stages is for storing 4×8 = 32

right pairs in addition to the 128-bit right key. Therefore, the memory complexity is

2× 32 + 2 = 66 64-bit blocks.

3.5.4 Omitting the Exhaustive Search Step

In this section, we describe how we can omit the exhaustive search over 232 keys. To

this end, we utilize the repeatable 2-round characteristics RK9 – RK16 to build another 8

30-round characteristics. Then, we employ these characteristics to construct the datasets

D9 – D16 to get, on average, 4 right pairs per each dataset as we do before.

To determine the right value of the key nibbles K0
i , (0 ≤ i ≤ 7), we first prepare

16 counters per each nibble. Then, we partially decrypt some nibbles of the ciphertexts.

After that, we guess the key nibble and increment the counters if a specific nibble at the

state y29 has a difference equal to 2, as we do in the second and the third stages before.

In this case, we need 17× 232 ≈ 236.09 queries to the encryption oracle. In addition
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to the 8 full-round encryptions required during the previous three stages, we need 2 ×

4 × 4 × (6 + 24) = 29.46 single nibble encryptions to recover the nibbles K0
0 – K0

3 and

2 × 4 × 4 × (4 + 24) = 29.32 single nibble encryptions to recover the nibbles K0
4 – K0

7 .

Thus, we need 8 + ((29.46 + 29.32) × 1
16
× 1

32
) ≈ 11 full-round encryptions. Also, we need

more 2 × 4 × 8 = 64 block of memory to store the right pairs. Thus, the total memory

complexity will be 66 + 64 = 130 blocks of memory.

3.6 Summary

In this chapter, we studied the security of the lightweight tweakable block cipher

CRAFT against the related-key differential cryptanalysis. More precisely, we described a

systematic method to build a repeatable 2-round related-key differential characteristic

that holds with the probability of 2−2. We utilized this method to build several 30-round

related-key differential characteristics with probability 2−30. Then, we employed these

characteristics to mount a key recovery attack against the full round of CRAFT in practical

time. Moreover, we have verified this attack experimentally.
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Chapter 4

Impossible Differential Attack on

Reduced-Round SPARX-128/256

SPARX-128/256 is a member of the SPARX-128 block cipher family [28]. It has

128-bit block size and 256-bit key size. SPARX has been developed using ARX-based

S-boxes with the aim of achieving provable security against single-trail differential and

linear cryptanalysis. In this chapter, we propose two 20-round impossible differential

distinguishers for SPARX-128. Then, we utilize these distinguishers to attack 24 rounds

(out of 40 rounds) of SPARX-128/256. Our attack has time complexity of 2232 memory

accesses, memory complexity of 2160.81 128-bit blocks, and data complexity of 2104 chosen

plaintexts.

4.1 Introduction

SPARX is a new family of ARX-based block ciphers proposed by Dinu et al. [28] at

Asiacrypt 2016. To guarantee provable security against single-characteristic differential

and linear cryptanalysis, the authors utilized a new design strategy, called the long trail

design strategy. SPARX-128/256 has been analyzed using integral and multidimensional

zero-correlation attacks [28, 99]. The designers reported that the best attack against
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SPARX-128/256 is an integral attack based on the division property [95]. The attack

covers 24 rounds with time, memory, and data complexities of 2233, 2202, 2104, respectively.

In this chapter, we present an impossible differential attack, which also covers 24 rounds,

but has better time and memory complexities compared to the reported integral attack.

Applying the following techniques allowed us to improve the attack complexity:

1. Instead of guessing the round keys, we utilize pre-computation tables in order to filter

the round keys lead to the impossible differential distinguisher. A straightforward

construction of the pre-computation tables at the S-box level would also render

the time complexity of the attack to exceed the exhaustive search complexity. To

overcome this problem, we consider the cascaded S-boxes in the same branch as

a one large S-box and construct 3 look-up tables corresponding to the 3 branches

involved in the analysis phase.

2. To overcome the problem of requiring to guess the whole master key in order to

evaluate the 4 analysis rounds, we utilized a specific difference at the beginning of

our distinguishers, which enables us to bypass the last S-box of branch 2, in the top

4 analysis rounds, with probability 1. Consequently, we need to guess only seven

32-bit words of the master key to test our distinguishers.

3. We utilize two distinguishers concurrently, which allows us to reduce the data com-

plexity by a factor of two and also enhance the time complexity of the attack.

The remaining of this chapter is organized as follows. In Section 4.2, we provide

a brief description of SPARX-128. Then, the details of the two impossible differential

distinguishers are presented in Section 4.3. Afterwards, we present our key recovery

attack in Section 4.4. Finally, the chapter is summarized in Section 4.5.
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Figure 4.1: SPARX-128 step structure where RK(a,i) is the round key used at round i of
branch a.

4.2 Description of SPARX-128

Let Ki denote the ith 32-bit of the key state, 0 ≤ i ≤ 7. Also, let X(a,i) denote

the 32-bit input at branch a of round i, and 0 ≤ a ≤ 3, where a = 0 corresponding to

the left branch. The iteration of 4 rounds of SPECKEY [5] with their corresponding key

additions is denoted by R4. SPARX-128 is designed with the concept of iterating a big

block called step. As depicted in Figure 4.1, each step has four parallel branches followed

by a linear mixing layer (L4) which is applied to ensure diffusion between the branches.

The branch structure is made of four cascaded ARX-based S-boxes that interleave with

key addition (R4). The structure made of a key addition followed by an S-box in the four

parallel branches is called a round. For further details, the reader is referred to [28].
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4.3 Impossible Differential Distinguishers of SPARX

In this section, we present two 20-round impossible differential distinguishers for

SPARX-128. As shown in Figure 4.2, the first distinguisher starts at round i with only

branch 3 (X(3,i)) having a nonzero difference ∆0. By propagating this difference one step

forward and by utilizing the property of the linear mixing layer (L4(0, 0) = (0, 0)), only

branch 1 (X(1,i+4)) has a nonzero difference ∆1. After propagating this difference one more

step through R4 and L4, the values of X(0,i+8), X(1,i+8), and X(2,i+8) will be ∆3, ∆4, and 0,

respectively. From the other direction (at round i+20), we choose branches 0, 1, 3 to have

the nonzero differences α2, α1, and α0, respectively, such that L4(0, α0) = (α2, α1). These

chosen differences allow us to pass two steps (8 rounds) backward with only branch 3

(X(3,i+12)) having a nonzero difference α4. Thus, branch 2 (X(2,i+8)) has zero difference in

the forward direction which contradicts with the backward direction where it has a nonzero

difference α5 after applying the linear layer L4(0, α4) = (α5, α6) and before applying

the inverse of R4. Moreover, there is another contradiction at branch 0. The second

distinguisher can be constructed by utilizing the forward path of the first distinguisher,

and in the backward path by choosing branches 0, 1, 2 to have nonzero differences β2, β1,

and β0, respectively, such that L4(β0, 0) = (β2, β1).

4.4 Impossible Differential of SPARX-128/256

The attack is constructed by appending one step (4 rounds) on the top of the two

20-round distinguishers as depicted in Figure 4.3. Based on the key schedule of SPARX-

128/256, the 256-bit master key is divided into 8 32-bit keys denoted by Ki, 0 ≤ i ≤ 7.

Then, the round keys of the first step are extracted as stated in Figure 4.3 where R(Ki)

denotes the output of applying the round operation (S-box only) to Ki. In our attack, we

use a specific difference at the beginning of our distinguishers, which enables us to bypass
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Figure 4.3: A 24-round impossible differential cryptanalysis of SPARX-128/256, where
X ′(a,i) = S(X(a,i) ⊕RK(a,i)) and RK(a,i) is the round key used at round i of branch a.

the last S-box of branch 2, in the top 4 analysis rounds, with probability 1, see Figure

4.3. The values of (∆X ′(1,3) , ∆X(2,3), ∆X ′(3,3)) can be chosen from the following set:

{(0x00000080, 0x00400000, 0x80008080),

(0x00020202, 0x00408000, 0x00020200),

(0x00020282, 0x00008000, 0x80028280)}.

(4.1)

These values are calculated using the following procedure. Firstly, the value of ∆X(2,3) is

chosen to exploit the fact that there exist differentials with probability 1 for one SPECKEY

round (Prob.[∆X(2,3) → ∆X ′(2,3)] = 1). After that, the value of ∆X ′(2,3) is used as a

fixed point for L4 to obtain the values of ∆X ′(1,3) and ∆X ′(3,3) such that L4(0,∆X
′
(1,3)) =
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(∆X ′(2,3),∆X
′
(3,3)). The attack has two phases; the pre-computation and the online phases.

4.4.1 Pre-computation Phase

In this phase, we create 3 hash tables (H1, H2, H3) corresponding to branches 1, 2,

and 3 that are involved in the analysis rounds as shown in Figure 4.3. These tables will

be used to extract/filter the wrong keys during the key recovery step of the online phase.

These pre-computation tables are created, by assigning (∆X ′(1,3), ∆X(2,3), ∆X ′(3,3)) one of

the three tuples given in Equation (4.1), and then proceeding as follows:

• H1: For the chosen ∆X ′(1,3) and for all 232×5=160 possible values of X ′(1,3), K4, K5,

K6, and K7, we obtain the corresponding values of X(1,0) and ∆X(1,0). Then, we

store the values of K4||K5||K6||K7 in the table indexed by the values of X(1,0) and

∆X(1,0). As a result, we have 2160/264 = 296 values for K4||K5||K6||K7 per row.

• H2: We initialize H2 with the binary value 0. Then, for the chosen ∆X(2,3) and for

all 232×4=2128 possible values of X(2,3), R(K4) + K5, K6, and K7, we obtain X(2,0)

and ∆X(2,0). Then, for each computed value, we store the binary value 1 in the

table indexed by the values of X(2,0), ∆X(2,0), R(K4) + K5, K6, and K7. Here, the

binary values 0 and 1 denote invalid and valid entries, respectively. Consequently,

we have one valid entry every 232 entries.

• H3: For the chosen ∆X ′(3,3) and for all 232×5=160 possible values of X ′(3,3), R(K0)+K1,

K2, K3, and R(K4), we obtain X(3,0) and ∆X(3,0). Then, we store the values of

R(K0)+K1||K2||K3 in the table indexed by the values of X(3,0), ∆X(3,0), and R(K4).

Thus we have 2160/296 = 264 values of keys R(K0) +K1||K2||K3 per row.

4.4.2 Online Phase

In this phase, we collect a set of plaintext/ciphertext pairs. Then, we utilize the

pre-computation tables to discard wrong keys, and then recover the correct master key.
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Data Collection. We choose 2n structure of plaintexts at round 0 such that branch 0

has a fixed value and the other three branches vary over all the possible values. Hence,

each structure includes about 232×3=96 plaintexts and can generate 296× (296−1)/2 ≈ 2191

plaintext pairs. Therefore, we have 2n × 2191 = 2n+191 pairs of plaintexts in total. After

that, we query the encryption oracle and keep only the plaintext pairs whose ciphertext

differences match the pattern α2, α1, 0, α0 such that L4(0, α0) = (α2, α1) or the pattern

β2, β1, β0, 0 such that L4(β0, 0) = (β2, β1). The probability that one of these patterns

occurs is about 2−3×32 + 2−3×32 = 2−95. The expected number of remaining pairs after

this filtration is about 2n+191−95 = 2n+96.

Key Recovery. For each plaintext pair obtained in the data collection, we apply the

following procedure:

1. Determine all possible values of keys K4||K5||K6||K7 that satisfy the value of ∆X ′(1,3)

by accessing the table H1 with the value of the plaintext pairs. The expected number

of returned 128-bit keys is 296.

2. Deduce the value of R(K4)+K5, then access the table H2 with value of the plaintext

pairs. The expected number of the remaining 128-bit keys after this filtration is

296−32 = 264.

3. For each 128-bit key remaining from the above step, deduce the value of R(K4),

then access table H3 to obtain R(K0)+K1||K2||K3 that satisfy the value of ∆X ′(3,3).

Thus, the expected number of these keys is 264. As a result, and after analyzing one

plaintext pair, the number of 224-bit keys which lead to the impossible differentials

(wrong keys) is 264+64 = 2128.

4. After analyzing all the pairs and discarding all 224-bit wrong keys (only one cor-

rect candidate remains), we exhaustively search for the 32-bit K0 and deduce the
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value of K1 from the value of R(K0) + K1. Then, we test these values using 2

plaintext/ciphertext pairs to obtain the correct master key.

Attack Complexity. For each one of the 2n+96 plaintext pairs remaining after the ci-

phertext filtration, we discard, on average, 2128 out of 2224 possible values of the keys.

Therefore, the probability that a wrong key is not discarded after analyzing one pair is

1− 2128−244 = 1− 2−96. Thus, after analyzing all pairs, there are 2224 × (1− 2−96)2
n+96 ≈

2224 × (e−1)2
n+96−96 ≈ 2224 × 2−1.4×2

n
remaining candidates of 224-bit keys. To have only

the correct 224-bit key, we choose n = 8 to satisfy 2224 × 2−1.4×2
n ≤ 1. Therefore, the

data complexity is 2n+96 = 2104 chosen plaintext. The memory complexity is dominated

by the pre-computation phase. Table H1 has 2160 entries ×(4× 32) bits per entry = 2167

bits = 2160 128-bit blocks. Table H2 has 2160 entries ×1 bit per entry = 2160 bits = 2153

128-bit blocks. Table H3 has 2160 entries ×(3× 32) bits per entry ≈ 2166.58 bits = 2159.58

128-bit blocks. Thus, the memory complexity is 2160 + 2153 + 2159.58 ≈ 2160.81 128-bit

blocks. The time complexity of the offline phase , which is the time required to build the

pre-computation tables, is 2 × (2160 × 4 + 2128 × 3 + 2160 × 4) × 1
24×4 ≈ 2157.42 24-round

encryption. The time complexity of the online phase is dominated by the memory ac-

cesses during the key recovery which is 2104+96+2104+96+2104+64+64 ≈ 2232 memory access.

In addition, there is the time of the exhaustive search of the correct key which requires

2× 232 = 233 24-round encryption.

4.5 Summary

In this chapter, we investigated the security of SPARX-128/256 against the impas-

sible differential cryptanalysis. Precisely, We presented two 20-round impossible differen-

tial distinguishers for SPARX-128. Accordingly, we utilized them to attack 24 rounds of

SPARX-128/256. The data, memory access time, and memory complexities of the attack

are 2104, 2232, and 2160.81, respectively.
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Chapter 5

On MILP-Based Automatic Search

for Differential Trails Through

Modular Additions with Application

to Bel-T

Using modular addition as a source of nonlinearity is frequently used in many

symmetric-key structures such as ARX and Lai–Massey schemes [62]. At FSE’16, Fu et

al. [41] proposed a Mixed Integer Linear Programming (MILP)-based method to handle

the propagation of differential trails through modular additions assuming that the two

inputs to the modular addition and the consecutive rounds are independent. However,

this assumption does not necessarily hold. In this chapter, we study the propagation of

the XOR difference through the modular addition at the bit level and show the effect of

the carry bit. Then, we propose a more accurate MILP model to describe the differential

propagation through the modular addition taking into account the dependency between

the consecutive modular additions. The proposed MILP model is utilized to launch a

differential attack against Bel-T-256, which is a member of the Bel-T block cipher family
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[10] that has been adopted recently as a national standard of the Republic of Belarus.

5.1 Introduction

As we mentioned in Chapter 2, different optimization techniques such as Mixed

Integer Linear Programming (MILP) attracted the attention of many cryptanalysis re-

searchers. For differential cryptanalysis, Sun et al. [91] proposed MILP models that rep-

resent exactly the propagation of the differential through SPN block ciphers in order to

automate the search for high probability (related-key) differential or linear characteris-

tics. One of the downsides of these MILP models was the inability to efficiently describe

the Difference Distribution Table (DDT) of large (8-bit) S-boxes which was tackled by

Abdelkhalek et al. [1].

Regarding ARX-based block ciphers, Fu et al. [41] represented the conditions de-

veloped by Lipmaa and Moriai [65] (hereafter referred to as Lipmaa’s conditions) by a set

of MILP constraints in order to automate the search for the best differential trail through

the modular addition. In this representation, the authors assume that the two inputs

to modular addition and the consecutive component of the cipher’s round function are

independent. However, this assumption is very often not satisfied, especially with round

functions that have two or more consecutive modular operations [103]. In the same con-

text, Leurent [64] provides a tool based on finite state machines to automate the search for

differential characteristics through the modular addition considering the constraints due

to several consecutive bits of the modular addition inputs. However, the complexity of

this analysis is linear in the number of states, and the number of states can be exponential

in the size of the system, which according to the authors, makes this approach suitable

only to study systems with a limited number of states.

In this chapter, we revisit the conditions stated by Lipmaa and Moriai [65] to verify

the possibility of an XOR difference of two inputs of addition modulo 2n to produce a
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specific XOR difference at the output. In particular, we deduce the conditions on the bits

of the inputs and the output of addition modulo 2n that have to be satisfied in order to

propagate an XOR difference of the inputs to a particular XOR difference at the output.

Using these conditions, we describe some examples showing that using Lipmaa’s conditions

with the independence assumption between the consecutive components of a block cipher

is not enough to ensure the validity of the derived differential characteristic. To address

this problem, we propose a new MILP model considering the dependency between two or

more successive modular additions.

To illustrate the effectiveness of our approach, we apply our method to attack the

block cipher Bel-T, which is a family of block ciphers that has been approved as the

national standard of the Republic of Belarus [10], formerly known by its Russian name

Belorussia. The Bel-T family includes three block ciphers, denoted as Bel-T-k, all of them

have the same block size of 128 bits and a variable key length (k) of 128, 192 or 256 bits.

The designers of Bel-T combined a Lai-Massey scheme [62] with a Feistel network [39]

to build a complex round function with 7 S-box layers per round. The round function is

iterated 8 times to construct the whole cipher. Concretely, we employ our MILP approach

beside a Hamming weight-based partial DDT to search for a differential distinguisher for

Bel-T. Then, we mount a 41
7
-round differential attack on round-reduced Bel-T-256 which,

up to our knowledge, is the best published attack against this cipher in the single-key

setting. Moreover, we show that the Bel-T block cipher is not a Markov cipher [63],

i.e., the validity of the differential characteristic depends on the used secret key. In this

context, we also provide a systematic method to define the set of keys that can be attacked

using our differential characteristic.

Few cryptanalysis results on Bel-T block ciphers have been published including

fault-based attacks [53] and the related-key differential attack on round-reduced Bel-T-

256 [2]. It should be noted that in the related-key differential attack presented in [2],

the modular addition is modeled using the method proposed by Fu et al. [41] with the
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independency assumption. We verified the distingusiher presented in [2] and found it

to be invalid as it involves two modular additions that share the same input and have

conflicting condition. In addition, we will report in Chapter 6 our integral attacks on (32
7

and 36
7
)-round reduced Bel-T-256 in the single-key setting. These integral attacks was

published in [34]. Table 5.1 contrasts our attack with the integral attacks in [34].

The rest of this chapter is organized as follows. In Section 5.2, we briefly revisit the

XOR differential characteristic of modular addition. The developed MILP-based method,

which is used to search for the differential characteristic, is explained in Section 5.3.

In Section 5.4, we describe how we apply the new MILP model to find a differential

distinguisher for Bel-T. Then, the details of our attack are presented in Section 5.5.

Finally, the chapter is concluded in Section 5.6.

Table 5.1: Attack results on Bel-T-256

Model Attack #Rounds Data Time Memory Reference

Single Key
Integral

32
7

213 2199.33 - [34]

36
7

233 2254.61 - [34]

Differential 41
7

2114 2237.14 2224 Sec. 5.5

5.2 XOR-Differential Characteristics of Modular Ad-

dition

Definition 5.1 Let α, β and γ be fixed n-bit XOR differences. The XOR-differential

probability (DP) of addition modulo 2n (xdp+) is the probability with which α and β

propagate to γ through the modular addition operation, computed over all pairs of n-bit

inputs (x,y):

xdp+(α, β → γ) = 2−2n ×#{(x, y) : ((x⊕ α)� (y ⊕ β))⊕ (x� y) = γ}.
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Lipmaa and Moriai [65] stated the following two conditions that have to be satisfied in

order for the XOR input differences (α, β) to propagate to an output difference (γ) through

the addition modulo 2n:

1. The bit-wise XOR of the least significant bit of the inputs and output differences

must be 0, i.e., α0 ⊕ β0 ⊕ γ0 = 0 which is equivalent to γ0 = α0 ⊕ β0.

2. If the three bits αi, βi, and γi are equal, then the XOR of the subsequent bits

αi+1, βi+1, and γi+1 must equal these bits as well, i.e., αi+1 ⊕ βi+1 ⊕ γi+1 = αi =

βi = γi for 0 ≤ i ≤ n− 2.

If these two conditions above are satisfied, then the probability of the differential charac-

teristic (xdp+) can be calculated as:

xdp+(α, β → γ) = 2−
∑n−2

i=0 ¬eq(αi,βi,γi)

where ¬eq is 0 when (αi, βi, γi) are the same, and 1 otherwise. By using these conditions,

we can determine if a differential characteristic (α, β → γ) is a valid one or not. For

example, the characteristic (α, β → γ) = (0001, 0001 → 0001) is impossible because it

breaks the first condition.

In the remaining of this section, we show our interpretation of these two conditions

by deriving the relationship between the input and output differences at the bit level.

Let x = (xn−1, xn−2, . . . , x1, x0)
1, y = (yn−1, yn−2, . . . , y1, y0), and z = (zn−1, zn−2,

. . . , z1, z0) be n-bit vectors where z = x � y. Then, zi can be iteratively expressed as

follows:

z0 = x0 ⊕ y0 ⊕ c0, c0 = 0,

zi+1 = xi+1 ⊕ yi+1 ⊕ ci+1, ci+1 = xiyi ⊕ xici ⊕ yici ∀i = 0, 1, . . . , n− 2.

(5.1)

(5.2)

1We use little-endian representation where x0 is the least significant bit.
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It is obvious that the Lipmaa’s conditions are based on equations (5.1) and (5.2).

Consider that we have two pairs (x,x∗) and (y,y∗) such that ∆x = x ⊕ x∗, and ∆y =

y ⊕ y∗. The relation between the XOR input differences ∆x,∆y and the XOR output

difference ∆z = z ⊕ z∗ can be derived as follows: Let ∆x = (δxn−1, δxn−2, . . . , δx1, δx0),

∆y = (δyn−1, δyn−2, . . . , δy1, δy0), and ∆z = (δzn−1, δzn−2, . . . , δz1, δz0) be the XOR dif-

ference where δxi = xi ⊕ x∗i , δyi = yi ⊕ y∗i , and δzi = zi ⊕ z∗i , respectively. The Lipmaa’s

first condition comes from equation (5.1) in which δz0 = δx0 ⊕ δy0 ⊕ δc0, but δc0 = 0 as

c0 = c∗0 = 0. Therefore, for (∆x,∆y → ∆z) to be a possible differential characteristic,

the relation (δz0 = δx0 ⊕ δy0) must be satisfied.

For given input and output differences at two successive bits ((δxi, δyi, δzi) and

(δxi+1, δyi+1, δzi+1)), we can use equation (5.2) to calculate the XOR difference at the

carry bit δci+1 using the following two equations:

δci+1 = ci+1 ⊕ c∗i+1

= xiyi ⊕ xici ⊕ yici ⊕ x∗i y∗i ⊕ x∗i c∗i ⊕ y∗i c∗i ,

δci+1 = δzi+1 ⊕ δxi+1 ⊕ δyi+1

(5.3)

(5.4)

To have a valid differential characteristic, the value of δci+1 evaluated from these two

equations must be consistent. For example, if we have δxi = δyi = δzi = 0, this implies

that δci = 0, i.e., if x∗i = xi, y
∗
i = yi, z

∗
i = zi then c∗i = ci. Therefore, from equation (5.3),

δci+1 = 0. Consequently, δzi+1 ⊕ δxi+1 ⊕ δyi+1 = 0 must hold with probability 1.

As another example, let us consider the following XOR differences: δxi = δyi = 0,

and δzi = 1, this implies that δci = 1, i.e., if x∗i = xi, y
∗
i = yi and z∗i = z̄i then c∗i = c̄i

where z̄i, c̄i are the bit-wise NOT of zi, ci, respectively. As a result, the value of δci+1 from

equation (5.3) will depend on the relation between xi and yi as follows: δci+1 = xi⊕ yi. If

δci+1 is 0, then the condition xi = yi must be satisfied. In this case, from equation (5.2),

the output bit zi will equal to ci and the carry bit ci+1 will be equal to xi.
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By iterating over all possible values of δxi, δyi, δzi and δci+1, we can drive the

conditions on the bits xi, yi, zi, ci and ci+1 to have a valid differential characteristic. We

summarize these conditions in Table 5.2, in which the condition column is divided into

three sub-columns: the first one is the direct condition similar to the one we derived in

the previous examples. The second and third sub-columns are the values of zi and ci+1 in

case the direct condition, the first sub-column, is satisfied.

It should be noted that Lipmaa’s second condition is specified by the first two

rows and last two rows of Table 5.2, i.e., if δxi, δyi and δzi are equal, then δci+1 =

δzi+1 ⊕ δxi+1 ⊕ δyi+1 has to equal them.

Table 5.2: Relation between δxi, δyi, δzi and δci+1

δzi δyi δxi δci δci+1 Condition

0 0 0 0 0 No condition

0 0 0 0 1 Invalid

0 0 1 1 0 xi = c̄i zi = ȳi ci+1 = yi = z̄i

0 0 1 1 1 xi = ci zi = yi ci+1 = xi = ci

0 1 0 1 0 yi = c̄i zi = x̄i ci+1 = xi = z̄i

0 1 0 1 1 yi = ci zi = xi ci+1 = yi = ci

0 1 1 0 0 xi = ȳi zi = c̄i ci+1 = ci = z̄i

0 1 1 0 1 xi = yi zi = ci ci+1 = xi = yi

1 0 0 1 0 xi = yi zi = ci ci+1 = xi = yi

1 0 0 1 1 xi = ȳi zi = c̄i ci+1 = ci = z̄i

1 0 1 0 0 yi = ci zi = xi ci+1 = yi = ci

1 0 1 0 1 yi = c̄i zi = x̄i ci+1 = xi = z̄i

1 1 0 0 0 xi = ci zi = yi ci+1 = xi = ci

1 1 0 0 1 xi = c̄i zi = ȳi ci+1 = yi = z̄i

1 1 1 1 0 Invalid

1 1 1 1 1 No condition
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Figure 5.1: Examples of incompatible conditions

5.2.1 Examples of Incompatible Conditions

In this section, we show some examples in which using Lipmaa’s conditions with

the independency assumption between the consecutive components of the block cipher is

not enough to ensure the validity of the differential characteristic.

Example 1: Consider the two cascaded modular operations shown in Figure (5.1.I)

and the following XOR differences:

∆a = 00000001 g = a� b e = g � d

∆b = 00000000 ∆g = 00001111 ∆d = 00000000 ∆e = 00001101

When looking at each modular addition operation individually, each one satisfies

the Lipmaa’s conditions and holds with probability 2−4. Assuming independency, the

whole differential characteristic should hold with probability 2−8, however, it is actually

an impossible characteristic. To explain, using Table 5.2, we can show that if the char-

acteristic holds for the first operation, g = (gn−1, · · · , g1, g0) will have a specific pattern

(g1 = g0) due to the carry effect. On the other hand, the characteristic will hold for the

second modular addition if g has a specific pattern (g1 = ḡ0), also due to the carry effect.

To further explain this carry effect, consider for the first operation the differences of

the first three bits (δg0, δb0, δa0) = (1, 0, 1), (δg1, δb1, δa1) = (1, 0, 0) and (δg2, δb2, δa2) =

(1, 0, 0). We access Table 5.2 twice with (δzi, δyi, δxi, δci, δci+1) = (δg0, δb0, δa0, δc0, δc1)

= (1,0,1,0,1) where the carry δc0 = δg0 ⊕ δb0 ⊕ δa0 and the carry δc1 = δg1 ⊕ δb1 ⊕ δa1,
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and with (δzi, δyi, δxi, δci, δci+1) = (δg1, δb1, δa1, δc1, δc2) = (1,0,0,1,1) where the carry

δc2 = δg2 ⊕ δb2 ⊕ δa2. From the first access, we get the following condition:

b0 = c̄0 ⇒ g0 = ā0 and c1 = a0 = ḡ0 (5.5)

And from the second access, we get the condition:

a1 = b̄1 ⇒ g1 = c̄1 and c2 = c1 = ḡ1 (5.6)

From equation (5.5), if the characteristic is valid for the first bit, the carry bit c1

will equal to ḡ0. Also, if the characteristic is valid for the second bit, the same carry bit

c1 will have a relation with g1 as determined by equation (5.6). By combining these two

relations, we prove that the output g has the pattern (g1 = g0).

Using the same methodology, we can also prove that the characteristic will hold

for the second operation if the input g has the pattern (g1 = ḡ0) which contradicts with

the output of the first operation. All these patterns have also been verified experimentally.

Example 2: Let us consider another ordering of two modular operations as shown

in Figure (5.1.II) and the following XOR differences:

∆a = 00001111 g = a� b e = a� d

∆b = 00000001 ∆g = 00010000 ∆d = 00000001 ∆e = 00000000

Again, the two operations individually satisfy the Lipmaa’s conditions. However,

the first operation requires the input a to be in a specific pattern (a0 = a1 = a2 = a3)

and the second operation requires the input a to be in another contradicting pattern

(a0 = a1 = a2 = ā3).
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5.3 New MILP Model for Differential Characteristics

of Modular Addition

Fu et al. [41] represent Lipmaa’s conditions by a set of MILP constraints in order

to automate the search for the best differential trail through the modular addition. As

explained in the previous section, Lipmaa’s conditions are not enough to ensure the valid-

ity of the derived differential characteristic especially when the block cipher structure has

two or more consecutive modular additions. We propose a more accurate MILP model

to automate the search for differential characteristics through modular additions taking

into account the dependency between two consecutive modular additions that put more

constraints on the values of input and output bits.

In order to represent the relation between two consecutive bits i and i − 1 on a

variable x, we define a new variable called x⊕i = xi ⊕ xi−1 which can take a value of

{0, 1, ?}; it is set to 0 if the condition xi = xi−1 is required and set to 1 if the condition

xi = x̄i−1 is required. Also, x⊕i can be kept undetermined (?) which means it can be 0 or

1 if there is no restriction on the relation between xi and xi−1.

Evaluation of (z⊕i , y
⊕
i , x

⊕
i ) for a modular addition. The relation between the

bits xi and xi−1, for the input x in a modular addition comes through the carry bit ci.

Therefore the variable x⊕i can be evaluated as:

x⊕i = (xi ⊕ ci)⊕ (ci ⊕ xi−1)

where xi ⊕ ci and ci ⊕ xi−1 can take a value of {0, 1, ?} like x⊕i and the bit-wise XOR of

? with any value equals to ?. Based on Table 5.2, the values of (xi ⊕ ci) and (ci ⊕ xi−1)

reflect the situation where there are conditions that should be satisfied to get the XOR dif-

ferences (δzi, δyi, δxi, δci+1) and (δzi−1, δyi−1, δxi−1, δci), respectively. Thus, the values of

62



(z⊕i , y
⊕
i , x

⊕
i ) will be determined based on the XOR differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi,

δci+1). We develop Algorithm 1 to determine these values. The input of our proposed

algorithm is a general-purpose data structure dictionary D which is obtained by reformat-

ting the valid rows in Table 5.2 where the relations between the current bits (z, y, x) with

the current carry bit c and the subsequent carry bit c+1 are derived from the condition

column in Table 5.2 and indexed by the value of the XOR difference of these bits, see

Table 5.3. The output of Algorithm 1 is the truth table T of (z⊕i , y
⊕
i , x

⊕
i ) as a function

of the possible XOR differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1). Out of 27 = 128

values of these bits, there are only 98 values that can be used as possible differences. Table

5.4 shows part of the derived truth table T.

MILP constraints for Modular Addition. To automate the process of the

search for the differential characteristic using MILP technique, we have to transform

the truth table T into a set of linear constraints. To this end, we represent the rows

of T combined with the value of ¬eq(δzi, δyi, δxi) as a set of points in 11-dimensional

binary vector space by substituting ? with all possible values, e.g., the row (0010010??1)

associated with ¬eq(0, 0, 1) = 1 will be described by 4 binary vectors: (00100100011,

00100100111, 00100101011, 00100101111). After this step, we have 640 binary vectors

which have a convex hull. We use the inequality generator() function in Sage2 to

obtain the H-Representation which is a set of linear inequalities that describe the vectors

of this convex hull. We can use this set of inequalities as MILP constraints to present

the possible XOR differences in two successive bits (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi) and

the carry of the third bits (δci+1) combined with the conditions on the value of these bits

represented as (z⊕i , y
⊕
i , x

⊕
i ). In our case, the number of generated inequalities is 313, which

is very large to be handled by any MILP optimizer. Therefore, we employ the Greedy

algorithm proposed by Sun et al. in [91] to reduce this set to only 24 inequalities. In

2http://www.sagemath.org/
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order to link the current bit with the following bits, we encoded equation (5.4), which

is a bit-wise XOR of three inputs and one output, by 8 linear inequalities utilizing the

truth table of the bit-wise XOR and inequality generator() function in Sage. In this

manner, we have represented the relation between three successive bits using 24 + 8 = 32

inequalities and this representation is repeated for i = 1, 2, . . . , n−2. In order to complete

the MILP modeling for the modular addition, we describe the condition on the first bit

(i = 0) δz0 ⊕ δy0 ⊕ δx0 = 0 associated with ¬eq(δz0, δy0, δx0) by 4 linear inequalities.

Accordingly, we can represent the difference propagation through the addition modulo

2n taking into account the relation between the value of two successive bits using 32 ×

(n − 2) + 4 inequalities. The objective function of the MILP optimizer would minimize∑n−2
i=0 ¬eq(δzi, δyi, δxi), which denotes the log2 probability of the underlying characteristic.

Algorithm 1: Truth table generator

Input : The Dictionary D.
Output: The truth table T of (z⊕i , y

⊕
i , x

⊕
i ) as a function of the possible XOR

differences (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1)
begin

T = ∅
for 27 possible values of (δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1) do

δci−1 ← δzi−1 ⊕ δyi−1 ⊕ δxi−1
δci ← δzi ⊕ δyi ⊕ δxi
if (δzi−1, δyi−1, δxi−1, δci−1, δci) in D.keys AND (δzi, δyi, δxi, δci, δci+1) in
D.keys then

RCarry1 ← D[(δzi, δyi, δxi, δci, δci+1)][0]
RCarry2 ← D[(δzi−1, δyi−1, δxi−1, δci−1, δci)][1]
(z⊕i , y

⊕
i , x

⊕
i )← RCarry1⊕ RCarry2

T← T ∪ {(δzi−1, δyi−1, δxi−1, δzi, δyi, δxi, δci+1, z
⊕
i , y

⊕
i , x

⊕
i )}

end

end
return T

end
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Table 5.3: The dictionary D.

D.keys D[∗][0] D[∗][1]

δz δy δx δc δc+1 c⊕(z,y,x) c+1⊕(z,y,x)

0 0 0 0 0 (? , ? , ?) (? , ? , ?)

0 0 1 1 0 (? , ? , 1) (1 , 0 , ?)

0 0 1 1 1 (? , ? , 0) (? , ? , 0)

0 1 0 1 0 (? , 1 , ?) (1 , ? , 0)

0 1 0 1 1 (? , 0 , ?) (? , 0 , ?)

0 1 1 0 0 (1 , ? , ?) (1 , ? , ?)

0 1 1 0 1 (0 , ? , ?) (? , 0 , 0)

1 0 0 1 0 (0 , ? , ?) (? , 0 , 0)

1 0 0 1 1 (1 , ? , ?) (1 , ? , ?)

1 0 1 0 0 (? , 0 , ?) (? , 0 , ?)

1 0 1 0 1 (? , 1 , ?) (1 , ? , 0)

1 1 0 0 0 (? , ? , 0) (? , ? , 0)

1 1 0 0 1 (? , ? , 1) (1 , 0 , ?)

1 1 1 1 1 (? , ? , ?) (? , ? , ?)

Table 5.4: Part of the truth table T.
δzi−1 δyi−1 δxi−1 δzi δyi δxi δci+1 z⊕i y⊕i x⊕i

....

0 0 1 0 0 1 0 ? ? 1

0 0 1 0 0 1 1 ? ? 0

0 0 1 0 1 1 0 0 ? ?

0 0 1 0 1 1 1 1 ? ?

0 0 1 1 0 1 0 ? 0 ?

0 0 1 1 0 1 1 ? 1 ?

0 1 0 0 1 0 0 ? 1 ?

0 1 0 0 1 0 1 ? 0 ?

0 1 0 0 1 1 0 0 ? ?

0 1 0 0 1 1 1 1 ? ?

0 1 0 1 1 0 0 ? ? 0

0 1 0 1 1 0 1 ? ? 1

0 1 1 0 0 1 0 ? ? 1

0 1 1 0 0 1 1 ? ? 0

0 1 1 0 1 0 0 ? 1 ?

0 1 1 0 1 0 1 ? 0 ?

0 1 1 0 1 1 0 0 ? ?

....

5.4 Application to Bel-T

5.4.1 Bel-T Specification

Since the official Bel-T specification is available only in Russian, we rely on the

English version of the specification that is provided by Jovanovic and Polian, who pre-

sented fault-based attacks on the Bel-T block cipher family [53]. Bel-T has a 128-bit block

size and a variable key length of 128, 192 or 256 bits. The 128-bit plaintext P is split

into 4 32-bit words, i.e., P = A0
0||B0

0 ||C0
0 ||D0

0. The round function of Bel-T consists of 7

S-box layers in which a 32-bit mapping function (Gr) is combined with one or two modulo

operations as illustrated in Figure 5.2. Then, this round function is repeated 8 times for

all versions of Bel-T. The function Gr (G-box) maps a 32-bit word w = w1||w2||w3||w4,

with wi ∈ {0, 1}8, as follows: Gr(w) = (H(w1)||H(w2)||H(w3)||H(w4))≪ r. Here, H is

an 8-bit S-box and ≪ r denotes left shift rotation by r positions (r ∈ {5, 13, 21}). The

specification of the 8-bit S-box can be found in [53].
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Figure 5.2: Bel-T round function. ⊕,�,� denote bit-wise XOR, arithmetic addition and
subtraction modulo 232 respectively, and (i)32 denotes the round number represented as
32-bit word.

Key Schedule. In all versions of Bel-T, the 128-bit plaintext block P is encrypted using

a 256-bit encryption key denoted as K1|| . . . ||K8, where Ki is a 32-bit word for 1 ≤ i ≤ 8.

The encryption key is distributed among the round keys as shown in Table 5.5. The

encryption key is extracted from the master key as follows:

• Bel-T-256: the encryption key is identical to the master key.

• Bel-T-192: the master key is formatted as K1|| . . . ||K6 and K7, K8 are set to K7 :=

K1 ⊕K2 ⊕K3 and K8 := K4 ⊕K5 ⊕K6.

• Bel-T-128: the master key is formatted as K1|| . . . ||K4 and K5, K6, K7, K8 are set

to K5 := K1, K6 := K2, K7 := K3 and K8 := K4.

66



Table 5.5: Encryption key schedule of Bel-T, where i and K7i+j denote the round number
and the round key, respectively.

i K7i+1 K7i+2 K7i+3 K7i+4 K7i+5 K7i+6 K7i+7

0 K1 K2 K3 K4 K5 K6 K7

1 K8 K1 K2 K3 K4 K5 K6

2 K7 K8 K1 K2 K3 K4 K5

3 K6 K7 K8 K1 K2 K3 K4

4 K5 K6 K7 K8 K1 K2 K3

5 K4 K5 K6 K7 K8 K1 K2

6 K3 K4 K5 K6 K7 K8 K1

7 K2 K3 K4 K5 K6 K7 K8

5.4.2 MILP-based Search for Differential Characteristic of Bel-

T

To search for differential characteristics in a block cipher using MILP, the difference

propagation through its components is described using a set of linear constraints. In Bel-T,

this means generating a set of linear inequalities to describe how an XOR difference would

propagate through a bit-wise XOR, an addition/subtraction modulo 232, and an 8-bit S-

box. As the difference propagates with probability through the non-linear components,

its associated probability is incorporated in the corresponding linear inequalities. The

objective function of the MILP model would be to maximize this probability, which we

do by minimizing the negative of the base-2 logarithm of this probability.

Bit-wise XOR. If δxi, δyi and δzi represent the bit-level differences, then the difference

propagation through the bit-wise XOR operation δxi ⊕ δyi = δzi can be represented by 5

linear inequalities [91]. Using the truth table of the XOR operation, these can be further

reduced to the following 4 linear inequalities:

δxi + δyi − δzi ≥ 0, δxi − δyi + δzi ≥ 0, − δxi + δyi + δzi ≥ 0, − δxi − δyi − δzi ≥ −2.
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Modular Addition and Subtraction. We use the new MILP model described in Sec-

tion 5.3 to propagate the input differences (∆x,∆y) to an output difference (∆z) through

the addition modulo 232 such that x � y = z using 32× (32− 2) + 4 = 964 inequalities.

Since the subtraction modulo 2n, x � y = z is equivalent to x = y � z, the difference

propagation through modular subtraction can be described in a similar way as that used

to describe modular addition.

Modular Addition with a Secret Key. The Bel-T round function encompasses a

modular addition with a secret key which has zero difference in a single-key differential

attack. This operation can then be expressed as x � k = z and the differential charac-

teristic as (∆x, 0) → ∆z. Therefore, the difference propagation through this operation

can be described in a similar way as that used to describe modular addition by inserting

32 more constraints to explicitly set ∆y = 0. The number of required constraints will

be 964 + 32 = 996 . Indeed, we can improve this description by decreasing the number

of MILP constraints to roughly half as follows. We repeat the steps described in Section

5.3 using the rows of the truth table T that have δyi−1 = δyi = 0 and also δyi+1 = 0.

Consequently, the number of MILP constraints decreases to (13 + 4)(32− 2) + 2 = 512.

8-bit S-box. Using the Sage inequality generator() function to model the DDT

of an 8-bit S-box is computationally infeasible. Therefore, the use of MILP to search for

differential characteristics was restricted to block ciphers that do not include 8-bit S-boxes.

Abdelkhalek et al. [1] have put forward an approach to model the DDT of an 8-bit S-box

efficiently. First, the DDT is split into several tables corresponding to unique probability

values. After assigning binary variables to each unique probability value, these binary

variables are represented as Boolean functions in the input and output difference bits, i.e.,

each boolean function is 1 when the input difference is propagated to the output difference

with the corresponding probability value, and 0 otherwise. Next, the Quine-McCluskey

algorithm [71, 78] was used to transform the Boolean functions to their reduced Product
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of Sum (PoS) which can then be described by a set of linear inequalities. To describe the

deterministic propagation of the zero-difference, an additional binary variable was used

as a sort of flag, i.e., when it is 0, the S-box is inactive and therefore both the input and

output differences are set to 0. When it is 1, the S-box is active and one probability value

along with input difference and corresponding output difference are chosen. As in ARX

block ciphers, the probability of the differential characteristic gets lower when more bits are

active, we decided to follow the approach in [2] in which we do not use the high probability

entries in the DDT, but rather the entries with low Hamming weight in the input and

output differences. Throughout our experiments, we have limited the Hamming weight of

the input and output difference not to exceed 3. However, the partial DDT was still too

large to be handled directly using the inequality generator() function and hence we

augmented our approach with the approach proposed by Abdelkhalek et al. for handling

the DDT of large S-boxes to describe the partial DDT using linear inequalities. Based

on our implementation, 1, 660 linear inequalities are needed to describe this Hamming

weight-based partial DDT.

Lai-Massey Scheme. Since the Lai-Massey scheme is invertible, the following con-

straints are added to our model to enforce the output of the Lai-Massey scheme (Bi
4, C

i
2)

to be non-zero when its input (Bi
1, C

i
1) is non-zero, see Figure 5.2.

n−1∑
j=0

Bi
1,j +

n−1∑
j=0

Ci
1,j + LMi ≥ 1,

n−1∑
j=0

Bi
4,j +

n−1∑
j=0

Ci
2,j + 2n× LMi ≤ 2n,

n−1∑
j=0

Bi
1,j +

n−1∑
j=0

Ci
1,j + 2n× LMi ≤ 2n,

n−1∑
j=0

Bi
4,j +

n−1∑
j=0

Ci
2,j + LMi ≥ 1.
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In these constraints, LMi is a dummy binary variable. If the input difference is

zero, the first equation enforces LMi to be 1 which enforces the output difference to be

zero in the second equation. If the input difference is non-zero, the third equation enforces

LMi to be 0 which enforces the output difference to be non-zero in the fourth equation.

5.4.3 3-round Differential Characteristic

Using the above derived MILP model of the different components of the Bel-T, we

are able to build a model of the whole round of Bel-T using 55, 641 linear inequalities

and 2, 647 binary variables. Then, we used the Gurobi optimizer [48] on a server of two

Xeon Processors E5-2697 (2 × 12 = 24 cores in total) with 125 GB RAM to search for

a differential characteristic of Bel-T. Consequently, we found a 2-round differential char-

acteristic with probability 2−54 after about 4.5 hours. We use this characteristic as an

initial solution for the optimizer in order to extend the characteristic to 3 rounds. After

running the search process for 36 days, we were not able to find a 3-round differential

characteristic better than the one that holds with probability 2−111. The 3-round differ-

ential characteristic we use in our attack is shown in Figure 5.3 in which 0 denotes a 32-bit

difference of all zeros, ei, ei−j and ei,j,k,... denote 32-bit difference of all 0’s and 1 at bit i,

bits i to j, and bits i, j, k, . . ., respectively.

5.4.4 Validity of The Differential Characteristic

In this section, we show that Bel-T block cipher is not a Markov cipher and the

differential characteristic depends on the used secret key. Consequently, we propose a

systematic way to obtain the ratio of the keys that can be attacked using our distinguisher.

Recall that a Markov cipher [63] is an iterated block cipher in which the probability

of the difference, e.g., the XOR difference through the individual operations of the round

function is independent of the corresponding plaintext values of its input, if the round

keys applied to each round are independent and chosen in a uniformly random manner.

70



G5

0

G21

G13

G21

G21

G5

G13

G5

G21

G13

G21

G21

G5

G13

0

0

0

0

0

0

e10,15

e10,15 e17

e15

e15 e31

e17,31

e31

e31e10

0

e3,31

e31

e31 e12

e31

e12

e12e3

0

00

0

0

0

0

0

0

0

0 0

0

0
00

0

0

0

e15

e31

00
0

0

e31

e15 e31

e31

e31e31

0

0

0

0

0

0

0

0

0

0

0

G5

G21

G13

G21

G21

G5

G13

0

00
0 e31

e20 e31

0

0

0

0

0

0

0

0

e31

e20e31

e20,31

e20,31

e11,20

e11

e11 e25

e25,31

e25,31

e31

e11,20,31

e25,31

e29,31

e11,29,31

e5

e5

e5

e5

e23,25,28

e11,20,23,25,28,31

e31 e31

V
e
ri
fy

 e
x
p
e
ri
m

e
n
ta

ll
y

XZW

k

Figure 5.3: 3-round differential characteristic of Bel-T with probability 2−111. 0 denotes
a 32-bit difference of all zeros, ei, ei−j and ei,j,k denote a 32-bit difference of 0’s and 1 at
bit i, bits i to j, and bits i, j, and k, respectively
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In the case of Bel-T, the secret key is mixed via modular addition operations, therefore

the XOR difference propagation through these operations is probabilistic and depends on

the used key. Additionally, the hypothesis of independent round keys does not hold due

to the simple key schedule of Bel-T. Moreover, there are many two or more successive

modular additions, which are not independent as shown in Section 5.2. For these reasons,

we can conclude that Bel-T is not a Markov cipher.

Since the secret key is mixed via modular addition operations, Bel-T is not a

key-alternating cipher [24] and the probability of the XOR difference of these modular

operations may drop to zero due to the used key [16] and we therefore cannot use our

distinguisher in this case. In the remaining of this section, we obtain the ratio of the keys

(valid keys) which we can use the distinguisher with. We define the S-box layer to include

the modular addition with a key followed by the G-box mapping (Gr). We consider a

32-bit key as an invalid key when the probability of the XOR difference through its S-box

layer drops to zero independent of the other input of the modular addition.

Let us consider, e.g., the S-box layer of K2 in round 0 (see Figure 5.3) in which the

keyK2 has a specific value k, Z = X�k andW = G21(Z) where ∆X = ∆Z = 0x00001000,

∆k = 0x00000000 and ∆W = 0x00000008. Therefore, we are looking for the values of k

that cannot give the output difference ∆W for any value of X.

For each value of k, we can exhaustively search over all possible values of the pair

(X, X ⊕∆X) to check if there is a value of X that leads to the output difference ∆W . If

there is no such value, we consider k as invalid. The complexity of search for all possible

values of K2 will be roughly O(264) which is computationally hard because we will repeat

this search for all modular additions with keys.

Alternatively, we can obtain from Table 5.2 that the condition k12 = c12, where k12

and c12 are the bit number 12 of the key and the carry respectively, is the only constraint

that has to be checked to verify whether the key k is an invalid key or not. Also from the

DDT of the G-box, the second byte of Z (bits from Z8 to Z15) in hexadecimal has to be
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one of {0x02, 0x12, 0x4C, 0x5C} to satisfy the output difference ∆W . Accordingly, the

following constraints have to be satisfied:

k12 = c12, Z8 = 0, Z13 = 0, Z15 = 0, Z̄9 = Z10 = Z11 = Z14.

For each value of k, there is a value X that gives Z8 = 0 with probability 1 because there

are no conditions on k nor Z from bit 0 to 7. Given this fact and by using equations (5.1)

and (5.2), we can prove that the carry bits c9 = c10 = c11 = c12 = 0 if the key bits k8 = 1

and k9 = k10 = k11 = 0 independently of the corresponding bits of X. Therefore, if the

key bit k12 = 1, the condition k12 = c12 will be impossible. As a result, if the key k has the

pattern k8 = k12 = 1 and k9 = k10 = k11 = 0, it will be an invalid key irrespective of the

value X due to the contradiction between the two constraints Z8 = 0 and k12 = c12. We

can manually search for such patterns but this process is very difficult, time-consuming,

and error-prone.

Observation 5.1 Consider a modular addition z = x� y where the bit zi has a specific

value. Then, the carry bit cj (for j > i) depends on the input bits from i to j − 1 and is

independent of the input bits from 0 to i− 1.

The dependency between a carry bit cj and the input bits from 0 to j − 1 is due to the

carry chain (see equation 5.2). If we know that the output bit zi has a specific value, we

can evaluate the carry bit ci as ci = zi ⊕ xi ⊕ yi instead of evaluating it using the value

of xi−1, yi−1 and ci−1. Thus, the carry chain and dependency are broken. Back to our

example, given that Z8 = 0, the carry bit c12 will depend on the bits from 8 to 11 of the

inputs X and k based on the observation. Therefore, considering the key k as an invalid

will depend on its bits from 8 to 12. In general, given a key k, if we exhaustively search

over all possible values of the pair (X, X ⊕∆X) and there is no value X that can lead to

the difference ∆W , then the byte of the key containing the conditional bits is the reason

for invalidating ∆W . We therefore can repeat the search for all possible value of these
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Procedure Obtain Invalid Key Set

Input : ∆X,∆W
Output: K
begin

K = ∅
Determine PosOfBytes and NBytes which are the position and the number
of bytes that have XOR difference in ∆X

for 28×NBytes possible values of Bytes do
Generate k randomly such that the concatenation of the bytes in the
position PosOfBytes has the value Bytes

invalid = True
for 232 possible values of X do

if G(X � k)⊕G((X ⊕∆X)� k) = ∆W then
invalid = False
break

end

end
if invalid then

K← K ∪ {Bytes}
end

end
return K

end

bytes. Consequently, the exhaustive search complexity in our example will be reduced

roughly to O(240) which is feasible.

The above approach can be generalized to determine the set of the byte values K

leading to invalid keys as shown in Procedure (Obtain Invalid Key Set).

Table 5.6 summarizes the ratio of valid keys of each key Ki that has conditions in

our distinguisher. It should be noted that the key K2 is used in two rounds but the bytes

that have the conditions are in different positions. Accordingly, the total ratio of the valid

keys can be evaluated as the multiplication of all ratios of the valid keys which will be

2−3.8 corresponding to 2252.2 keys. In order to validate this result, we have experimentally

verified the differential characteristic. In particular, we have opted the first four S-box

layers of the differential characteristic of probability 2−24 (see Figure 5.3) and have found

that the experimental probability matches on average the theoretical one for 4426 of 10000
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Table 5.6: Ratio of valid keys

Round Key Ratio of valid keys

0

K1 136/256

K2 216/256

K6 129/256

2

K2 216/256

K3 144/256

K4 228/256

K5 192/256

Table 5.7: The difference at the points used in the attack

Point label The difference in Binary

A3
0 10010010 10010000 00001000 00000000

B3
0 10000010 00000000 00000000 00000000

C3
0 00000000 00000000 00000000 00100000

D3
0 10100000 00000000 00001000 00000000

B3
1 ???00000 000????? ???????? ????????

C3
1 ???????? ???????? ???00000 000?????

randomly generated keys. Comparing with Table 5.6, this ratio is very close to the ratio

of the valid keys for this part of the distinguisher.

5.5 Differential Attack on 41
7-Round Reduced Bel-T-

256

In this section, we present a differential attack on 41
7
-round reduced Bel-T-256 by

appending one round and one S-box layer on the above derived differential distinguisher

as illustrated in Figure 5.4. Our differential characteristic ends at A3
0, B

3
0 , C

3
0 and D3

0 with

values e11,20,23,25,28,31, e25,31, e5 and e11,29,31, respectively. Therefore, by propagating the

differences at A3
0 and D3

0 through the S-box layers, we obtain the corresponding 32-bit

difference at B3
1 and C3

1 . Table 5.7 summarizes the difference in Binary at some points
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that we will use during the attack. Our attack has two phases: pre-computation phase

and an online phase.

5.5.1 Pre-computation Phase

In this phase, we create 4 hash tables (H1, H2, H3, H4) corresponding to the S-box

layers shown in Figure 5.4 as follows:

H1 : For all 25×32=160 possible values of x,∆x, y,∆y and K2, we obtain the corresponding

values of z and ∆z such that z = y � G13(x � K2). If the value of ∆z is equal to the

difference at D3
0, we store the values of K2 and z in the hash table H1 indexed by the

values of x,∆x, y and ∆y. The probability that the value of ∆z is equal to the difference

at D3
0 is equal to 2−32. Therefore, Table H1 has on average 2160 × 2−32 = 2128 entries. As

a result, we have, on average, 2128

24×32 = 1 value for K2 per row.

H2 : For the value of ∆x equal to the difference at D3
0 and all 224 possible value of ∆y

in form of the difference at C3
1 combined with all 23×32=96 possible values of x, y and K7,

we obtain the corresponding values of z and ∆z such that z = y ⊕ G21(x �K7). Then,

we store the value of K7 in the hash table H2 indexed by the values of x, y and ∆y, if

the value of ∆z is equal to the difference at C3
0 which has a probability equal to 2−24.

Therefore, Table H2 has on average 296+24×2−24 = 296 entries. Thus, we have, on average,

296

22×32+24 = 28 value for K7 per row.

H3 : For all 224 possible value of ∆x in form of the difference at B3
1 combined with all

24×32=128 possible values of x, y,∆y and K8, we obtain the corresponding values of z and

∆z such that z = y � G13(x�K8). If the value of ∆z is in the form of the difference at

A3
0, we store the values of K8 and z in the hash table H3 indexed by the values of x,∆x, y

and ∆y. The probability that the value of ∆z is in the form of the difference at A3
0 is
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equal to 2−32. Therefore, Table H3 has on average 2128+24 × 2−32 = 2120 entries. As a

result, we have, on average, 2120

23×32+24 = 1 values for K8 per row.

H4 : Initialize a hash table of 23×32+24=120 rows with binary value 0. Then, for the value

of ∆x equal to the difference at A3
0 and all 224 possible values of ∆y in the form of the

difference at B3
1 combined with all 23×32=96 possible values of x, y, and K6, we obtain the

corresponding values of z and ∆z such that z = y ⊕ G5(x � K6). If the value of ∆z is

equal to the difference at B3
0 , we store a binary value 1 in the hash table H4 indexed by

the values of x, y,∆y and K6. Here, the binary values 1 and 0 denote a valid entry and an

invalid entry. The probability of finding a valid entry in H4, equivalent to the probability

that the value ∆z is equal to the difference at B3
0 , is equal to 2−24. Consequently, we have

one valid entry for every 224 accesses to H4.

Table 5.8 summarizes the time and memory complexities of the pre-computation

phase. It should be noted that the memory required by the tables H1 and H4 can be

slightly reduced to 2128.51 and 2119.01 32-bit words respectively, if we store only the valid

candidates of K2 and K6 based on the ratio of the valid keys form Table 5.6.

Table 5.8: The time and memory complexities of the pre-computation phase

Table
Time

(S-box layer Encryption)
Memory

(32-bit word)

H1 2160 2160 × 2−32 × 2 = 2129

H2 2120 2120 × 2−24 × 1 = 296

H3 2152 2152 × 2−32 × 2 = 2121

H4 2120 2120†

† For simplicity, we store the binary values 0 and 1 as 32-bit words.

5.5.2 Online Phase

In this phase, we collect a set of plaintext/ciphertext pairs. Then, we utilize the

pre-computation tables and key guessing to obtain right candidate keys and then recover
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the correct master key.

Data Collection. We select a set of 2m 128-bit plaintexts that can take any arbitrary

values then we compute another set of 2m plaintexts by XORing each plaintext in the first

set with the input of the differential distinguisher (i.e., A0
0||B0

0 ||C0
0 ||D0

0). After that, we

query the encryption oracle and compute the corresponding ciphertext difference. Here,

we use 2m+1 plaintexts to generate 2m plaintext/ciphertext pairs satisfying the input

difference of our differential distinguisher (the value of m will be determined below).
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Figure 5.4: 41
7
-round attack on Bel-T-256

78



Key Recovery. We first prepare 27×32 = 2224 counters corresponding to the 2224 keys

involved in the analysis. After that, for each ciphertext pair in 2m pairs obtained in the

data collection phase, we apply the following procedure:

1. Guess K4 and partially decrypt the ciphertext to get the value and the difference at

C3
2 . The average number of keys suggested by a pair after this step is 232.

2. Access the hash table H1 to get, on average, 1 value of K2 and D3
0.

3. Guess K6 and partially decrypt the ciphertext to get the value and the difference at

A3
3. The average number of keys suggested by a pair after this step will increase to

264.

4. Guess K3 and partially decrypt the ciphertext combined with the value and the

difference from the previous step to get the value and the difference at B3
4 . The

average number of keys suggested by a pair after this step is 296.

5. Recall that B3
1 = B3

4 � G21(B
3
1 � C

3
1 �K1) ⊕ (3)32 and C3

1 = C3
2 � G21(B

3
1 � C

3
1 �

K1)⊕ (3)32. Hence B3
1 � C

3
1 = B3

4 � C
3
2 . Therefore, by guessing K1, we can deduce

G21(B
3
1 �C

3
1 �K1) = G21(B

3
4 �C

3
2 �K1) and then use the values obtained in steps

1 and 4 to compute the value and the difference at B3
1 and C3

1 and discard the key if

the differences are not in the required form. This step filters out the suggested keys

by 216. Thus, the average number of keys suggested by a pair after this step is 2112.

6. Use the values and the differences form steps 3 and 5 to access the hash table H3

and get, on average, 1 values of K8 and A3
0.

7. Access the hash table H4 using the previously guessed value of K6 in step 3 and the

values and the differences from steps 5 and 7 to check if it is a valid entry or not.

This step will filter out the suggested keys by 224. Thus, the average number of keys

suggested by a pair after this filtration will be 288.
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Table 5.9: Key recovery process of the attack on 41
7
-round Bel-T-256

Step # of suggested keys by a pair
Time Complexity

32-bit word memory Access S-box layer Encryption

1 232 - 2m × 232 × 2 = 2m+33

2 232 × 1 = 232 2m × 232 × 2 = 2m+33 -

3 232 × 232 = 264 - 2m × 264 × 2 = 2m+65

4 264 × 232 = 296 - 2m × 296 × 2 = 2m+97

5 296 × 232 × 2−16 = 2112 - 2m × 2128 × 2 = 2m+129

6 2112 × 1 = 2112 2m × 2112 × 2 = 2m+113 -

7 2112 × 2−24 = 288 2m × 2112 × 1 = 2m+112 -

8 288 × 28 = 296 2m × 296 × 1 = 2m+96 -

8. Use the value from step 2 combined with the value and the difference from step 5

to access the hash table H2 and get, on average, 28 value of K7. Consequently, the

average number of keys suggested by a pair after this procedure will be increased to

296. Thus, we increment the corresponding 296 counters.

After repeating the above procedure for 2m pairs, we select the key corresponding

to the highest counter as a 224-bit right key. After that, we recover the 256-bit master

key by testing the 224-bit right key along with the remaining 232 values for K5 using 2

plaintext/ciphertext pairs.

Table 5.9 summarizes the above steps, whereas the second column presents the

average number of keys suggested by a pair after each step. The third and fourth columns

present the time complexity of each step in form of memory accesses and single S-box

layer encryption in terms of m.

5.5.3 Attack Complexity and Success Probability

In this section, we present the complexity analysis of our attack in order to deter-

mine the required number of chosen plaintexts and the memory required to launch this

attack. Also, we compute the success probability of the attack. Finally, we calculate its
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time complexity to compare our attack against the exhaustive search attack.

Data Complexity. For the differential attack to succeed with a high probability, we have

to determine an appropriate value for the number of required plaintext/ciphertext pairs.

To do so, we utilize the concept of signal-to-noise ratio (S/N) [13], which is calculated

using the following formula:

S/N =
2k × p
α× β

where k is the number of key bits involved in the analysis, p is the probability of the

differential characteristic, α is the number of guessed keys by a pair, and β is the ratio

of the pairs that are not discarded. In our analysis, k = 224, p = 2−111, α = 296 from

table 5.9, and β = 1. Therefore, we have S/N = 2224×2−111

296×1 = 217. Due to this high

S/N , we can use the recommendation of Biham and Shamir [13] that 3 ∼ 4 right pairs

are sufficient enough to mount a successful differential attack. Therefore, we select the

number of plaintext/ciphertext pairs (2m) equal to 4×p−1 = 2113. Consequently, the data

complexity will be 2114 chosen plaintexts.

According to [84] and due to the high S/N , the success probability of the attack (Ps)

can be calculated as Ps ≈ Φ(
√
p× 2m) where Φ is the cumulative distribution function

of the standard normal distribution. Therefore, our differential attack will succeed with

probability Ps ≈ 0.9772.

Time Complexity. During the attack procedure, we make 32-bit word memory accesses

in some steps and partially decrypt single S-box layers in other steps. Each S-box layer

can be considered as a 32-bit big S-box with one or two modulo operations. Therefore,

the time of single S-box layer will be slightly higher than the time of 32-bit word memory

access. For simplicity, we assume that the time of 32-bit word memory access is the

same as the time of a single S-box layer lookup which is roughly equal to 1
7

of the time

of one round encryption. From Table 5.8, the time complexity of the pre-computation
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phase is dominated by the time required to construct the hash table H1 which is equal to

1
7
× 1

4 1
7

×2160 ≈ 2155.14 41
7
-round encryptions. Similarly, from Table 5.9, the dominant part

of the time complexity in the online phase comes from steps 5 which is 1
7
× 1

4 1
7

×(2m+129) =

2m+124.14 41
7
-round encryptions. Therefore, the total time complexity of the online phase

will be 2113+124.14 + 2× 232 = 2237.14 41
7
-round encryptions.

Memory Complexity. The memory complexity of the pre-computation phase can be

determined from Table 5.8 in which we need 2129 + 296 + 2121 + 2120 ≈ 2129 32-bit word =

2127 128-bit blocks of memory. During the online phase, we have prepared 2224 counters

corresponding to 2224 keys involved in the analysis. Since the upper limit of each counter

depends on the number of plaintext/ciphertext pairs (2m = 2113), we can declare each

counter as an unsigned 128-bit integer variable. Consequently, we need 2224 128-bit blocks

of memory in total.

5.6 Summary

In this chapter, we studied the propagation of the XOR difference through modular

addition. We showed that the independency assumption between two or more consecutive

modular addition operations does not necessarily hold, and we constructed a more accurate

MILP model for the differential trail through the modular addition taking into account the

dependency between the consecutive modular additions. Then, we utilized the developed

MILP model to automate the search process for the differential characteristics for Bel-T

cipher. Up to the authors’ knowledge, this is the best published theoretical attack against

Bel-T-256 in the single-key setting.
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Chapter 6

Integral Attacks on Round-Reduced

Bel-T-256

In this chapter, we continue investigating the security of Bel-T-256 [10]. Precisely,

we present integral attacks against Bel-T-256 using the propagation of the bit-based di-

vision property. Firstly, we propose two 2-round integral characteristics by employing a

Mixed Integer Linear Programming (MILP) approach to propagate the division property

through the round function. Then, we utilize these integral characteristics to attack 32
7

rounds (out of 8) Bel-T-256 with data and time complexities of 213 chosen plaintexts and

2199.33 encryption operations, respectively. We also present an attack against 36
7

rounds

with data and time complexities of 233 chosen plaintexts and 2254.61 encryption operations,

respectively. To the best of our knowledge, these attacks are the first published theoretical

attacks against the cipher in the single-key setting.

6.1 Introduction

As mentioned in the previous chapter, the Republic of Belarus has approved the

Bel-T block cipher family as the state standard cryptographic encryption algorithm in

2011 [10]. The Bel-T family consists of three block ciphers, denoted as Bel-T-k, with the
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Table 6.1: Attack results on Bel-T-256

Model Attack #Round Data Time Reference

Related Key Differential 56
7

2123.28 2228.4 [2]

Single Key Integral
32
7

213 2199.33 Sec. 6.3.2

36
7

233 2254.61 Sec. 6.3.3

same block size of 128 bits and key length k = 128, 192 or 256 bits. Bel-T merges a

Lai-Massey scheme [62] with a Feistel network [39]. At the time of publishing this work

in [34], there were only two published cryptanalysis results on Bel-T’s; fault-based attacks

was considered in [53], and related-key differential attack on round-reduced Bel-T-256 was

presented in [2]. In this chapter, we present the first published single-key attack against

Bel-T-256. Table 6.1 contrasts the result of our attacks with the related-key differential

attack in [2].

The rest of this chapter is organized as follows. In Section 6.2, we briefly revisit the

bit-based division property and summarize how to present its propagation through the

basic cipher operations with MILP models. We also describe our approach to model the

modular subtraction operation. In Section 6.3, we investigate the security of Bel-T block

cipher against the integral attacks utilizing the MILP approach. Finally, the summary is

presented in Section 6.4.

6.2 Bit-based Division Property

As mentioned in Chapter 2, the division property [95] is a generalization of the

integral property to utilize the hidden relations between the traditionalA and B properties

by exploiting the algebraic degree of the nonlinear components of the block cipher. The

division property was succeeded by a more precise version called the bit-based division

property (BDP) in [98] which exploits the internal structure of the nonlinear components

to analyze block ciphers at the bit level.
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6.2.1 MILP Models for the Bit-based Division Property

As mentioned in Chapter 2, with the help of the division trail, it becomes easy

to employ MILP for constructing the integral distinguisher. In the following, we briefly

describe how to model the division trail through several operations as MILP constraints.

Model for COPY [90] Let (a)
COPY−−−−→ (b1, b2, . . . , bm) denote the division trail through

COPY function, where one bit is copied to m bits. Then, it can be described using the

following MILP constraints:

a− b1 − b2 − · · · − bm = 0, where a, b1, b2, . . . , bm are binary variables.

Model for XOR [90] Let (a1, a2, . . . , am)
XOR−−−→ (b) denote the division trail through an

XOR function, where m bits are compressed to one bit using an XOR operation. Then,

it can be described using the following MILP constraints:

a1 + a2 + · · ·+ am − b = 0, where a1, a2, . . . , am, b are binary variables.

Model for AND [104] Let (a0, a1)
AND−−−→ (b) denote the division trail though an AND

function, where two bits are compressed using an AND operation. Then, it can be de-

scribed using the following MILP constraints:

b− a0 ≥ 0, b− a1 ≥ 0, where a0, a1, b are binary variables.

MILP Model for S-boxes. The bit-based division property introduced in [98] is limited

to bit-orientated ciphers and cannot be applied to ciphers with S-boxes. Xiang et al. [104]

complemented this work by proposing an algorithm to accurately compute the bit-based

division property through an S-box. Briefly, they represented the S-box using its algebraic

normal form (ANF). Then,the division trail though an n-bit S-box can be represented

as a set of 2n-dimensional binary vectors ∈ {0, 1}2n which has a convex hull. The H-
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Representation of this convex hull can be computed using readily available functions

such as inequality generator() function in SageMath∗ which returns a set of linear

inequalities that describe these vectors. We use this set of inequalities as MILP constraints

to present the division trail though the S-box.

MILP Model for Modular Addition. In [88], Sun et al. proposed a systematic

method to deduce an MILP model for the modular addition operation of 4-bit variables

by expressing the operation at the bit-level. Then this method is generalized for n-bit vari-

ables in [89]. Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1), and z = (z0, z1, . . . , zn−1)
†

be n-bit vectors where z = x� y. Then, zi can be iteratively expressed as follows:

zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = 0,

zi = xi ⊕ yi ⊕ ci, ci = xi+1yi+1 ⊕ (xi+1 ⊕ yi+1)ci+1, i = n− 2, n− 3, . . . , 0.

Consequently, the division trail through the modular addition can be deduced in terms of

COPY, AND, and XOR operations [89].

MILP Model for Modular Addition with a Constant. In [88], Sun et al. explain

how to deduce an MILP model for the modular addition of a 4-bit variable with a constant.

The authors expressed the operation at the bit-level and exploited that the operations of

XOR/AND with a constant do not influence the division property [88]. We can generalize

this method for n-bit variables as follows. Let (a0, a1, . . . , an−1)→ (d0, d1, . . . , dn−1) denote

the division trail through n-bit modular addition with a constant, the division property

propagation can be decomposed as COPY, AND, and XOR operations as follows:

∗http://www.sagemath.org/
†big-endian representation
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(an−1)
COPY−−−−→ (dn−1, f0, g0)

(an−2)
COPY−−−−→ (an−2,0, an−2,1, an−2,2)

(an−2,0, f0)
XOR−−−→ (dn−2)

(an−2,1, g0)
AND−−−→ (e0)

(an−2,2, e0)
XOR−−−→ (v0)

(vi−1)
COPY−−−−→ (fi, gi)

(an−2−i)
COPY−−−−→ (an−2−i,0, an−2−i,1, an−2−i,2)

(an−2−i,0, fi)
XOR−−−→ (dn−2−i)

(an−2−i,1, gi)
AND−−−→ (ei)

(an−2−i,2, ei)
XOR−−−→ (vi)


iterated for i = 1, ..., n− 3

(a0, vn−3)
XOR−−−→ (d0)

where the intermediate variables ai,0, ai,1, ai,2, fi, gi, ei, and vi are as shown in Table

6.2.

MILP Model for Modular Subtraction. In this section, we present an approach to

deduce an MILP model for the modular subtraction operation using the same methodology

used for Modular Addition. For consistency, we use the same notation as in [88].

Let x, y and z be n-bit vectors where z = x � y. This relation can be rewritten

as z = x � (2’s complement of y) = x � (ȳ � 1), where ȳ is the 1’s complement of

y. Therefore, the division trail through the modular subtraction can be modelled as a

division trail through a modular addition followed by a modular addition with a constant.

This representation has two issues. The first issue is that two operations are used to

present one operation which requires the use of more MILP constraints and variables, and

consequently slowing down the search process. The second issue is that the information
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Table 6.2: The intermediate variables for modular addition with a constant
zn−1︸︷︷︸
dn−1

xn−1︸︷︷︸
an−1

zn−2︸︷︷︸
dn−2

xn−2︸︷︷︸
an−2,0

⊕ cn−2︸︷︷︸
f0

cn−2 xn−1

zn−3︸︷︷︸
dn−3

xn−3︸︷︷︸
an−3,0

⊕ cn−3︸︷︷︸
f1

cn−3︸︷︷︸
v0

xn−2︸︷︷︸
an−2,2

⊕
e0︷ ︸︸ ︷

xn−2︸︷︷︸
an−2,1

cn−2︸︷︷︸
g0

zn−4︸︷︷︸
dn−4

xn−4︸︷︷︸
an−4,0

⊕ cn−4︸︷︷︸
f2

cn−4︸︷︷︸
v1

xn−3︸︷︷︸
an−3,2

⊕
e1︷ ︸︸ ︷

xn−3︸︷︷︸
an−3,1

cn−3︸︷︷︸
g1

· · · · · ·

z1︸︷︷︸
d1

x1︸︷︷︸
a1,1

⊕ c1︸︷︷︸
fn−3

c1︸︷︷︸
vn−4

x2︸︷︷︸
a2,2

⊕
en−4︷ ︸︸ ︷

x2︸︷︷︸
a2,1

c2︸︷︷︸
gn−4

z0︸︷︷︸
d0

x0︸︷︷︸
a0

⊕c0 c0︸︷︷︸
vn−3

x1︸︷︷︸
a1,2

⊕
en−3︷ ︸︸ ︷

x1︸︷︷︸
a1,1

c1︸︷︷︸
gn−3

about the value of the constant, which is 1, in the modular addition with a constant

is not utilized. This may lead the search process to conclude that some bits are not

balanced even that they are balanced, as we show in the following section (Section 6.2.2).

Instead, at the bit level implementation, the modular subtraction operation is handled

as a modular addition operation with two modifications: the first carry to the modular

addition will be 1 instead of 0 (cn−1 = 1), and the second input to the modular addition

will be the 1’s complement of the second operand (ȳ).

Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1), and z = (z0, z1, . . . , zn−1). Then,

zi can be iteratively expressed as follows:

zn−1 = xn−1 ⊕ ȳn−1 ⊕ cn−1, cn−1 = 1,

zi = xi ⊕ ȳi ⊕ ci, ci = xi+1ȳi+1 ⊕ (xi+1 ⊕ ȳi+1)ci+1, ∀i = n− 2, n− 3, . . . , 0.

where ȳi = yi ⊕ 1

The operation of XOR/AND with a constant does not influence the division property [88].

Therefore, the division property of ȳ is the same of y.
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Table 6.3: The intermediate variables for modular subtraction
zn−1︸︷︷︸
dn−1

=xn−1︸︷︷︸
an−1,0

⊕ ȳn−1︸︷︷︸
bn−1,0

⊕1

zn−2︸︷︷︸
dn−2

=xn−2︸︷︷︸
an−2,0

⊕ ȳn−2︸︷︷︸
bn−2,0

⊕
g0︷︸︸︷
cn−2

v0︷︸︸︷
cn−2 =

t1︷ ︸︸ ︷
xn−1︸︷︷︸
an−1,1

ȳn−1︸︷︷︸
bn−1,1

⊕(

t0︷ ︸︸ ︷
xn−1︸︷︷︸
an−1,2

⊕ ȳn−1︸︷︷︸
bn−1,2

)

zn−3︸︷︷︸
dn−3

=xn−3︸︷︷︸
an−3,0

⊕ ȳn−3︸︷︷︸
bn−3,0

⊕
g1︷︸︸︷
cn−3

w0︷︸︸︷
cn−3 =

v1︷ ︸︸ ︷
xn−2︸︷︷︸
an−2,1

ȳn−2︸︷︷︸
bn−2,1

⊕

q0︷ ︸︸ ︷
(

m0︷ ︸︸ ︷
xn−2︸︷︷︸
an−2,2

⊕ ȳn−2︸︷︷︸
bn−2,2

)⊕
r0︷︸︸︷
cn−2

zn−4︸︷︷︸
dn−4

=xn−4︸︷︷︸
an−4,0

⊕ ȳn−4︸︷︷︸
bn−4,0

⊕
g2︷︸︸︷
cn−4

w1︷︸︸︷
cn−4 =

v2︷ ︸︸ ︷
xn−3︸︷︷︸
an−3,1

ȳn−3︸︷︷︸
bn−3,1

⊕

q1︷ ︸︸ ︷
(

m1︷ ︸︸ ︷
xn−3︸︷︷︸
an−3,2

⊕ ȳn−3︸︷︷︸
bn−3,2

)⊕
r1︷︸︸︷
cn−3

· · · · · ·

z1︸︷︷︸
d1

= x1︸︷︷︸
a1,0

⊕ ȳ1︸︷︷︸
b1,0

⊕
gn−3︷︸︸︷
c1

wn−4︷︸︸︷
c1 =

vn−3︷ ︸︸ ︷
x2︸︷︷︸
a2,1

ȳ2︸︷︷︸
b2,1

⊕

qn−4︷ ︸︸ ︷
(

mm−4︷ ︸︸ ︷
x2︸︷︷︸
a2,2

⊕ ȳ2︸︷︷︸
b2,2

)⊕
rn−4︷︸︸︷
c2

z0︸︷︷︸
d0

= x0︸︷︷︸
a0

⊕ ȳ0︸︷︷︸
b0

⊕c0
wn−3︷︸︸︷
c0 =

vn−2︷ ︸︸ ︷
x1︸︷︷︸
a1,1

ȳ1︸︷︷︸
b1,1

⊕

qn−3︷ ︸︸ ︷
(

mm−3︷ ︸︸ ︷
x1︸︷︷︸
a1,2

⊕ ȳ1︸︷︷︸
b1,2

)⊕
rn−3︷︸︸︷
c1

Consequently, we can generalize the modular subtraction operation for n-bit vari-

ables as follows:

Proposition 6.1 Let ((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1)) → (d0, d1, . . . , dn−1) be a divi-

sion trail through n-bit modular subtraction operation. The division property propagation

can be decomposed as COPY, AND, and XOR operations as follows where the interme-

diate variables ai,0, ai,1, ai,2, t0, t1, vi, gi, ri, mi, qi, and wi are as shown in Table

6.3.
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(an−1)
COPY−−−−→ (an−1,0, an−1,1, an−1,2)

(bn−1)
COPY−−−−→ (bn−1,0, bn−1,1, bn−1,2)

(an−1,0, bn−1,0)
XOR−−−→ (dn−1)

(an−1,2, bn−1,2)
XOR−−−→ (t0)

(an−1,1, bn−1,1)
AND−−−→ (t1)

(t0, t1)
XOR−−−→ (v0)

(v0)
COPY−−−−→ (g0, r0)

(an−2)
COPY−−−−→ (an−2,0, an−2,1, an−2,2)

(bn−2)
COPY−−−−→ (bn−2,0, bn−2,1, bn−2,2)

(an−i,0, bn−i,0, gi−2)
XOR−−−→ (dn−i)

(an−i,1, bn−i,1)
AND−−−→ (vi−1)

(an−i,2, bn−i,2)
XOR−−−→ (mi−2)

(mi−2, ri−2)
AND−−−→ (qi−2)

(vi−1, qi−2)
XOR−−−→ (wi−2)

(wi−2)
COPY−−−−→ (gi−1, ri−1)

(an−i−1)
COPY−−−−→ (an−i−1,0, an−i−1,1, an−i−1,2)

(bn−i−1)
COPY−−−−→ (bn−i−1,0, bn−i−1,1, bn−i−1,2)



iterated for i = 2, ..., n− 2

(a1,0, b1,0, gn−3)
XOR−−−→ (d1)

(a1,1, b1,1)
AND−−−→ (vn−2)

(a1,2, b1,2)
XOR−−−→ (mn−3)

(mn−3, rn−3)
AND−−−→ (qn−3)

(vn−2, qn−3)
XOR−−−→ (wn−3)

(a0, b0, wn−3)
XOR−−−→ (d0)
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6.2.2 Validity of our MILP Model for Modular Subtraction

In this section, we provide the result of our experiments on a toy cipher in order to

validate the MILP model for the division trail through a modular subtraction operation.

Moreover, we show that the proposed model of the division trail through the modular

subtraction at the bit-level (z = x�y) gives better results than modelling it as a division

trail through a modular addition followed by a modular addition with a constant (i.e.,

z = x� ȳ � 1).

The round function of the toy cipher used during the experiments is a small version

of the SPECK round function [5] with modular subtraction instead of modular addition

as shown in Figure 6.1 where the block size is 8 bits, (X i
L, X

i
R) is the input of the i-th

round, and ki is the subkey used in the i-th round.

We follow the same approach used in [88] to validate their MILP model for modular

addition. The experimental procedure is as follows:

1. For an initial division property, use our MILP model for the modular subtraction

at the bit-level (z = x� y) to find the set of balanced bits at the output of the toy

cipher.

2. Use the other MILP model (z = x� ȳ� 1) to find the balanced bits corresponding

the same initial division property.

3. Exhaustively search for the balanced bits as follows:

(a) Divide the space of the plaintexts (28 plaintexts) to a group of multi-sets of

plaintexts. Each one of these multi-sets satisfies the initial division property.

(b) Encrypt each multi-set of the plaintexts using a randomly chosen key and find

the bits with zero-sum over all the corresponding ciphertexts of that multi-set,

and then find the common zero-sum bits over all the multi-sets.
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Figure 6.1: The round function of the toy cipher.

(c) Repeat the previous step 210 iterations and find the common zero-sum bits at

the output of the toy cipher over all the iterations.

4. Compare the results from the previous three steps for the same initial division

property.

5. Repeat the previous steps for all possible values of the initial division property and

for a toy cipher consists of up to 6 rounds similar to the one in the Figure 6.1.

From the result of the experiments, we can conclude that the balanced bits found by the

MILP-aided bit-based division property are indeed balanced. Moreover, the MILP model

for the division trail through the modular subtraction at the bit-level (z = x � y) also

uses less number of constraints and gives same or better results (in terms of number of the

balanced bits) than modelling it as a division trail through a modular addition followed

by a modular addition with a constant (z = x � ȳ � 1). A sample of our results can

be found in Table 6.4 and the mismatch between the two approaches for modelling the

division trail through a modular subtractions is summarized in Table 6.5.
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Table 6.4: Comparison of zero-sum bits found by using three methods for the toy cipher,
where #{Bits} is the number of balanced bits and ‘Bits’ is the position of these bits
counted from the most significant bit.

Input Division
property

Rounds
Exhaustive search

MILP-aided Bit-based Division property
z = x� y z = x� ȳ � 1

#{Bits} Bits #{Bits} Bits #{Bits} Bits

D18

{[01111111]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
3 6 1 ∼ 3,5 ∼ 7 6 1 ∼ 3,5 ∼ 7 4 2 ∼ 3,6 ∼ 7
4 1 3 1 3 0 -
5 0 - 0 - 0 -

D18

{[11111110]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
3 6 1 ∼ 3,5 ∼ 7 6 1 ∼ 3,5 ∼ 7 6 1 ∼ 3,5 ∼ 7
4 3 2 ∼ 3, 6 1 3 1 3
5 0 - 0 - 0 -

D18

{[00001111]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 4 2 ∼ 3,6 ∼ 7 4 2 ∼ 3,6 ∼ 7 4 2 ∼ 3,6 ∼ 7
3 0 - 0 - 0 -

D18

{[11110000]}

1 8 0 ∼ 7 8 0 ∼ 7 8 0 ∼ 7
2 8 0 ∼ 7 8 0 ∼ 7 6 1 ∼ 3, 5 ∼ 7
3 2 3, 7 2 3, 7 1 3
4 0 - 0 - 0 -

6.3 Integral Attack on Bel-T-256

In this Section, we investigate the security of the Bel-T block cipher against the

integral attack based on the bit-based division property. For Bel-T specification, we refer

the reader to Section 5.4.1 in the previous chapter.

6.3.1 Integral Distinguishers of Bel-T

The Bel-T round function includes 7 S-boxes, modular additions, modular additions

with key and modular subtractions. We construct an MILP model for the bit-based

division property through Bel-T as follows. Firstly, we generate the division trail of the

S-box using Algorithm 2 in [104]. Then, we deduce the inequalities of the S-box using

inequality generator() function in Sage. In the case of the Bel-T’s S-box, the number

of generated inequalities is 71736, which is very large set to be handled by any MILP
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Table 6.5: Mismatch between the two approaches for modelling the division trail through
a modular subtraction.

Rounds Inputs Division property

MILP-aided Bit-based Division property

z = x� y z = x� ȳ � 1

#{Bits} Bits #{Bits} Bits

1 {[10000011]}, {[11000010]}, {[11000011]} 8 0 ∼ 7 6 1 ∼ 3, 5 ∼ 7

2

{[01101101]}, {[01111001]}, {[10100101]},
{[10101100]}, {[10110001]}, {[10111000]},

{[11100100]}, {[11110000]}
8 0 ∼ 7 6 1 ∼ 3, 5 ∼ 7

{[10001111]}, {[10011011]}, {[11001110]},
{[11001111]}, {[11011010]}, {[11011011]}

6 1 ∼ 3, 5 ∼ 7 4 2 ∼ 3, 6 ∼ 7

{[10000011]}, {[11000010]} 2 3,7 1 3

{[11000011]} 4 2 ∼ 3, 6 ∼ 7 1 3

3

{[01110111]}, {[01111111]}, {[10110110]},
{[10110111]}, {[10111101]}, {[10111110]},

{[11110110]}, {[11111100]}
6 1 ∼ 3, 5 ∼ 7 4 2 ∼ 3, 6 ∼ 7

{[01101101]}, {[01111001]}, {[10100101]},
{[10101100]}, {[10110001]}, {[10111000]},

{[11100100]}, {[11110000]}
2 3,7 1 3

{[10001111]}, {[10011011]}, {[11001110]},
{[11001111]}, {[11011010]}, {[11011011]}

1 3 0 -

4

{[11111011]} 6 1 ∼ 3, 5 ∼ 7 4 2 ∼ 3, 6 ∼ 7

{[01110111]}, {[01111111]}, {[10110110]},
{[10110111]}, {[10111101]}, {[10111110]},

{[11110110]}, {[11111100]}
1 3 0 -

5 {[11111011]} 1 3 0 -

optimizer. Therefore, we reduce this set using a Greedy Algorithm which is proposed by

Sun et al. in [91]. As a result, the set of inequalities represented the Bel-T’s S-box is

reduced to 28.

Then, we implement the MILP model for modular addition and deduce the model

for subtraction. Finally, we use the Gurobi optimizer [48] to search for the longest integral

distinguisher for Bel-T. Based on our implementation, we found several 2-round integral

distinguishers. Our code that is used to generate the MILP model for Bel-T and to search

for an integral distinguisher can be downloaded from github.‡

‡https://github.com/mhgharieb/Bel-T-256

94

https://github.com/mhgharieb/Bel-T-256


In here, we present two such distinguishers which are chosen in order to minimize

the attack data and time complexities.

IC1 : ((C0−31), (C0−31), (C0−17||A18−18||C19−31), (A0−7||C8−31))
2R−→ ((U0−31), (U0−31), (U0−26||B27−31), (U0−31))

IC2 : ((C0−31), (C0−31), (C0−10||A11−26||C27−31), (A0−15||C16−31))
2R−→ ((U0−26||B27−31), (U0−31), (B0−31), (U0−31))

where Ci−j/Ai−j/Bi−j/Ui−j denote CONSTANT/ALL/BALANCE/UNKNOWN from bit

number i to bit number j respectively counting from the most significant bit of the branch.

Both of these integral distinguishers have been verified experimentally using a set of 256

randomly generated keys.

6.3.2 Integral Cryptanalysis of 32
7-Round Bel-T-256

In this section, we present our Integral attack on 32
7
-round Bel-T-256 by append-

ing one round and two S-box layers on the above derived integral distinguisher IC 1 as

illustrated in Figure 6.2.

Data Collection. We select m structures of plaintexts. In each structure, the 9 bits (bit

number 18 in branch C0 and bits 0-7 in branch D0) vary through all 29 possible values

and all other bits are fixed to an arbitrary constant value.

This ensures that each structure satisfies the required input division property of

the integral distinguisher IC 1. After that, we query the encryption oracle to obtain the

corresponding ciphertexts. Subsequently, we apply the following key recovery procedure.

Key Recovery. For ciphertexts in each structure obtained in the data collection phase,

we apply the following procedure:

1. Guess K8 and K4 and partially decrypt the ciphertext to obtain b2.

95



G5

K7

G21

K4

G13

K1

G21

K8

G21

K2

G5

K5

G13

K3
(3)32

G5

K6

G13

K8

C0-31 C0-31 C0-17||A18-18||C19-31 A0-7||C8-31

U0-31 U0-31 U0-26||B27-31

2-round Integral Distinguisher

U0-31

b2

b1
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Figure 6.2: 32
7
-round attack on Bel-T-256

2. Guess K6 and K5 and partially decrypt the ciphertext to obtain c2.

3. Recall that b1 = b2�G21(b1�c1�K2)⊕(3)32 and c1 = c2�G21(b1�c1�K2)⊕(3)32.

Hence b1�c1 = b2�c2. Therefore, by guessing K2, we can deduce G21(b1�c1�K2) =

G21(b2 � c2 �K2) and then compute c1 from b2 and c2.

4. Guess K3 and use the previous guessed value of K8 to compute c0 from c1 and c2.

5. For each bit in the 5 least significant bits of the 32-bit word c0, check that its XOR

sum over the structure is zero. The probability that all these 5 bits are balanced is
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2−5. Therefore the probability that a key is survived after this test is also 2−5. This

means that the number of 192-bit key candidates passed this check is 2192 × 2−5.

After repeating the above procedure for m structures, the number of surviving 192-bit

key candidates will be 2192× (2−5)m = 2192−5m. After that, we recover the 256-bit master

key by testing the 2192−5m 192-bit surviving key candidates along with the remaining 264

values for K1 and K7 using 2 plaintext/ciphertext pairs.

Attack complexity. The data complexity of the above attack ism×29 chosen plaintexts.

The dominant part of time complexity is coming from deducing 192-bit key candidates

after checking m structures. This part is equal to 7
23
× 29 × 2192 × [1 + 2−5 + (2−5)2 +

· · · + (2−5)m−1] = 7
23
× 2201 × 1− (2−5)m

1− 2−5
. Additionally, the part due to exhaustively

searching for the master key which is equal to 2 × 264 × 2192−5m = 2257−5m. To balance

the attack between data and time complexities, we take m = 16. This means that the

data complexity will be 16 × 29 = 213 chosen plaintexts and the time complexity will be

7
23
× 2201 × 1− 2−80

1− 2−5
+ 2177 ≈ 2199.33 encryption operations.

It should be noted that other choices of m can lead to possible data and time trade-

off. For example, if we set m = 1, the data complexity will be reduced to 29 chosen

plaintexts at the expense of increasing the time complexity to 2252.

6.3.3 Integral Cryptanalysis of 36
7-Round Bel-T-256

In this section, we present our integral attack on 36
7
-round Bel-T-256 by appending

one round and six S-box layers on the above derived integral distinguisher IC 2, which is

the only distinguisher makes the attack feasible, as illustrated in Figure 6.3.

Data Collection. We select m structures of plaintexts. In each structure, the 32 bits

(bits 11-26 in branch C0 and bits 0-15 in branch D0) vary through all 232 possible values
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Figure 6.3: 36
7
-round attack on Bel-T-256
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and all other bits are fixed to an arbitrary constant value. This ensures that each structure

satisfies the required input division property of the integral distinguisher IC 2. After that,

we query the encryption oracle to obtain the corresponding ciphertexts. Subsequently, we

apply the following key recovery procedure.

Key Recovery. For ciphertexts in each structure obtained in the data collection, we

apply the following procedure:

1. Guess K4 and partially decrypt the ciphertext to obtain c5.

2. Recall that b4 = b5�G21(b4�c4�K1)⊕(4)32 and c4 = c5�G21(b4�c4�K1)⊕(4)32,

hence b4�c4 = b5�c5. Therefore, by guessing K1, we can deduce G21(b4�c4�K1) =

G21(b5 � c5 �K1) and then compute b4 and c4 from b5 and c5.

3. Guess K2, K6, K7 and K8 and deduce each 32-bit words a2, b3, c3 and d1.

4. Use the previous guessed value of K4 to get the value of b2 from a2 and b3.

5. Guess K5 and get the value of c2 from c3 and d1.

6. Recall that b1 = b2�G21(b1�c1�K2)⊕(3)32 and c1 = c2�G21(b1�c1�K2)⊕(3)32,

hence b1�c1 = b2�c2. Therefore, by guessing K2, we can deduce G21(b1�c1�K2) =

G21(b2 � c2 �K2) and then compute b1 from b2 and c2.

7. Use the previous guessed value of K1 to compute a1 from a2 and b1.

8. For each bit in the 5 least significant bits of 32-bit word a1, check that the XOR sum

of it over the structure is zero. The probability that all these 5 bits are balanced is

2−5. Therefore the probability that a key is survived after this test is also 2−5. This

means that the number of 224-bit key candidates passed this check is 2224 × 2−5.

After repeating the above procedure for m structures, the number of surviving 224-bit

key candidates will be 2224 × (2−5)m = 2224−5m. After that we recover the 256-bit master
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key by testing the 2224−5m 192-bit surviving key candidates along with the remaining 232

values for K3 using 2 plaintext/ciphertext pairs.

Attack complexity. The data complexity is m× 232 chosen plaintexts. The dominant

part of time complexity is coming from deducing 224-bit key candidates after checking m

structure. This part is equal to 10
27
× 232× 2224× [1 + 2−5 + (2−5)2 + · · ·+ (2−5)m−1] = 10

27
×

2256× 1− (2−5)m

1− 2−5
. Additionally, the part due to exhaustively searching for the master key

which is equal to 2×232×2224−5m = 2257−5m. To balance the attack between data and time

complexities, we take m = 2. This means that the data complexity will be 2× 232 = 233

chosen plaintexts and the time complexity will be 10
27
× 2256 × 1− 2−10

1− 2−5
+ 2247 ≈ 2254.61

encryption.

6.4 Summary

In this chapter, we investigated the security of Bel-T-256 against integral attacks

based on the bit-based division property. In particular, we have built a MILP model

for the Bel-T round function to automate the search for integral distinguishers based on

the bit-based division property. Using two of the obtained integral distinguishers, we

presented attacks on 32
7

and 36
7

rounds of Bel-T-256 with data and time complexities of

213, 233 chosen plaintexts and 2199.33, 2254.61 encryption operations, respectively.
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Chapter 7

Integral Cryptanalysis of

Reduced-Round Tweakable TWINE

Tweakable TWINE (T-TWINE) [81] is the first lightweight dedicated tweakable block

cipher family built on Generalized Feistel Structure (GFS). T-TWINE family is an exten-

sion of the conventional block cipher TWINE [94] with minimal modification by adding a

simple tweak based on the SKINNY’s tweakey schedule [6]. Similar to TWINE, T-TWINE

has two variants, namely T-TWINE-80 and T-TWINE-128. The two variants have the

same block size of 64 bits and a variable key length of 80 and 128 bits. In this chapter, we

study the implications for adding the tweak on the security of T-TWINE against integral

cryptanalysis. In particular, we first utilize the bit-based division property to search for

the longest integral distinguisher. As a result, we are able to perform a distinguishing

attack against 19 rounds using 26 × 263 = 269 chosen tweak-plaintext combinations. We

then convert this attack to key recovery attacks against 26 and 27 rounds (out of 36) of

T-TWINE-80 and T-TWINE-128, respectively. By prepending one round before the dis-

tinguisher and using dynamically chosen plaintexts, we manage to extend the attack one

more round without using the full codebook of the plaintext. Therefore, we are able to

attack 27 and 28 rounds of T-TWINE-80 and T-TWINE-128, respectively.
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7.1 Introduction

A Tweakable block cipher (TBC) is a symmetric-key cryptographic primitive that

takes an auxiliary input called tweak in addition to the inputs of traditional block ciphers,

plaintext message and cryptographic key [66]. Ideally, a different tweak value gives ran-

domly chosen and different instant of the permutation over the message space without

needing to change the key which may be costly in traditional block ciphers. A Tweakable

block cipher is a powerful primitive that can be used in several applications such as disk

encryption in which the repeated same plaintext should be encrypted to different cipher-

texts under the same key. The concept of tweakable block ciphers also allows interesting

modes for authenticated encryption such as OCB3 [60] and Counter-in-Tweak [75].

There are two general approaches to build TBCs: (i) using ordinary block ciphers

through modes of operation, and (ii) dedicated constructions. Both the LRW and XEX

modes of operations [80] are examples of the first approach. For a block cipher with n-bit

block, the security of these modes is guaranteed up to around 2n/2 queries. For a higher

level of security, we can use a dedicated TBC that is built with the tweak concept from

the beginning such as Deoxys-BC [52], SKINNY [6], and CRAFT [7].

Tweakable TWINE (T-TWINE) [81] is the first lightweight dedicated TBC that is

built on Generalized Feistel Structure (GFS). It was built with the goal of reducing the

cost of design, security evaluation, and implementation. Therefore, the designers decided

to reuse a well-designed GFS block cipher, TWINE [94], and attached an extremely simple

tweak scheduling to it. Similar to TWINE, T-TWINE has two variants namely, T-TWINE-

80 and T-TWINE-128. These variants have the same block size of 64 bits, a tweak of 64

bits, and a variable key length of 80 and 128 bits.

The security of T-TWINE is evaluated by its designers against distinguishing attacks

including differential, linear, impossible differential, and integral cryptanalysis. Regarding

integral cryptanalysis, they only reported an 11-round integral distinguisher. Key recovery
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attacks based on impossible differential against reduced-round of T-TWINE are presented

in [100].

In this chapter, we study the security of T-TWINE against integral attacks. More

precisely,

1. We utilize the MILP models of the bit-based division property to search for the

longest integral distinguisher in the chosen tweak, chosen tweak-plaintext, and cho-

sen tweak-ciphertext attack settings. As a result, we found two 11-round integral

distinguishers using a tweak with only one active nibble in the chosen tweak set-

ting. We also checked the 11-round distinguisher reported in the design paper and

we show that it is not correct. All the found 11-round distinguishers are verified

experimentally. Furthermore, we found several 19-round integral distinguishers in

both chosen tweak-plaintext and chosen tweak-ciphertext settings. This allows us to

attack an extra three rounds more than TWINE which has 16-round integral distin-

guisher [105]. The best distinguishing attack can be performed using 26 × 263 = 269

chosen tweak-plaintext combinations.

2. We employ meet-in-the-middle [83] and partial-sum [40] techniques to convert the

best distinguishing attack to key recovery attacks against 26 (27) out of 36 rounds

of T-TWINE-80 (T-TWINE-128) by appending 7 (8) rounds after the disntinguisher.

3. By prepending one round before the distinguisher and using dynamically chosen

plaintexts [21], we managed to extend the attack one more round without using the

full codebook of the plaintext. Therefore, we are able to attack 27 and 28 rounds of

T-TWINE-80 and T-TWINE-128, respectively.

Table 7.1 summarizes the complexities of our attacks and contrast them with the com-

plexities of the impossible differential attacks presented in [100].

The rest of this chapter is organized as follows. In Section 7.2, we briefly revisit the

specifications of T-TWINE. The detailed integral distinguishing attacks against T-TWINE
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Table 7.1: Attack results on T-TWINE where CTP denotes chosen tweak-plaintext.

Attack #Rounds Data Time Memory Reference

T-TWINE-80

Imp. diff. 25 265.5 CTP 270.86 266 [100]

Integral
26 270.58 CTP 272.62 267.62 Sec. 7.4.1

27 270.95 CTP 275.79 271.08 Sec. 7.5.1

T-TWINE-128

Imp. diff. 27 264 CTP 2120.83 2118 [100]

Integral
27 271.58 CTP 2109.54 290.58 Sec. 7.4.2

28 272.27 CTP 2113.38 294.32 Sec. 7.5.1

is explained in Section 7.3. In Section 7.4, we describe the key recovery attacks against 26

and 27 rounds of T-TWINE-80 and T-TWINE-128, respectively. Then, the details of our

attacks against 27 and 28 rounds of T-TWINE-80 and T-TWINE-128 using dynamically

chosen plaintexts are presented in Section 7.5. Finally, the chapter is concluded in Section

7.6.

7.2 T-TWINE Specifications

The following notation is used throughout the rest of the chapter:

• K: The 80 or 128 bits master key.

• Kj: The jth nibble of K. The indices of the nibbles begin from 0.

• RKi: The 32-bit round key used in round i.

• RKi
j: The jth nibble of RKi. The indices of the nibbles begin from 0.

• T : The 64-bit tweak.

• Tj: The jth nibble of the tweak T .

• RT i: The 24-bit round tweak used in round i, where RT i ← ti0||ti1||

ti2||ti3||ti4||ti5, and tij is the jth nibble of RT i.
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Table 7.2: Nibble shuffle π

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

• X i: The 16 nibbles input to round i. The indices of the round begin from 1.

• X i
j: j

th nibble of X i.

• x[m]: mth bit of the nibble x where x[0] is the least significant bit.

• ⊕: The XOR operation.

• ||: The concatenation operation.

• Rotz(x): The z-bit left cyclic shift of x.

As we mentioned above, T-TWINE is an extension of the conventional block cipher

TWINE. It takes a tweak of 64 bits as an extra input in addition to a block of plaintext

with 64 bits in order to produce a block of ciphertext using 80 or 128 bits of a secret key.

T-TWINE structure consists of three parts: data processing which is a slightly modified

version of the equivalent part in TWINE to deal with the extra input, key scheduling

function of TWINE, and tweak scheduling function. The two variants of T-TWINE are the

same except in the key scheduling function.

Data Processing. The round function is based on a variant of Type-2 GFS [93] with

16 4-bit nibbles as depicted in Figure 7.1. It consists of a nonlinear layer (F -function

operations), round tweak XOR, and a diffusion layer which is a 16-nibble shuffle operation

(π, see Table 7.2). The F -function operation is a round-key XOR followed by 4-bit S-box

(S, see Table 7.3). This round function is iterated 36 times in both variants where the

diffusion layer is omitted from the last round.
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Figure 7.1: T-TWINE round function

Table 7.3: 4-bit S-box (S) of T-TWINE in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

Key Scheduling Function. Each variant of T-TWINE has its own key schedule. The

key scheduling function is used to stretch 80/128 bits of the master key K to 36 32-bit

round keys RKi where 1 ≤ i ≤ 36. Algorithms 2 and 3 show the details of these key

schedules. For more details, see [81,94].

Tweak Scheduling Function. A 64-bit tweak T is used to generate 36 24-bit round

tweaks RT i where 1 ≤ i ≤ 36 using a permutation-based function. Firstly, the 64-bit

tweak T is loaded to 16 4-bit nibbles t1j where 0 ≤ j ≤ 15. In i-th round, the first 6

nibbles (ti0, . . . , t
i
5) are used as the round tweak RT i, then these nibbles are shuffled using

a 6-nibble permutation πt, s.t. (0, 1, 2, 3, 4, 5)→ (1, 0, 4, 2, 3, 5). After that, all nibbles are

shifted by 6 nibbles to construct ti+1
j where 0 ≤ j ≤ 15 as depicted in Figure 7.2.

7.3 Integral Distinguishing Attacks

Since T-TWINE is an extension of TWINE which has 16-round integral distinguisher

using 263 chosen plaintexts [105], in this section we study the effect of the freedom gained

by adding a tweak to the structure. Thereby, we report the result regarding the integral

distinguishers in the three attack settings: chosen tweak, chosen tweak-plaintext, and
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Algorithm 2: Key Schedule of T-TWINE-80

Data: The 80-bit master key K
Result: The round keys RK = RK1||RK2|| · · · ||RK36

k0||k1|| · · · ||k19 ← K;
for i← 1 to 35 do

RKi ← k1||k3||k4||k6||k13||k14||k15||k16;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);
k7 ← k7 ⊕ (0||CON i

H);
k19 ← k19 ⊕ (0||CON i

L);
k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k19 ← Rot16(k0|| · · · ||k19);

end

RK36 ← k1||k3||k4||k6||k13||k14||k15||k16;
RK ← RK1||RK2|| · · · ||RK36;

Algorithm 3: Key Schedule of T-TWINE-128

Data: The 128-bit master key K
Result: The round keys RK = RK1||RK2|| · · · ||RK36

k0||k1|| · · · ||k31 ← K;
for i← 1 to 35 do

RKi ← k2||k3||k12||k15||k17||k18||k28||k31;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);
k23 ← k23 ⊕ S(k30);
k7 ← k7 ⊕ (0||CON i

H);
k19 ← k19 ⊕ (0||CON i

L);
k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k31 ← Rot16(k0|| · · · ||k31);

end

RK36 ← k2||k3||k12||k15||k17||k18||k28||k31;
RK ← RK1||RK2|| · · · ||RK36;

chosen tweak-ciphertext. To this end, we utilize the MILP models of the propagation

rules of the bit-based division property described in the previous chapter (Section 6.2.1) to

automate the search process using Gurobi optimizer [48]. We obtain the best distinguisher

in two steps. In the first step, we look for a distinguisher that covers the maximum number

of rounds irrespective of the data complexity. Then, we try to reduce the data complexity

of the longest one in the second step. We use the following notation to present the status
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Figure 7.2: Tweak schedule of T-TWINE

of each nibble of the tweak, plaintext, and ciphertext:

• C each bit of the nibble is fixed to constant.

• A all bits of the nibble are active.

• Ã all bits of the nibble are active except one arbitrary bit is constant.

• B each bit of the nibble is balanced (the XOR sum is zero).

• U a nibble with unknown status.

Chosen tweak setting. In this setting, all the plaintext bits are fixed to constant values

and some or all the bits of the tweak are active while the remaining bits are constant.

In the first step, we set all bits of the tweak to active. We then target r rounds and

use our MILP model to search for some balanced bits. If there is at least one balanced

bit, we increase the target rounds to r+ 1 and repeat the search process in the same way.

Otherwise, we conclude that the disnguisher with the maximum number of rounds based

on our model covers r rounds. Based on our evaluation, there is no distinguisher for 12 or

more rounds and the longest distinguisher is an 11-round one. In the second step, we try

to reduce the data complexity of that 11-round distinguisher by minimizing the number of

active nibbles in the tweak. To this end, we start with only one active nibble and if there

is no balanced bits, we progressively increase the number of active nibbles. Fortunately,
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we find two distinguishers with only one active nibble as shown bellow:

Plaintext C C C C C C C C C C C C C C C C

Tweak C C C C C C C C C C C C C C A C 11R−−→ U U U U U U U B U U U U U U U U

Tweak C C C C C C C C C C C C C C C A 11R−−→ U U U U U B U U U U U B U U U U

It should be mentioned that the designers have reported in [81] a different 11-

round integral distinguisher in which the plaintext nibbles are fixed to constant, the three

nibbles (5, 10, 11) in the tweak are actives, and the remaining nibbles in the tweak are

fixed to constant. This distinguisher has two balanced nibbles (0, 11) in the ciphertext

side as shown below. However, when we test this distinguisher using our MILP model

with the same input settings, we confirmed that there is only one balanced nibble (11) in

the ciphertext side.

Plaintext C C C C C C C C C C C C C C C C

Tweak C C C C C A C C C C A A C C C C 11R−−→ B U U U U U U U U U U B U U U U 7 ( [81])

Tweak C C C C C A C C C C A A C C C C 11R−−→ U U U U U U U U U U U B U U U U 3(Ours)

Since the data complexity for each one of the two 11-round integral distinguishers

we have proposed is 24, we have verified the correctness of them experimentally to validate

our results. Additionally, the data complexity of the 11-round distinguisher with the

same input settings as the distinguisher reported in [81] is 212, we also have verified

experimentally that it has only one balanced nibble (11) in the ciphertext side which is

consistent with the result using our MILP model∗.

Chosen tweak-plaintext setting. In this setting, some of plaintext bits are active

and the remaining bits are constant. For the tweak, some or all bits are active and the

remaining bits are constant.

Since the goal of the first step is to obtain the longest distinguisher, we set the

∗The code can be found at:
https://github.com/mhgharieb/Integral-Attack-T-TWINE
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64 bits of the tweak and 63 bits of the plaintext to active and the remaining bit of the

plaintext to constant†. We then target r rounds and iterate over the 64 positions of the

constant bit until we find some balanced bits or terminate without finding any. In the first

case, we increase the target rounds to r+1 and repeat the search process in the same way.

Otherwise, we conclude that the disnguisher with the maximum number of rounds based

on our model covers r rounds. In our evaluation, we found that the 19-round distinguisher

is the longest one.

In order to convert the distinguishing attack to a key recovery attack applicable for

both variants T-TWINE-80 and T-TWINE-128, the data complexity of the distinguisher

must be less than 280. Therefore, we limit the search process to find a distinguisher that

needs up to 80 active bits.

During the second step, we try to reduce the data complexity by minimizing the

number of active bits in both plaintext and tweak. We follow the technique described

in [89] to reduce the active bits of the plaintext. In particular, we repeat the previous

step for 19 rounds and instead of stopping the search process if there are some balanced

bits, we keep a record of the position of the constant bit in case of no balanced bits. In

our evaluation, there are 32 bits corresponding to the nibbles (1, 3, 5, 7, 9, 11, 13, 15) that

must be active to obtain 19-round distinguisher and the remaining bits may be active

or constant. After that, we try all the combinations of 2 out of 32 bits that might be

constant and check if the 19-round distinguisher exists. Unfortunately, such distinguisher

does not exist if we set any two bits in the plaintext to constant. Regarding the active bits

reduction in the tweak, we start with only one active nibble and if there is no distinguisher,

we progressively increase the number of active nibbles.

In our evaluation, there are several 19-round integral distinguishers using tweak

with two active nibbles. Moreover, we are able to reduce the active bits to 7 bits for some

of them and 6 bits for the distingiusher that we will use during the key recovery attacks.

†The data complexity of plaintext must be less than the full codebook because using the full codebook
of any permutation (a random permutation or a block cipher) always gives a balanced output.
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Plaintext A A A A Ã A A A A A A A A A A A
Tweak C C C A A C C C C C C C C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C C C C C C C C C C A 19R−−→ U U U U U U U U U U U U U B U U

Plaintext A A A A A A Ã A A A A A A A A A
Tweak C C C C C C Ã C C C C C C C A C

19R−−→ U U U U U U U U U U U U U U U B
Tweak C C C C C C C C C C C C A C A C 19R−−→ U U U U U U U U U U U U U U U B
Tweak C C C C C C C C C C C C C C A Ã

19R−−→ U U U B U U U U U U U U U U U U

Plaintext A A A A A A A A A A Ã A A A A A
Tweak Ã C C A C C C C C C C C C C C C

19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C A C C C C C C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C C C C C C A C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C C C C C C C A C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak Ã C C C C C C C C C C C A C C C

19R−−→ U U U U U U U B U U U U U U U U
Tweak C A C C C C C C C C C C A C C C 19R−−→ U U U U U U U U U U U B U U U U
Tweak C C C C A C C C C C C C A C C C 19R−−→ U U U U U U U B U U U B U U U U
Tweak C C C C C C C C C A C C A C C C 19R−−→ U U U U U U U B U U U U U U U U
Tweak C C C C C C C C C C C A A C C C 19R−−→ U U U U U U U B U U U U U U U U

Figure 7.3: 104 19-round integral distinguishers in chosen tweak-plaintext setting, where
the three groups consist of 4× (1 + 1) = 8, 4× (4 + 1 + 4) = 36, and 4× (4 + 1 + 1 + 1 +
4 + 1 + 1 + 1 + 1) = 60 distinguishers.

Figure 7.3 summarizes 40 distinguishers with 28 × 263 = 271, and 64 distinguishers with

27 × 263 = 270 chosen tweak-plaintext combinations.

Chosen tweak-ciphertext setting. In this setting, some of ciphertext bits are active

and the remaining bits are constant. For the tweak, some or all bits are active and the

remaining bits are constant.

We followed the same technique we have used in chosen tweak-plaintext setting

and we found that the 19-round integral distinguisher is the longest one. Like chosen

tweak-plaintext setting, the distinguisher does not exist if there are two constant bits in

the ciphertext. Also, there are several two active nibbles combinations of the tweak that

lead to 19-round distinguisher. Moreover, we are able to reduce, for some of them, the

active bits to only 7. Figure 7.4 summarizes 104 19-round integral distinguishers, 64 of

them need 27 × 263 = 270 chosen tweak-ciphertext combinations and the remaining need

28 × 263 = 271 chosen tweak-ciphertext combinations.

111



A A A Ã A A A A A A A A A A A A Ciphertext

U U U U U U B U U U U U U U U U 19R←−− C C C C C C C C C A C C C C A C Tweak

U U U U U U B U U U U U U U U U 19R←−− C C C C C C C C C C C C C C A Ã Tweak

A A A A A A A Ã A A A A A A A A Ciphertext

U U U U U U U U U U B U U U U U 19R←−− Ã C C C C C C C C C C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C A C C C C C C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C C C C C C A C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C C C C C C C C A A C C C Tweak

A A A A A A A A A A A Ã A A A A Ciphertext

U U U U U U U U U U B U U U U U 19R←−− C A C C C C C C C C C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C A C C C C C C C A C C C Tweak

A A A A A A A A A A A A A Ã A A Ciphertext

U U U U U U U U U U B U U U U U 19R←−− Ã C C A C C C C C C C C C C C C Tweak

U U U U B U U U U U U U U U U U 19R←−− C C C A A C C C C C C C C C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C A C C A C C C C C C C C C Tweak

U U U U B U U U U U B U U U U U 19R←−− C C C A C C C C C C C A C C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C A C C C C C C C C A C C C Tweak

A A A A A A A A A A A A A A A Ã Ciphertext

U U U U U U B U U U U U U U U U 19R←−− C C C C C C Ã C C C C C C C A C Tweak

Figure 7.4: 104 19-round Integral distinguishers in chosen tweak-ciphertext setting, where
the five groups consist of 20, 28, 8, 32, and 16 distinguishers.

7.4 Integral Attacks on T-TWINE

We convert the distinguishing attacks described in the previous section to key re-

covery attacks against reduced-round versions of T-TWINE. In particular, we target 26 and

27 rounds of T-TWINE-80 and T-TWINE-128, respectively, using the following 19-round

distinguisher that needs 6 and 63 active bits of the tweak and the plaintext, respectively:

Plaintext : (A,A,A,A,A,A,A3,A,A,A,A,A,A,A,A,A)

Tweak : (C, C, C, C, C, C,A1,3, C, C, C, C, C, C, C,A, C)

↓ 19R

(U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,B)

where A3 means all bits of the nibble are active except bit 3, counted from the least
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significant bit, is constant and A1,3 means bits (0 and 2) are active and bits (1 and 3) are

constant.

In the following, we revisit the Meet-in-the-Middle technique [83] and Partial-Sum

technique [40] that we use to enhance the time complexities of our proposed attacks.

Meet-in-the-Middle Technique. Let Zi
j, (0 ≤ j ≤ 7) denote the output of the F

functions in i-th round of T-TWINE. Consider the 19-round distinguisher mentioned above,

then the nibble X20
15 is balanced (

⊕
X20

15 = 0). Since this nibble can be expressed as a

linear combination of Z20
7 and X21

14 , we can obtain the following relation

⊕
Z20

7 =
⊕

X21
14

In meet-in-the-middle technique [83], each sum is independently computed from

ciphertexts (e.g., see Figure 7.5) and the subkeys used during the computation are stored

in two different tables indexed by the value of the sum. After that, we consider the

matches between the two tables, in the same manner of the meet-in-the-middle attack,

as candidate subkeys because they satisfy the previous relation. Since the procedure to

obtain both
⊕

Z20
7 and

⊕
X21

14 independently involves less number of subkeys than the

one to obtain
⊕

X20
15 directly, the time complexity will be improved.

Partial-Sum Technique. Ferguson et al. introduced the partial-sum technique to im-

prove the time complexity of integral attacks [40]. Suppose the key recovery procedure

during the integral cryptanalysis involves N operations, κ-bit subkey and 2|I| ciphertexts,

then the time complexity of the direct computation will be N × 2|I|+κ operations. Using

the partial-sum technique, this time complexity can be improved as follows. We firstly

store the ciphertexts that appear odd times in the memory whereas the ciphertexts that

appear even times are discarded since they have no effect on the balanced property. Then,

we guess a part of the subkey (κ1-bit) and partially decrypt the ciphertexts through a
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single operation to an intermediate state with |I1|-bit size (that can have up to 2|I1| values)

such that |I1| ≤ |I|. The time complexity of this step is 2|I|+κ1 operations. After that,

we repeat the step of storing the values that appear odd times and partially decrypting

the intermediate state using κi-bit to get another intermediate state with |Ii|-bit size such

that |Ii| ≤ |Ii−1|. The time complexity of the i-th step will be 2|Ii−1|+κ1+···+κi where I0 is

I, and the whole time complexity will be

N∑
i=1

2|Ii−1|+κ1+···+κi <

N∑
i=1

2|I|+κ = N × 2|I|+κ

In the following, we give the details of the key recovery attack against T-TWINE-80.

7.4.1 Attack on 26-Round T-TWINE-80

The ciphertexts of 26-round of T-TWINE-80 can be written as X27. The process of

obtaining
⊕

X20
15 involves the following 27 round keys (see Figure 7.5):

RK26, RK25
[0,1,2,3,4,5,7], RK

24
[0,1,2,6,7], RK

23
[0,4,6], RK

22
[4,5], RK

21
5 , RK

20
7

However, we only need to guess 76 bits in 19 round keys and the other 8 round keys can

be computed based on the key schedule as follows:

RK24
0 = RK25

7 ⊕ S(RK26
6 ⊕ (0||CON25

L )), RK24
1 = RK26

5 ,

RK24
2 = S−1(RK26

7 ⊕RK25
0 )⊕ S(RK24

7 ), RK23
4 = RK26

0 ,

RK23
6 = RK26

1 ⊕ (0||CON25
H ), RK22

4 = RK25
0 ,

RK21
5 = RK26

4 , RK20
7 = RK26

6 ⊕ S(RK26
2 )⊕ (0||CON25

L ).

where CON25
L and CON25

H are predefined constants.
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0 1 2 3 4 5 6 721R

0 1 2 3 4 5 6 722R

0 1 2 3 4 5 6 723R

0 1 2 3 4 5 6 724R

0 1 2 3 4 5 6 725R

0 1 2 3 4 5 6 726R

0 1 2 3 4 5 6 720R

T6

T14

B

0 1 2 3 4 5 6 721R

0 1 2 3 4 5 6 722R

0 1 2 3 4 5 6 723R

0 1 2 3 4 5 6 724R

0 1 2 3 4 5 6 725R

0 1 2 3 4 5 6 726R

0 1 2 3 4 5 6 720R

T14

T6

B

Figure 7.5: Analysis rounds of T-TWINE-80 where the upper part is used during comput-
ing

⊕
Z20

7 and the lower part is used during computing
⊕

X21
14 .

Key Recovery Procedure. We firstly construct a data structure where all the bits of

the plaintext X1 are active except the bit X1
6 [3] which is fixed to constant. For the tweak,
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the 6 bits T6[0, 2]||T14 are active whereas the other bits are fixed to constant. We then

ask the encryption oracle to obtain the corresponding ciphertext (X27). After that, we

initialize two empty hash tables HZ and HX with 256 and 240 entries to store the values of⊕
Z20

7 and
⊕

X21
14 , respectively, indexed by the round keys used during the computations.

Since obtaining
⊕

Z20
7 (the upper part of Figure 7.5) requires much more computa-

tion than obtaining
⊕

X21
14 (the lower part of Figure 7.5), we only explain the procedure to

obtain
⊕

Z20
7 . The attack starts by storing the values ofX27

[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15]||T6[0, 2]

||T14 that appear odd times in a list called the state S0 which has a size of up to 266 66-

bit values. Then, we guess at the i-th step a round key (or deduce it based on the key

schedule as shown above) and partially decrypt the values in the state Si−1, then store

the values of the output that appear odd times in a new state Si. For example, we guess

at step 1 RK26
2 and partially decrypt X27

4 and X27
5 to obtain X26

5 = X27
5 ⊕ S(X27

4 ⊕K26
2 ).

The state size after compression is up to 262 62-bit values. The time complexity of this

step is 24× 266 = 270 F -function operations. Table 7.4 summarizes the steps of the attack

procedure.

Finally, we access the hash tables (HZ , HX) for each 76-bit key, and we consider a

76-bit key as a candidate if the two entries are equal. The 4 balanced bits lead to 4 bits

filtration, therefore we get 272 76-bit candidates for the round keys when we use a single

data structure. We can reduce the number of the candidates by repeating the attack using

another data structure. Thanks to the key schedule, we can obtain 276 80-bit candidates

for the master key corresponding to these 272 76-bit round keys by guessing 4-bit round

key. The details of this step can be found in Appendix A. We then get the right master

key by exhaustively searching over these candidates using 2 plaintext/ciphertext pairs.

Attack Complexity. When we use a single data structure, we need 26 × 263 = 269

queries to the encryption oracle. From Table 7.4, we need 278.13 F -function operations to

compute
⊕

Z20
7 . Using the same method, we need 259.91 operations to compute

⊕
X21

14 .
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Table 7.4: Summary of the procedure to obtain
⊕

Z20
7 where ’Size’ refers to the size

of the intermediate state Si after the partial decryption at each step, the nibbles Xr
j in

the state Si−1 are replaced by the nibbles Xr
j s in the state Si during the i-th step, and

’Complexity’ is measured in term of F -function operations except step 0 is measured in
number of memory accesses (MA).
Step Key Size The State (Si) Complexity

0 - 266 X27
0 , X27

2 , X27
3 , X27

4 , X27
5 , X27

6 , X27
7 , X27

8 , X27
9 , X27

10 , X27
11 , X27

12 , X27
13 , X27

14 , X27
15 , T6, T14 266MA

1 RK26
2 262 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X27

10 , X27
11 , X27

12 , X27
13 , X27

14 , X27
15 , T6, T14 24 × 266 = 270

2 RK26
5 258 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X26

11 , X27
12 , X27

13 , X27
14 , X27

15 , T6, T14 28 × 262 = 270

3 RK26
7 254 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X26

11 , X27
12 , X27

13 , X26
15 , T6, T14 212 × 258 = 270

4 RK25
0 250 X25

1 , X27
2 , X27

3 , X27
6 , X27

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6, T14 216 × 254 = 270

5 RK26
3 250 X25

1 , X27
2 , X27

3 , X26
6 , X26

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6, T14 220 × 250 = 270

6 RK24
1 246 X24

3 , X27
2 , X27

3 , X26
6 , X26

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6 220 × 250 = 270

7 RK26
4 244 X24

3 , X27
2 , X27

3 , X26
6 , X26

7 , X26
8 , X26

9 , X26
11 , X27

12 , X27
13 , X26

15 224 × 246 = 270

8 RK26
1 244 X24

3 , X26
2 , X26

3 , X26
6 , X26

7 , X26
8 , X26

9 , X26
11 , X27

12 , X27
13 , X26

15 228 × 244 = 272

9 RK25
3 240 X24

3 , X26
2 , X26

6 , X26
7 , X25

7 , X26
9 , X26

11 , X27
12 , X27

13 , X26
15 232 × 244 = 276

10 RK25
5 236 X24

3 , X26
6 , X26

7 , X25
7 , X25

11 , X26
11 , X27

12 , X27
13 , X26

15 236 × 240 = 276

11 RK24
7 232 X24

3 , X26
6 , X26

7 , X25
7 , X27

12 , X27
13 , X24

15 , X26
15 240 × 236 = 276

12 RK24
2 228 X24

3 , X24
5 , X26

6 , X26
7 , X27

12 , X27
13 , X24

15 240 × 232 = 272

13 RK26
6 228 X24

3 , X24
5 , X26

6 , X26
7 , X26

12 , X26
13 , X24

15 244 × 228 = 272

14 RK24
4 224 X24

3 , X24
5 , X26

7 , X25
9 , X26

12 , X24
15 248 × 228 = 276

15 RK23
6 220 X24

3 , X24
5 , X26

7 , X26
12 , X23

13 248 × 224 = 272

16 RK22
4 216 X24

5 , X26
7 , X22

9 , X26
12 248 × 220 = 268

17 RK25
2 212 X24

5 , X25
5 , X22

9 252 × 216 = 268

18 RK23
0 28 X23

1 , X22
9 256 × 212 = 268

19 RK21
5 24 X21

11 256 × 28 = 264

20 RK20
7 1

⊕
Z20

7 =
⊕

S(X21
11 ⊕RK20

7 ) 256 × 24 = 260

Table 7.5: The data, time, and memory complexities using multiple data structures.

Data Time Complexity Memory

1 269 269 + 1× 278.13+259.91

8×26 + 276

8×26 + 145×272
8×26 + 276 + 212 ≈ 276.11 266.04

2 270 270 + 2× 278.13+259.91

8×26 + 276+272

8×26 + 145×268
8×26 + 272 + 28 ≈ 273.03 267.04

3 270.58 270.58 + 3× 278.13+259.91

8×26 + 276+272+268

8×26 + 145×264
8×26 + 268 + 24 ≈ 272.62 267.62

4 271 271 + 4× 278.13+259.91

8×26 + 276+272+268+264

8×26 + 145×260
8×26 + 264 ≈ 272.95 268.04
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We then access the hash tables (HZ , HX) sequentially to retrieve 2 4-bit words.

For simplicity, we consider the time to retrieve a single 4-bit word as a one F -function

operation. Therefore, for this step, we need 256 × (1 + 220) ≈ 276 F -function operations.

Consequently, we got 272 76-bit candidates of the round keys. As shown in Appendix A,

we need 145 F -function operations for each candidate to get the corresponding 24 80-bit

candidates of the master key. The exhaustive search over the candidates to get the right

master key takes 276 + 212 26-round encryptions. Therefore, the total time complexity

is 269 + 1 × 278.13+259.91

8×26 + 276

8×26 + 145×272
8×26 + 276 + 212 ≈ 276.11 26-round encryptions. The

memory complexity is dominated by storing the part of the ciphertexts involved during

the computation of
⊕

Z20
7 (the state S0) which is 266 66-bit blocks that is equivalent to

266.04 64-bit blocks. As shown in Table 7.5, the lowest time complexity can be achieved

using 3 data structures and in this case the data, time, and memory complexities are

3 × 26 × 263 = 270.58 chosen tweak-plaintext combinations, 272.62 26-round encryprions,

and 267.62 64-bit blocks, receptively.

7.4.2 Attack on 27-Round T-TWINE-128

The ciphertexts of 27-round of T-TWINE-128 can be written as X28. The process

of obtaining
⊕

X20
15 involves the following 35 round keys:

RK27, RK26, RK25
[0,1,2,3,4,5,7], RK

24
[0,1,2,6,7], RK

23
[0,4,6], RK

22
[4,5], RK

21
5 , RK

20
7

However, we only need to guess 116 bits in 29 round keys and the other 6 round keys can

be computed based on the key schedule as follows:

RK23
0 = RK27

4 , RK23
6 = RK27

2 ,

RK22
4 = RK27

6 ⊕ S(RK27
7 ), RK22

5 = RK26
0 ,

RK21
5 = RK25

0 , RK20
7 = RK27

1 ⊕ S(RK25
5 )⊕ (0||CON23

L )⊕ (0||CON26
H ).

where CON23
L and CON26

H are predefined constants.
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Key Recovery Procedure. Using the same procedure we have applied in the previous

section, we can recover 2112 116-bit candidates of the round keys and then retrieve 2124

128-bit candidates of the master key by guessing 12 bits. The number of the candidates

can be reduced by repeating the attack several times using different values of the constant

bits in the data structure.

Attack Complexity. When we use a single data structure, we need approximately 2113.83

F -function operations to fill the hash tables, then we need additionally 2116 F -function

operations to access the tables and recover 2112 116-bit candidates. Thus, we retrieve the

right master key using 2×2124 27-round encryptions. By repeating the attack 6 times, we

need 1
8×27 × (6× 2113.83 + 2116 + 2112 + · · ·+ 296) + 2104 + 240 = 2109.54 27-round encryptions

to retrieve the right master key. Hence, the data complexity is 6 × 269 = 271.58 chosen

tweak-plaintext combinations. The memory complexity is dominated by storing the values

of
⊕

Z20
7 in the hash table HZ . Therefore, we need 6×292 4-bit blocks which is equivalent

to 290.58 64-bit blocks.

7.5 Attacking One More Round

Chu et al. [21] presented a general method to use the dynamically chosen plaintexts

idea in order to attack one more round in the integral cryptanalysis by adding this round

before the distinguisher. In general, appending rounds before the integral distinguisher

may lead to use the full codebook of the plaintext. However, the dynamically chosen

plaintext method guarantees that we will not use the full codebook of the plaintext. In

this section, we explain how we can prepend one round before the integral distinguisher.

Consequently, we can target 27 and 28 rounds of T-TWINE-80 and T-TWINE-128, respec-

tively.

The core idea of the method is to express one of the constant bits (c) of the

distinguisher input as a non-linear boolean function in some plaintext bits (x) and key
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bits (k), i.e., c = f(x, k). Then, we guess the key bits (k) and carefully select a specific

plaintext set Dc
k that guarantees the constant bit c is fixed to 0 or 1 while the other bits

satisfy the distinguisher input. Consequently, the whole plaintext set used during the

attack will be
⋃

Dc
k.

In our attack, the plaintext is X1 and the distinguisher input is X2. Therefore,

we have to select the plaintexts such that X2
6 [3] (the most significant bit of X2

6 ) is fixed

to 0 or 1 while the other bits of X2 are active. From T-TWINE structure, X2
6 [3] =

X1
9 [3]⊕ S(X1

8 ⊕ k)[3] where k = RK1
4 ⊕RT 1

2 .

Based on the algebraic normal form of T-TWINE’s S-box, X2
6 [3] can be expressed

as follows:

X2
6 [3] =X1

9 [3]⊕ 1⊕ x[0]⊕ x[2]⊕ (x[0] · x[1])⊕ (x[1] · x[2])⊕ (x[0] · x[1] · x[2])

⊕ (x[0] · x[1] · x[3])⊕ (x[1] · x[2] · x[3])

where x[i] = X8
1 [i] ⊕ k[i] and k[i] = RK1

4 [i] ⊕ RT 1
2 [i]. Therefore, X2

6 [3] depends on the 5

bits X1
8 ||X1

9 [3] and the 4 bits of the round key RK1
4 .

The procedure to determine the suitable plaintext set in our attack is as follows:

1. Initialize 32 empty lists namely D0
k and D1

k where 0 ≤ k ≤ 15.

2. For each possible value of k and for all 25 possible values of X1
8 ||X1

9 [3], compute

X2
6 [3] and store X1

8 ||X1
9 [3] in D0

k if X2
6 [3] is 0 or in D1

k if X2
6 [3] is 1.

3. For each C := {ck|0 ≤ k ≤ 15} ∈ F16
2 , if |

⋃
kD

ck
k | < 25, export C and its corre-

sponding {Dck
k } as a possible plaintext set.

Based on our evaluation, there are 32 plaintext sets of {Dck
k }. In each set, there

are 31 out of 32 possible values of X1
8 ||X1

9 [3]. To validate these sets, we perform an

extra step as follows: for each k, we construct X1
8 , X

1
9 such that X1

8 ||X1
9 [3] ∈ Dck

k and

X1
9 [2]||X1

9 [1]||X1
9 [0] takes all possible values, then compute X2

6 = X1
9 ⊕ S(X1

8 ⊕ k), after

that, we check if X1
8 ||X2

6 [2]||X2
6 [1]||X2

6 [0] takes all 128 possible values and X2
6 [3] = ck or

120



Table 7.6: An example of {Dck
k }

RK1
4 ⊕RT 1

2 Dck
k = {X1

8 ||X1
9 [3]} X2

6 [3]

0000 00001, 00010, 00101, 00111, 01000, 01011, 01101, 01110, 10001, 10010, 10101, 10110, 11000, 11011, 11100, 11110 0

0001 00001, 00010, 00100, 00110, 01000, 01011, 01101, 01110, 10001, 10010, 10101, 10110, 11000, 11011, 11101, 11111 1

0010 00001, 00011, 00101, 00110, 01001, 01010, 01100, 01111, 10001, 10010, 10101, 10110, 11000, 11010, 11100, 11111 0

0011 00001, 00011, 00100, 00111, 01000, 01011, 01101, 01110, 10000, 10011, 10100, 10111, 11000, 11010, 11101, 11110 0

0100 00001, 00010, 00100, 00111, 01000, 01011, 01100, 01110, 10001, 10010, 10101, 10111, 11000, 11011, 11100, 11111 1

0101 00001, 00010, 00100, 00111, 01000, 01011, 01101, 01111, 10001, 10010, 10100, 10110, 11000, 11011, 11100, 11111 0

0110 00001, 00010, 00100, 00111, 01001, 01011, 01101, 01110, 10000, 10010, 10100, 10111, 11001, 11010, 11101, 11110 0

0111 00001, 00010, 00100, 00111, 01000, 01010, 01101, 01110, 10001, 10011, 10100, 10111, 11001, 11010, 11101, 11110 1

1000 00001, 00010, 00101, 00110, 01000, 01011, 01100, 01110, 10001, 10010, 10101, 10111, 11000, 11011, 11101, 11110 0

1001 00001, 00010, 00101, 00110, 01000, 01011, 01101, 01111, 10001, 10010, 10100, 10110, 11000, 11011, 11101, 11110 1

1010 00001, 00010, 00101, 00110, 01000, 01010, 01100, 01111, 10001, 10011, 10101, 10110, 11001, 11010, 11100, 11111 0

1011 00001, 00010, 00101, 00110, 01001, 01011, 01100, 01111, 10000, 10010, 10101, 10110, 11001, 11010, 11100, 11111 1

1100 00001, 00010, 00101, 00111, 01000, 01011, 01100, 01111, 10001, 10010, 10100, 10111, 11000, 11011, 11100, 11110 1

1101 00001, 00010, 00100, 00110, 01000, 01011, 01100, 01111, 10001, 10010, 10100, 10111, 11000, 11011, 11101, 11111 0

1110 00001, 00011, 00101, 00110, 01000, 01011, 01100, 01111, 10000, 10011, 10101, 10110, 11000, 11010, 11100, 11111 1

1111 00001, 00011, 00100, 00111, 01001, 01010, 01101, 01110, 10001, 10010, 10100, 10111, 11000, 11010, 11101, 11110 1

not. Table 7.6 depicts an example of these sets in which X1
8 ||X1

9 [3] does not take the value

of 000000.

Data Collection. We firstly construct a data structure in which all bits of X1 take all

the possible values except X1
8 ||X1

9 [3] ∈
⋃

Dck
k . For the tweak, all bits are fixed to constant

except the 6 bits (T3, T12[0, 2]) take all the possible values. Then, we ask the encryption

oracle to obtain the corresponding ciphertexts and store the ciphertext associated with

the active bits of the tweak in a hash table indexed by the value of X1
8 ||X1

9 [3]. Therefore,

the data complexity of a single structure is 26× (264−259) ≈ 269.95 chosen tweak-plaintext

combinations.

7.5.1 Key Recovery Attacks

T-TWINE-80. We firstly guess the value of RK1
4 and based on the value of k = RK1

4 ⊕

RT 1
2 , we select a set of 269 ciphertexts corresponding to the plaintexts that include Dck

k .

After that, we apply the same steps described in Section 7.4.1 to obtain 272 candidates

of the 76-bit round keys. It should be mentioned that the relative relations between the
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round keys involved in the analysis rounds are the same as in Section 7.4.1.

Using each value of RK1
4 combined with 272 76-bit candidates of the round keys,

we can compute 272 80-bit candidates of the master key. Subsequently, we get in total

24 × 272 = 276 80-bit candidates of the master. The right master key can be retrieved by

the exhaustive search over these candidates using 2 pairs of plaintext/ciphertext.

The time complexity is 269.95 + 24× (2
78.13+259.91

8×27 + 276

8×27 + 145×272
8×27 ) + 276 + 212 ≈ 276.47

27-round encryptions. The time complexity can be reduced to 275.79 27-round encryptions

if we use two data structures (2 × 269.95 = 270.95 chosen tweak-plaintext combinations).

The memory complexity is dominated by storing the ciphertexts associated with the active

bits of the tweak. Therefore, the memory complexity will be 271.08 64-bit blocks.

T-TWINE-128. In the same manner, we can target 28 rounds of T-TWINE-128. By

repeating the attack using different 5 data structures, we can retrieve the right master

key. The data complexity is 5× 269.95 = 272.27 chosen tweak-plaintext combinations. The

time complexity is 2113.38 28-round encryptions. The memory complexity is 5 × 24 × 292

4-bit blocks which is equivalent to 294.32 64-bit blocks.

7.6 Summary

We studied the security of T-TWINE against integral cryptanalysis. In particu-

lar, we showed that adding a tweak to the round function structure gives the attacker

more room to target a large number of rounds in T-TWINE compared to TWINE. More

precisely, we are able to construct several integral distinguishers that cover 19 rounds of T-

TWINE whereas the longest distinguisher covers only 16 rounds of TWINE. Furthermore,

we launched key recovery attacks against 27 and 28 of T-TWINE-80 and T-TWINE-128,

respectively. The presented attacks are the best-published attacks against both variants

of T-TWINE.
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Chapter 8

On MILP-based Automatic Search

for Bit-based Division Property for

Ciphers with (large) Linear Layers

With the introduction of the division trail, the bit-based division property (BDP)

has become the most efficient method to search for integral distinguishers. The notation

of the division trail allows us to automate the search process by modelling the propagation

of the DBP as a set of constraints that can be solved using generic Mixed-integer linear

programming (MILP) and SMT/SAT solvers. The current models for the basic operations

and S-boxes are efficient and accurate. In contrast, the two approaches to model the

propagation of the BDP for the non-bit-permutation linear layer are either inaccurate or

inefficient. The first approach relies on decomposing the matrix multiplication of the linear

layer into COPY and XOR operations. The model obtained by this approach is efficient, in

terms of the number of the constraints, but it is not accurate and might add invalid

division trails to the search space, which might lead to missing the balanced property of

some bits. The second approach employs a one-to-one map between the valid division

trails through the primitive matrix represented the linear layer and its invertible sub-
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matrices. Despite the fact that the current model obtained by this approach is accurate,

it is inefficient, i.e., it produces a large number of constraints for large linear layers like

the one of Kuznyechik [86]. In this paper, we address this problem by utilizing the

one-to-one map to propose a new MILP model and a search procedure for large non-

bit-permutation layers. As a proof of the effectiveness of our approach, we improve the

previous 3- and 4-round integral distinguishers of Kuznyechik [86] and the 4-round one of

PHOTON’s internal permutation (P288) [47]. We also report, for the fist time, a 4-round

integral distinguisher for Kalyna block cipher [74] and a 5-round integral distinguisher for

PHOTON’s internal permutation (P288).

8.1 Introduction

The first search tool utilized the bit-based division property was limited to building

integral distinguishers for block ciphers with block size less than 32 bits since the com-

plexity of the search is around O(2n) where n is the block size [98]. Xiang et al. [104] have

overcome the problem of the restriction on the block size by proposing the division trails.

Using the division trial, the search process for an integral distinguisher can be converted

to checking whether a specific division trail exists or not. They also proposed a systematic

method to model the propagation rules of the BDP as a set of linear constraints. Hence,

the search process can be efficiently automated with the help of generic Mixed Integer

Linear Programming (MILP) and SAT solvers. Moreover, Xiang et al. provided an ac-

curate model for the propagation of the BDP through the basic operations; COPY, XOR,

and AND, in addition to an accurate model for S-boxes. With the help of these models,

it is now feasible to look for integral distinguishers for many ciphers that utilize these

operations when the used linear layer is a bit-permutation.

For ciphers with non-bit-permutation linear layers, Sun et al. [90] proposed a model

relying on decomposing the matrix corresponding to the linear layer into its basic oper-
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ations; COPY and XOR. We refer to this model through our paper as Disjointed Represen-

tation and we will provide more details about it in the following sections. The main two

advantages of this model are: (i) it is applicable to all kinds of linear layers, and (ii) the

number of constraints needed to model the propagation of the BDP is small, precisely, 2n

where n denotes the size of the matrix input in bits. However, this representation does

not model the propagation accurately and might add invalid division trails to the search

space which might lead to missing the balanced property of some bits.

Another model for the propagation of the BDP through non-bit-permutation linear

layers is presented by Zhang and Rijmen in [106]. They observed that there is a one-to-one

map between each valid division trail and one of the invertible sub-matrices of the matrix,

M , representing the linear layer. They were able to convert this map to a set of MILP

constraints. Unlike the first model provided by [90], the new model is more accurate.

However, the number of the MILP constraints grows exponentially with the size of M .

Recently, Hu et al. partially solved this problem in [50] by utilizing the one-to-one relation

to build a model of 4-degree constraints that can be solved using SMT/SAT. The new

number of the constraints is proportional to the square of matrix size. Unfortunately, this

model is still not suitable for some large linear layers such as the one of Kuznyechik [86].

In this chapter, we propose a new model for the propagation of the BDP through

large linear layers. In particular, we utilize the same one-to-one map proposed by Zhang

and Rijmen to derive a set of constraints that filter out all non-invertible sub-matrices,

part of them during the offline modelling process and the other part on-the-fly during

the search process. In order to validate the correctness of our approach, we use our

model to reproduce the results of the 4- and 5-round key-dependent integral distinguishers

of AES reported in [50]. With the help of our model, we improved the previous 3-

and 4-round integral distinguishers of Kuznyechik block cipher and the 4-round one of

PHOTON’s internal permutation (P288). We also report, for the fist time, a 4-round

integral distinguisher for Kalyna block cipher [74] and a 5-round integral distinguisher for
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Table 8.1: Integral distinguishers for Kuznyechik, Kalyna and PHOTON.

Ciphers #Rounds log2(Data) Reference

Kuznyechik

3 116? [14]

3 56 Section 8.5.1

4 127? [14]

4 120 Section 8.5.1

Kalyna-128

4† 64 Section 8.5.2

4§ 96 Section 8.5.2

4‡ 62 Section 8.5.2

PHOTON (P288)

4 48 [90]

4 40 Section 8.5.3

5 280 Section 8.5.3

? Higher-order differential.
† Without pre-whitening operation.
§ With pre-whitening operation.
‡ A key-dependent distinguisher which depends on the 32 least significant

bits of the pre-whitening key.

PHOTON’s internal permutation (P288) [47]. Table 8.1 summarizes our results. The rest

of this chapter is organized as follows. In Section 8.2, we recall some relevant definitions.

In Section 8.3, we revisit the previous MILP models for the linear layers. Next, we

illustrate in details our new model and search approach in Section 8.4. In Section 8.5, we

show some applications of the new model. Finally, the chapter is concluded in Section

8.6.

8.2 Preliminaries

We represent n-bit vectors using bold letters, e.g., uuu ∈ Fn2 . The i-th element of uuu

is expressed as ui and the Hamming weight hw(uuu) is calculated as hw(uuu) =
∑n−1

i=0 ui. For

a matrix M ∈ Fp×q2 , we use the notation M(i, j) to represent the element of M located

at the i-th row and j-th column, ri = M(i, ∗) to represent the i-th row, and cj = M(∗, j)

126



to represent the j-th column of M . Given two q-bit and p-bit vectors uuu and vvv, we define

Mvvv,uuu ∈ Fhw(vvv)×hw(uuu)2 as a sub-matrix of M as follows

Mvvv,uuu = [M(i, j)], s.t. vi = uj = 1,∀ 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1

Given a q-bit vector uuu, we define Muuu ∈ Fp×hw(uuu)2 as a sub-matrix of M as follows

Muuu = [M(∗, j)], s.t. uj = 1,∀ 0 ≤ j ≤ q − 1

Definition 8.1 (Binary Matrix [50]) Suppose for a matrix M
′ ∈ Fs×s2m , we represent

the element M
′
(i, j) in M

′
as a polynomial in the extension field F2m ' F[x]/(f), where f

is the irreducible polynomial over F2 with degree m, then we call M
′

a binary matrix if all

such polynomials in M
′

can only be 0 or 1. Otherwise, M
′

is called a non-binary matrix.

8.3 Previous MILP-based Modelling for Linear Lay-

ers

The propagation of the bit-based division property through bit-permutation linear

layers, e.g., the linear layers of PRESENT [18]and GIFT [4] , can be easily modelled by

rearranging the variables based on the permutation. In contrast, the non-bit-permutation

linear layers, e.g., the linear layers of AES and Kuznyechik [29], needs a more complex

model.

In this section, we revisit the two methods used to model the propagation of the

BDP through non-bit-permutation linear layers. These methods relay on representing the

matrix multiplication in the linear layer at the bit level. Suppose the linear layer can

be represented as a matrix multiplication over the field F2m using the matrix M
′ ∈ Fs×s2m .

Given the irreducible polynomial of the field F2m , we can derive a unique equivalent matrix

M ∈ Fn×n2 called the primitive matrix at the bit level where n = s×m.
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8.3.1 Disjointed Representation

Since the primitive matrix M is presented at the bit level, i.e., M(i, j) ∈ {0, 1},

we can decompose the linear layer into its basic operations, i.e., AND with 0 or 1 and XOR

operations. Consequently, the propagation of the BDP can be easily modelled using the

models of the basic operations [90].

Let uuu
M−→ vvv denote the division trail through the linear layer where uuu,vvv ∈ Fn2 . By

defining a set of auxiliary binary variables ttt = {t(i,j) if M(i, j) = 1, 0 ≤ i, j ≤ n− 1}, we

can model the propagation of the BDP at the bit level in two steps as follows:

• (uj)
COPY−−→ (t(0,j), t(1,j), . . . , t(n−1,j)) where

−uj +
n−1∑
i=0

M(i,j)=1

t(i,j) = 0

• (t(i,0), t(i,1), . . . , t(i,n−1))
XOR−−→ (vi) where

−vi +
n−1∑
j=0

M(i,j)=1

t(i,j) = 0

Hence, the total number of constraints #L = 2n.

Limitations. Despite the fact that this method is simple and efficient in terms of the

number of constraints, it cannot handle the cancellation between monomials since it han-

dles each output bit individually. Hence, it is not precise and it might produce invalid

division trails leading to missing the balanced property of some output bits. For further

details, see [106].
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8.3.2 Compact Representation

One method to overcome the problem of the monomial cancellations is to deal with

the linear layer as a one single block like an S-box. However, the large size of the linear

layer renders this approach computationally infeasible in many cases.

In this context, Zhang and Rijmen observed that there is a one-to-one map between

the accurate division trails of the primitive matrix M and invertible sub-matrices of M

[106]. This observation is stated in the following theorem.

Theorem 8.1 ( [106]) Let M be the n×n primitive matrix of an invertible linear trans-

formation and uuu,vvv ∈ Fn2 . Then uuu
M−→ vvv is one of the valid division trails of the linear

transform M if and only if Mvvv,uuu is invertible.

Using this one-to-one map, they proposed a systematic method to model a binary

matrix M
′ ∈ Fs×s2m as a set of MILP constraints. For more derails, see [106]. In this case,

the total number of constraints #L = m× (2s − 1).

Regarding the non-binary matrices, we can still use the same method, but the

number of constrains will exponentially increase with the size of the primitive matrix,

i.e., if the primitive matrix M is n×n, then the total number of constraints #L = 2n−1.

Hu et al. presented an updated version of Theorem 8.1 in [50]. They removed the

restriction that the primitive matrix M must be invertible to have valid division trails.

Consequently, the primitive matrix M could be in general of size p × q. Hence, uuu
M−→ vvv

is one of the valid division trails of M if and only if Mvvv,uuu is invertible where uuu and vvv are

q- and p-bit vectors, and hw(uuu) = hw(vvv). Hu et al. also utilized this one-to-one map to

present a new model for the propagation of the BDP through a non-binary matrix using

less number of constraints. If a primitive matrix M is p × q, then the total number of

constraints will be #L = p2. It should be mentioned that the constraints are 4-degree

ones, therefore it is solvable using SMT/SAT solvers and cannot be handled using MILP

solvers. For more details, see [50].
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Limitations. Even though the models by Zhang and Rijmen, and Hu et al. are accurate,

they are inefficient for large linear layers, e.g., the primitive matrix corresponding to

the linear layer of Kuznyechik is 128 × 128, therefore we will need 2128 or 1282 = 214

constraints to model a single linear layer if we use Zhang and Rijmen and Hu et al.

methods receptively. Therefore, when the distinguisher covers many rounds, it will be

computationally infeasible for current MILP/SAT solvers to handle the model due to the

large number of the constraints.

8.4 MILP-based Modelling for (large) Linear Layers

As mentioned in the previous section, the current models for the non-bit-permutation

linear layer in the literature are either inaccurate or inefficient for large linear layers. In

this paper, we tackle this problem by proposing an accurate model for the linear layer

when its input division property is priorly known before the modelling step. Thereby, this

model is more suitable for the first round of the distinguisher. Regarding the other rounds

of the distinguisher when the input division property cannot be determined during the

modelling, we use the disjointed representation described in Section 8.3.1 and address its

inaccuracy by discarding any invalid trails on-fly during the search process.

8.4.1 Prior-Known Input Division Property to the Linear Layer

Suppose the primitive matrix M is of size p × q and let uuu be the input division

property to M and assume it is determined a priori. Consequently, we can utilize Theorem

8.1 and its updated version in [50] to derive all correct division trails. The naive method

to do so is by exhaustively trying all the values of the output division property vvv such that

hw(uuu) = hw(vvv) and checking if the sub-matrix Mvvv,uuu is invertible. Despite the correctness

of this method, we need to try
(

p
hw(uuu)

)
sub-matrices which is a very large number in almost

all the cases. Moreover, we have to find a method to encode these division trails as MILP
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constraints to build a large model that covers many number of rounds. In the following,

we explain our main idea to overcome this problem.

Main Idea. Based on Theorem 8.1, the sub-matrix Mvvv,uuu must be invertible to have a

valid trail uuu
M−→ vvv, i.e., the sub-matrix Mvvv,uuu must not include linearly dependant rows.

Given the input division property uuu, we can construct the column matrix Muuu. Subse-

quently, we can get the row echelon form of Muuu using the Gaussian eliminations, and

obtain all the sets of linearly dependent rows. Then, instead of checking each value of vvv

(as in the naive method), we derive a set of constraints that guarantee the bits vi do not

lead to including any set of linearly dependent rows from Muuu. In order to complete the

model, one more constraint should be added to enforce hw(uuu) = hw(vvv). Hence, the value

of vvv that satisfies these constraints is indeed a valid output division property.

The following examples illustrates our idea.

Detailed Example. Assume a toy linear layer where its primitive matrix M is 8 × 8.

Given the input division property uuu = (1, 1, 1, 1, 1, 0, 0, 0), we can construct the column

matrix Muuu by choosing the columns of M that correspond to the nonzero bits in uuu.

M =



1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 1 1 0 0

1 1 0 0 0 0 1 0

0 0 1 1 0 0 0 1



uuu−−−−→Muuu =



1 0 0 0 0

1 1 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 1

1 1 0 0 0

0 0 1 1 0


We follow the procedure given below to derive a set of linear constraints as a function

in the output division property vvv = (v0, v1, v2, v3, v4, v5, v6, v7) to trace the propagation of
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the division property for Muuu.

1. Check whether Rank(Muuu) = hw(uuu) to ensure that there is at least one full rank

(invertible) sub-matrix, and hence at least one valid division trail. Otherwise, we

conclude that uuu cannot be propagated to any valid vvv.

2. Use Gaussian eliminations to put Muuu in its row echelon form while keeping track

the row operations. Hence, each all-zero row in the row echelon form implies a set of

linearly dependent rows in the original matrix Muuu, e.g., the first all-zero row in our

example can be expressed as r0 + r1 + r5 = 000 which means that the rows {r0, r1, r5}

from Muuu are linearly dependent. The details of the Gaussian eliminations for our

example can be found in Appendix B.



1 0 0 0 0 r0

1 1 0 0 1 r1

0 1 0 0 0 r2

0 0 1 0 0 r3

0 0 0 1 0 r4

0 1 0 0 1 r5

1 1 0 0 0 r6

0 0 1 1 0 r7



Gaussian−−−−−−−→
Elimination



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 1 0 0 r3

0 0 0 1 0 r4

0 0 0 0 1 r2 + r1 + r0

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 0 r6 + r2 + r0

0 0 0 0 0 r7 + r3 + r4



→


r0 + r1 + r5 = 000

r0 + r2 + r6 = 000

r3 + r4 + r7 = 000



In general, if Muuu is p × hw(uuu), then there are p − hw(uuu) all-zero rows in the row

echelon form given that Rank(Muuu) = hw(uuu).

3. Find all the sets of linearly dependent rows. We do so by trying the combinations

between the relations derived from all-zero rows obtained in the previous step, e.g.,

combine r0 +r1 +r5 = 000 and r0 +r2 +r6 = 000 will produce r0 +r1 +r5 +r0 +r2 +r6 =
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000⇒ r1+r2+r5+r6 = 000 which means the rows {r1, r2, r5, r6} are linearly dependent.



r0 + r1 + r5 = 000

r0 + r2 + r6 = 000

r3 + r4 + r7 = 000

r1 + r2 + r5 + r6 = 000

r0 + r1 + r3 + r4 + r5 + r7 = 000

r0 + r2 + r3 + r4 + r6 + r7 = 000

r1 + r2 + r3 + r4 + r5 + r6 + r7 = 000

4. For each set of linearly dependent rows, we derive a constraint on some bits of vvv

enforcing any selected sub-matrix to be invertible, e.g., r0 + r1 + r5 = 000 means the

rows {r0, r1, r5} are linearly dependent. In other words, these rows together must

not be a part of any sub-matrix in order to have valid trails. Reflecting on vvv, this

means the bits v0, v1, v5 cannot be 1 at the same time. We can represent this relation

as a linear constrain v0 + v1 + v5 ≤ 2. The initial model for our toy linear layer

includes: 

v0 + v1 + v5 ≤ 2

v0 + v2 + v6 ≤ 2

v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3

v0 + v1 + v3 + v4 + v5 + v7 ≤ 5

v0 + v2 + v3 + v4 + v6 + v7 ≤ 5

v1 + v2 + v3 + v4 + v5 + v6 + v7 ≤ 6

v0, . . . , v7 are binary variables

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

5. Remove the redundancy constraints, e.g., the constraint C5 is redundant because if
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the constraints C1 and C3 are satisfied, then the constraint C5 is satisfied. Also, if

the constraints C1 and C3 are not satisfied, then the constraint C5 is not satisfied.

In contrast, if one of the constraints C1 and C3 is satisfied and the other is not

satisfied, the solution will be rejected even though the constraint C5 is satisfied. We

can automate this step by checking if a set of dependent rows (A) is a sub-set of

another set of dependent rows (B), then the constraint on the set B is redundant.

The model for our toy linear layer is then reduced to:



v0 + v1 + v5 ≤ 2

v0 + v2 + v6 ≤ 2

v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3

v0, . . . , v7 are binary variables

6. Finally, add a constraint to enforce that hw(uuu) = hw(vvv). The model for our toy

linear layer will be 

v0 + v1 + v5 ≤ 2

v0 + v2 + v6 ≤ 2

v3 + v4 + v7 ≤ 2

v1 + v2 + v5 + v6 ≤ 3

v0 + v1 + · · ·+ v7 = 5

v0, . . . , v7 are binary variables

Number of Constraints. Although we cannot count exactly the number of the re-

quired constraints before performing the procedure, we can give the upper bound of the

number based on Step 3 as follows:
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#L ≤ 1 +

p−hw(uuu)∑
i=1

(
p− hw(uuu)

i

)
= 1 + 2p−hw(uuu) − 1 = 2p−hw(uuu)

In the light of this upper bound, it is clear that the model is practically more

applicable when p−hw(uuu) is relatively small which is usually the case for the linear layer

at the first round when we search for a distinguisher that covers a large number of rounds

where the Hamming weight of the input division property of the distinguisher (the number

of active bits) is very close to the block size.

8.4.2 Complete Model and Search Approach

In the previous section, we presented a model for the linear layer at the first round

when its input division property is known before the modelling step. In this section,

we propose a search approach allowing us to use that model even though the targeted

distinguisher does not start from a linear layer. We also complete the model for the

targeted distinguisher by showing how to handle the intermediate linear layers.

Intermediate Linear Layers. We use the disjointed representation described in Section

8.3.1 to model the intermediate linear layers. When a candidate division tail is obtained

by solving the complete model, we then extract the values of the input and the output

division property of each matrix multiplication in the trail. After that, we check whether

Mvvv,uuu is invertible or not for each matrix multiplications. If one of them is not invertible,

we discard the trail by updating the model through adding a special craft constraint and

resolving the updated model.

Discarding Invalid Trails. Let (u0, . . . , un−1) and (v0, . . . , vn−1) be the variables in the

model representing the input and the output division property of a matrix multiplication

where Mvvv,uuu is not invertible in the current solution of the model. Let Iu0 (Iu1 ) be the indices

of uuu’s variables that equal to 0 (1) in the current solution. Similarly, let Iv0 (Iv1 ) be the
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indices of vvv’s variables that equal to 0 (1) in the current solution. We update the model

based on the current solution by adding the following constraint

∑
i∈Iu0

(ui) +
∑
i∈Iu1

(1− ui) +
∑
i∈Iv0

(vi) +
∑
i∈Iv1

(1− vi) ≥ 1

Therefore, when we attempt to resolve the updated model, the current solution,

i.e., the invalid trial, will violate the new constraint and the solver will not consider it as

a solution and try to obtain another solution.

Implementation. Although the models for both the first linear layer with known input

division property and the intermediate linear layers with the discarding approach above

are applicable using MILP and SMT/SAT, the approach to discard invalid trails is more

efficient using MILP solvers via the callback function and the concept of lazy constraints

[48,51] without needing to resolve the model from scratch.

Last Linear Layer. When the distinguisher ends with a linear layer, we can model it

using the disjointed representation (like the intermediate linear layers) or we can efficiently

model it using the model for XOR operation. Let (u0, . . . , un−1) and (v0, . . . , vn−1) be the

variables in the model which represent the input and the output division property of the

matrix multiplication in the last linear layer. Suppose we check if there is a division trail

from the input division property of the distinguisher to the unit vector ei, i.e., checking if

the i-th bit of the output is balanced or not. Therefore, the variables that represent the

output division property will be set to


vi = 1

vl = 0, 0 ≤ l ≤ n− 1, l 6= i
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Consequently, during modelling, we focus on row ri = M(i, ∗) of the primitive matrix M

and the constraints on the input division property of the matrix multiplication will be



n−1∑
j=0

M(i,j)=1

uj = 1

uj = 0, 0 ≤ j ≤ n− 1,M(i, j) = 0

After solving the model, if there is a division trail from the input division property of

the distinguisher to the unit vector ei, we conclude that there are other division trails

from the same input division property of the distinguisher to other unit vectors without

creating/solving their corresponding models. The original division trial can be split into

two sub-trails; from the input division property of the distinguisher to the input division

property of the last linear layer uuu, and from uuu to the unit vector ei where hw(uuu) =

hw(vvv) = 1, i.e., only one variable from (u0, . . . , un−1) is 1 and the other are 0. Suppose

this variable is uj. Therefore, the column matrix Muuu can be created from a single column

cj = M(∗, j). Based on Theorem 8.1, the division trail from the input division property

of the distinguisher to the unit vector el, passing through uuu, exists for the l-th output bit

if M(l, j) = 1 where 0 ≤ l ≤ n− 1.

Search Approach. If the targeted distinguisher starts from a linear layer, the input

division property of this linear layer is known and we can use the model described in

Section 8.4.1. Hence, we create only one model for the distinguisher. Otherwise, we

perform the following search approach:

1. We firstly determine all the possible values of the input division property of the first

linear layer by propagating the input division property of the distinguisher through

other parts of the first round, which is usually a non-linear layer of S-boxes.

2. Then, we check the i-th output bit by creating a group of sub-models starting from

the first linear layer with different input division property, thereby, we can employ
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the model described in Section 8.4.1 for the first linear layer in each sub-model.

3. Finally, we solve the sub-models independently in parallel by dividing our computa-

tional power between them. If the valid division trail that ends at the unity vector

ei exists for a sub-model, we terminate the search process for the other sub-models.

If it does not exist for all sub-models, then the i-th output bit is balanced. The last

two steps are repeated for all output bits.

Remark. Even though the model for the linear layer using the disjointed representation

with discarding invalid trails approach is applicable to the first linear layer, we believe

that modelling the first linear layer accurately from the beginning is important. Our

reasoning for that is as follows. First, the Hamming weight of the input/output division

property for the first linear layer is the highest compared to the successive linear layers,

i.e., the number of its possible propagation is high and the chance to find invalid sub-trails

will increase, which leads to the second reason. Since every sub-trail in early rounds is

branched to many trails in the successive rounds, invalid sub-trails in the first round have

a larger effect on expanding the search space, and hence increasing the time of solving

the model. We verified our hypothesis experimentally by comparing the running time

to find the 4-round key-dependent integral distinguish of AES reported in [50] using the

same platform in the two cases; the case when the first linear layer is modelled accurately

from the beginning and the other case when we model the first linear layer using the

disjointed representation with discarding approach. In the first case, the solver found the

distinguisher in around 50 minutes. In contrast, the solver did not finish in the second

case even after running for more than a day.
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8.5 Applications of our New Approach

In this section, we report our findings when applying our approach to Kuznyechik

and Kalyna block ciphers and a variant of PHOTON permutations. We also have re-

produced the results of the 4- and 5-round dependent-key integral distinguishers of AES

reported in [50].

During our experiments, We use either Gurobi∗ solver [48] or the CPLEX opti-

mizer [51] to solve the models. Our source codes are available at https://github.com/

SubmissionAnonymou/MILP_DivisionProprerty_LinearLayer

We use the following notation to present the integral property of each byte in the

plaintext and ciphertext:

• C: Each bit of the byte at the plaintext is fixed to constant.

• A: All bits of the byte at the plaintext are active.

• B: Each bit of the byte at the ciphertext is balanced (the XOR sum is zero).

• U : A byte at the ciphertext with unknown status (the XOR sum is unknown).

When each bit of a byte has a different property, we use lowercase letters to present

the property, i.e., c, a and b will represent a constant bit, an active bit, and a balanced

bit, respectively. For example, caaaaaaa represents a byte where the most significant bit

is constant and the other bits are active.

In general during our experiments, when an R-round distinguisher is found, we

follow two different paths in parallel as a next step; we examine whether (R + 1)-round

exists or not, and we try to find another R-round distinguisher that needs a less number

of active bits, i.e., less data complexity.

∗We use the version of Groubi that has some problems reported in [36]. Therefore, when we find some
balanced bits by solving a model using Gurobi and we could not verify this results by propagating the
traditional integral property, we resolve the model again using the CPLEX optimizer in order to validate
the results.
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8.5.1 Application to Kuznyechik

The Russian encryption standard — Kuznyechik [29, 86], also known as GOST

34.12-2015, is a 9-round SPN-based block cipher with a 128-bit block size and 256 bits of

key. The encryption procedure is performed as follows. After loading a block of 128-bit

plaintext to a 16-byte internal state xxx = (x0, . . . , x15) where x0 is the least significant

byte, the state is Xored with a whitening round key (XOR Layer (X)). Then, the state

is updated 9 times using an identical round function denoted as R = (X ◦ L ◦ S) that

consists of:

• Non-linear Layer (S): Each byte of the state is mapped using 8-bit S-box.

• Linear Layer (L): The 16-byte state is multiplied by 16× 16 MDS matrix over the

field F28 with the irreducible polynomial X8 +X7 +X6 +X + 1.

• XOR Layer (X): The 16-bye state is Xored with the corresponding round key.

In [14], Biryukov et al. studied Kuznyechik security against the multiset-algebraic

cryptanalysis in which they reported the 3- and 4-round integral distinguisher based on

their algebraic degree.

3-round Integral Distinguishers. Biryukov et al. reported that the 3-round has de-

gree at most 116 [14]. Therefore the XOR sum over a set of plaintexts with dimension

117 will be zero, i.e., the 3-round integral distinguisher exists with the data complexity

of 2117. However, we found several 3-round integral distingushers with a much lower data

complexity of 256. One of these distinguishers is as follows.

(C, C, C, C, C, C, C, C, C,A,A,A,A,A,A,A)

⇓ 3R ◦X

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)
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4-round Integral Distinguishers. Biryukov et al. also reported a 4-round distin-

guisher with the data complexity of 2127 depending on the 4-round has degree at most

126 [14]. In our experiments, we were able to find several 4-round integral distinguishers

with data complexity of 2120 (120 active bits). One of these distingushers is as follows.

(C,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)

⇓ 4R ◦X

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

Other Experiments. Biryukov et al. extended the 4-round key-independent integral

distinguisher to a 5-round key-dependent one with the same data complexity by appending

the linear layer (L) before the 4-round one. The new distinguisher depends on the least

significant byte of the master key. We were able to verify the existence of this distinguisher

using our model by setting one bit to a constant and the other bits to active as shown

below.

(caaaaaaa,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)

⇓ 4R ◦X ◦ L

(B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B)

As a next step, we employ the search approach proposed in the previous section to

check the existence of the 5-round key-independent distinguisher with a single bit constant

and 127 bits active, and we confirmed that this distinguisher does not exist even with the

use of the accurate propagation of the BDP.

8.5.2 Application to Kalyna

The Ukrainian standard Kalyna [74], also known as DSTU 7624:2014, is a family

of five SPN-based block ciphers denoted as Kalyna-l/k where l, k ∈ {128, 256, 512} are

the block size and the key size, respectively, such that k = l or k = 2× l. The number of

rounds depends on the key size.

141



We targeted the two members with the block size of 128 bits, Kalyna-128. The

encryption procedure is performed as follows. The 16 bytes of the plaintext block xxx =

(x0, . . . , x15) where x0 is the least significant byte, is loaded to the 8 × 2 16-byte state

matrix in column-wise order. After that, pre-whitening round key is added to each column

independently using addition modulo 264. We denote this operation as (�64). Then, The

following round function denoted as R = (X ◦ L ◦ SR ◦ S) is iterated 10 or 14 times

depending on the key size:

• Non-linear Layer (S): 4 different 8-bit S-boxes πs, s ∈ {0, 1, 2, 3} are used to map

the bytes of the state matrix where the i-th byte (xi) is substituted by πi mod 4(xi).

• ShiftRows (SR): The bytes of each row in the state matrix are cyclically shifted to

right by b i
4
c where i, 0 ≤ i ≤ 7 is the row index.

• Linear Layer (L): Each 8-byte column of the state matrix is independently multiplied

by 8× 8 MDS matrix over the field F28 with the irreducible polynomial X8 +X4 +

X3 +X2 + 1.

• XOR Layer (X): the state matrix is Xored with the corresponding round key.

In the last round, the XOR Layer (X) is replaced by a post-whitening modular key

addition modulo 264.

4-round Integral Distinguishers without pre-whitening. During our experiments,

we found two 4-round integral distinguisher starting after the pre-whitening step with

8 active bytes as depicted below. The correctness of these distinguishers can be easily

verified by propagating the integral properties though the equivalent structure of the round

function. Given that, each 8-bit S-box is reused every 4 bytes and the first (second) 4 rows

of the state matrix is shifted by the same step, the state matrix can be reconstructed as

2× 2 matrix such that each 4 successive bytes are concatenated in a 32-bit word and the
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4 different 8-bit S-boxes build a 32-bit super S-box. Therefore, when the diagonal (anti-

diagonal) words of the new state matrix are active, i.e., take all possible values from F2
232 ,

the output after 4-rounds will be balanced similar to the 4-round integral distinguisher of

AES [57].



C A

C A

C A

C A

A C

A C

A C

A C



OR



A C

A C

A C

A C

C A

C A

C A

C A



4R
==⇒



B B

B B

B B

B B

B B

B B

B B

B B



Appending �64−−−−−−−−−→



C A

C A

C A

C A

A A

A A

A A

A A



OR



A C

A C

A C

A C

A A

A A

A A

A A



4R◦�64====⇒



B B

B B

B B

B B

B B

B B

B B

B B



4-round Integral Distinguishers with pre-whitening. We were able to extend each

of the previous 4-round distinguishers to cover the pre-whitening operation. The new

distinguishers need 12 active bytes as depicted above. In the following, we illustrate the

way we use to select a set of plaintexts so that it satisfies the input division property of

the 4-round distinguisher after applying the pre-whitening operation.

Since the pre-whitening operation is performed per column, we focus on each col-

umn independently. Suppose X, Y , and K denote a 64-bit word of the input, the output

and the whitening key, respectively, such that Y = X �64 K. Each 64-bit word can be

considered as the concatenation of two 32-bit words, i.e., X = Xl||Xr, Y = Yl||Yr, and

K = Kl||Kr. Therefore, Yr = Xr �32Kr and Yl = Xl �32Kl �32 C where �32 denotes the

addition modulo 232 and C is the carry from the first addition part.

Consequently, a set of plaintexts such that Xr is fixed to constant and the 4 bytes

of Xl takes all the possible values from F4
28 , will give an output set such that Yr will be

constant and the 4 bytes of Yr will take all the possible values from F4
28 . This is because

the whitening key is constant and the carry will be fixed over all the set’s elements based

on the previous two questions. As the result, we can easily satisfy one of the two column
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in the 4-round distinguishers.

The same method cannot be applied to the other column because if Xr takes all

the possible values, Yr will take all the possible values, but, the value of the carry will

change depending on the value of the whitening key. Hence, we cannot adapt the values

of Xl to enforce Yl to be fixed over the set. To overcome this problem, we construct a set

of plaintexts such that the 8 bytes of X take all the possible values from F8
28 , hence, the 8

bytes of Y will take all the possible values from F8
28 . As the result, the output set Y can

be considered as 232 sub-sets in which each sub-set satisfies the input division property

of the other column of the 4-round distinguisher. Combining these two approaches, the

4-round distinguishers with the pre-whitening need 12 active bytes.

Using the BDP, we are able to verify the existence of these distingushers with the

help of the propagation model of the BDP through modular addition with a constant

presented in Chapter 6 (Section 6.2.1). Additionally, we have tried to reduce the number

of active bits by iterating over the active bits one-by-one and set it to constant then check

if the distinguisher still exists. Unfortunately, the distinguisher does not exist.

Other Experiments. During our experiments, we build a 4-round key-dependent dis-

tinguisher using 62 active bits. The new distinguisher depends on the 32 least significant

bits of the pre-whitening key. The distinguisher starts at the linear layer of the first round

with the input division property as shown below.



ccaaaaaa C

A C

A C

A C

C A

C A

C A

C A



3R◦X◦L◦SR
========⇒



B B

B B

B B

B B

B B

B B

B B

B B
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8.5.3 Application to PHOTON

PHOTON [47] is a family of lightweight hash functions proposed by Guo et al. at

CRYPTO 2011 and it has been standardized in ISO/IEC 29192-5:2016. PHOTON has 5

variants with 5 internal unkeyed permutations denoted as Pt where t ∈ {100, 144, 196, 256, 288}

is the internal state size. We target here the internal permutation P288. The structure of

the internal permutation follows the structure of AES where the internal state is repre-

sented as a d× d square matrix of cells. Thus, the internal state of P288 is a 6× 6 matrix

of bytes. Its round function consists of:

• AddConstants (X): Each byte of the 1st column of the state matrix is Xored with

a round-dependent constant.

• SubCells (S): Each byte (xi) of the state is substituted by Sbox(xi) where Sbox is

the 8-bit S-box of AES.

• ShiftRows (SR): The bytes of each row in state are cyclically shifted to left by i

where i ∈ 0 ≤ i ≤ 5 is the row index.

• MixColumnsSerial (L): Each column of the state is independently multiplied by

6× 6 MDS matrix over F28 with the irreducible polynomial X8 +X4 +X3 +X + 1.

3- and 4-round Integral Distinguishers. Since the permutation is followed the AES

structure, there are 3- and 4-round distinguishers that exploit the structure itself and

independent on the used S-boxes and the MDS matrix. In particular, when the state

matrix has a single byte active and the other bytes are constant (the data complexity is

28), each output bit after 3 rounds will have zero-sum (balanced). Also, there is a 4-round

distinguisher when all diagonal’s bytes of the state matrix are active (the data complexity

is 248). In [90], Sun et al. verified the existence of these 3- and 4-round distinguishers

using the MILP models for the propagation of the BDP. They have modelled the linear

layer using the disjointed representation.
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New 4-round Integral Distinguisher. At Crypto 2016, Sun et al. exploited a specific

property of the matrix used in AES to introduce the first 5-round key-dependent integral

distinguisher [87]. This property is that each column of the matrix has two equal elements.

We employ a similar property to reduce the date complexity of the 4-round distinguisher

of P288 and build a new 5-round one.

Suppose MP and M−1
P denote the matrix and its inverse that are used in P288 where

MP =



02 03 01 02 01 04

08 0e 07 09 06 11

22 3b 1f 25 18 42

84 e4 79 9b 67 0b

16 99 ef 6f 90 4b

96 cb d2 79 24 a7


, M−1

P =



15 50 eb 62 79 99

29 a5 c9 c2 fb 2b

56 54 8e 9f e9 57

ae af 03 20 c8 ae

47 47 01 44 8e 46

8c 8d 01 8d 02 8d



Suppose xxx = (x0, x1, x2, x3, x4, x4)
T and yyy = (y0, y1, y2, y3, y4, y5)

T be the input and

the output vectors to the matrix MP such that yyy = MP × xxx. Suppose xxx take 25×8=40

values where each of x0, x1, x2, x3 and x4 take all the possible values from F28 . Therefore,

yyy will take 240 values. Also, xxx = M−1
P × yyy can be expressed as shown below



x0

x1

x2

x3

x4

x4


=



15 50 eb 62 79 99

29 a5 c9 c2 fb 2b

56 54 8e 9f e9 57

ae af 03 20 c8 ae

47 47 01 44 8e 46

8c 8d 01 8d 02 8d





y0

y1

y2

y3

y4

y5


Hence, we can express x4 as follows in equations (8.1) and (8.2).

x4 = 47 · y0 ⊕ 47 · y1 ⊕ 01 · y2 ⊕ 44 · y3 ⊕ 8e · y4 ⊕ 46 · y5

x4 = 8c · y0 ⊕ 8d · y1 ⊕ 01 · y2 ⊕ 8d · y3 ⊕ 02 · y4 ⊕ 8d · y5

00 = cb · y0 ⊕ ca · y1 ⊕ 00 · y2 ⊕ c9 · y3 ⊕ 8c · y4 ⊕ cb · y5

(8.1)

(8.2)

(8.3)
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From (8.1) and (8.2), we can derive the equation (8.3) which implies that {y0, y1, y3,

y4, y5} are linearly dependent, i.e., they can take at most 24×8=32 values. Since yyy takes 240

values, y2 must take 28 values, i.e., y2 is an active bye and takes its all possible values(A).

Constructing 4-round Integral Distinguisher. We construct a set of 240 chosen

plaintexts such that the state matrix is as follows. The first 4 elements of the diagonal

are active, the last two elements of the diagonal are equal and active (denoted as Ā),

and the other elements of the state matrix are fixed to constant as shown below. After

applying the three operations: AddConstants (X), SubCells (S), and ShiftRows (SR),

the first column of the state matrix will be in the form of the vector xxx. Therefore, the

output set, after applying the MixColumnsSerial (L) operation (a full round from the

input set), can be divided into 232 sub-set so that each has one active byte and the other

are constant. Consequently, after another 3 rounds, each bit of the output will have

zero-sum as mentioned previously in the 3-round distinguisher section.



A C C C C C

C A C C C C

C C A C C C

C C C A C C

C C C C Ā C

C C C C C Ā


SR◦S◦X
=====⇒



A C C C C C

A C C C C C

A C C C C C

A C C C C C

Ā C C C C C

Ā C C C C C


L
=⇒ 232 ×





C C C C C C

C C C C C C

A C C C C C

C C C C C C

C C C C C C

C C C C C C


3R
==⇒



B B B B B B

B B B B B B

B B B B B B

B B B B B B

B B B B B B

B B B B B B




MILP for the New 4-round Distinguisher. Our model can be started at the Mix-

ColumnsSerial (L) operation of the first round, therefore, we can use the accurate model

for the propagation of the BDP described in Section 8.4.1. The first column of the state

matrix (in the form of xxx) will be multiplied by MP . Since the last two element of the

vector xxx are equal, we can express the multiplication operation yyy = MP ×xxx as yyy = M̂P ×x̂xx

where x̂xx = (x0, x1, x2, x3, x4)
T and M̂P can be derived as follows.
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y0

y1

y2

y3

y4

y5


=



02 03 01 02 01 04

08 0e 07 09 06 11

22 3b 1f 25 18 42

84 e4 79 9b 67 0b

16 99 ef 6f 90 4b

96 cb d2 79 24 a7





x0

x1

x2

x3

x4

x4


=



02 03 01 02 01⊕ 04

08 0e 07 09 06⊕ 11

22 3b 1f 25 18⊕ 42

84 e4 79 9b 67⊕ 0b

16 99 ef 6f 90⊕ 4b

96 cb d2 79 24⊕ a7





x0

x1

x2

x3

x4



=



02 03 01 02 05

08 0e 07 09 17

22 3b 1f 25 5a

84 e4 79 9b 6c

16 99 ef 6f db

96 cb d2 79 83





x0

x1

x2

x3

x4


, M̂P



x0

x1

x2

x3

x4



Consequently, we use the primitive matrix of M̂P for the first column and the primitive

matrix of MP for other columns. Regarding the intermediate linear layers, we use the

disjointed representation with discarding the invalid trails approach presented at Section

8.4.2. The result of solving the model is that a valid division trail that ends at a unit

vector does not exist for any output bits, i.e., each output bit after 4 rounds will have zero-

sum. It should be mentioned that the model of the first linear layer using the disjointed

representation without discarding the invalid trails leads some bits to be imbalanced.

5-round Integral Distinguisher. Similar to the new 4-round one, we employed the

same property of the matrix MP to build the 5-round distinguisher. We firstly construct

a set of 2280 chosen plaintexts where the last two elements of the diagonal are active and

equal (denoted as Ā), and the other elements of the state matrix are active. This set can

be divided, after the first round, into 2232 sub-sets such that every sub-set has 6 bytes

active at specific positions as shown below. Therefore, each sub-set can be considered as

an input to 4-round distinguisher that exploit the structure of the round function.
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A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A Ā A

A A A A A Ā


SR◦S◦X
=====⇒



A A A A A A

A A A A A A

A A A A A A

A A A A A A

Ā A A A A A

Ā A A A A A


L
=⇒ 2232 ×





C C C C A C

C C C C C A

A C C C C C

C A C C C C

C C A C C C

C C C A C C


4R
==⇒



B B B B B B

B B B B B B

B B B B B B

B B B B B B

B B B B B B

B B B B B B




MILP for the 5-round distinguisher. We have followed the same steps as modelling

the 4-round distinguisher to model the 5-round one, where we use the primitive matrix of

M̂P for the first column multiplication in the first round at which the model starts and the

primitive matrix of MP for the other columns. The result of solving the model indicates

that each output bit after 5 rounds is balanced.

Other Experiments. We have employed our search approach (Section 8.4.2) to build a

regular 5-round distinguisher that does not exploit the previous property of the matrix.

We verified that this kind of distinguisher does not exist even when the number of active

bits are 287 bits. Also, we have tried to reduce the number of active bits in both the

regular and the new 4-round distinguisher by setting one of the active bits to constant

and resolving the model. We verified that a distinguisher using less number of active bits

does not exist.

8.6 Summary

In this chapter, we proposed a new MILP model for the propagation of the BDP

through large non-bit-permutation linear layers. With the help of our model, we improved

the previous 3- and 4-round integral distinguishers of Kuznyechik block cipher and the

4-round one of PHOTON’s internal permutation (P288). We also found, for the first

time, two 4-round integral distinguishers for Kalyna block cipher and a 5-round integral

distinguisher for PHOTON’s internal permutation (P288).
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Chapter 9

Summary and Future Research

Directions

9.1 Summary of Contributions

In this section, we give a brief summary of the contributions accomplished in this

thesis. We have assessed the security of several block ciphers including CRAFT, SPARX-

128/256, Bel-T, T-TWINE, Kuznyechik, and Kalyna. Moreover, we have proposed some

modelling techniques that help to automate the search process for finding distinguishers in

differential and integral cryptanalysis. In the following, we report the major contributions

of this thesis.

In Chapter 3, we studied the security of the lightweight tweakable block cipher

CRAFT against related-key differential cryptanalysis. Firstly, we utilized the simple key

schedule of CRAFT to build 17 repeatable 2-round related-key differential characteristics

that hold with the probability of 2−2. Next, we mounted a key recovery attack on full-

round CRAFT using 231 queries to the encryption oracle and 285 encryptions, and 241 64-bit

blocks of memory. Moreover, we sped up the key recovery attack by using 8 different

related-key differential characteristics (with 8 related-key differences) in order to recover
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96 bits from the secret master key. Then, we got the whole master key by testing the right

96-bit key along with the remaining 32 bits of the key using a plaintext/ciphertext pair.

Finally, we omitted the exhaustive search step from the previous attack and recovered

the whole master key with 236.09 queries to the encryption oracle and only 11 full-round

encryptions (instead of 232 in the above attack) using 16 different related-key differential

characteristics (with 16 related-key differences).

In Chapter 4, we analyzed the block cipher SPARX-128/256 against impossible

differential cryptanalysis. Firstly, we presented two 20-round impossible differential dis-

tinguishers. Then, we used them to launch a key recovery attack against 24 rounds.

During this attack, we considered the cascaded S-boxes in the same branch as a one large

S-box, hence, we constructed 3 look-up tables corresponding to the 3 branches involved

in the analysis phase to speed up the attack. Also, we employed the two distinguish-

ers concurrently to reduce the data complexity by a factor of two and enhance the time

complexity.

In Chapter 5, we addressed the limitation of the current MILP model for the prop-

agation of the XOR difference through the modular operations, i.e., modular addition

and modular subtraction. The current model assumes that the inputs to the modular

operations are independent. However, we showed by examples that this assumption did

not hold. Accordingly, we proposed a new MILP model for the XOR difference through

the modular operations taking into account the dependency between the convective op-

erations. We then utilized the new model to assess the national standard of the Republic

of Belarus — Bel-T-256, against differential cryptanalysis. In particular, we reported a

3-round distinguisher with the probability of 2−111. Since the secret key in the Bel-T

round function is mixed using modular additions, Bel-T is not a key-alternating cipher

and the probability of the distinguisher may drop to zero due to the used key. Therefore,

we presented a procedure to find the secret keys which we can use the distinguisher with.

Based on our analysis, this distinguisher is valid for 2252.2 (out of 2256) secret keys. We
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then employed this distinguisher to attack 41
7
-round Bel-T-256.

In Chapter 6, we continued investigating the security of Bel-T-256, but this time

against integral cryptanalysis using the bit-based division property (BDP). Firstly, we

proposed MILP models for the propagation of the BDP through modular additions with

a constant and modular subtractions. We also conducted some experiments on a toy

cipher to validate our models. Then, we utilized these models, in addition to the MILP

models for the modular addition and the Bel-T’s S-box, to search for the longest integral

distinguisher. As a result, we found several 2-round distinguishers. Finally, we employed

two 2-round distinguishers to perform key recovery attacks against 32
7
-round Bel-T-256

and 36
7
-Round Bel-T-256.

In Chapter 7, we studied the security of the tweakable block cipher T-TWINE

against integral cryptanalysis. Firstly, we searched for the longest integral distinguisher

using the BDP in chosen tweak, chosen tweak-plaintext, and chosen tweak-ciphertext at-

tack settings. As a result, we found two 11-round integral distinguishers using a tweak with

only one active nibble in the chosen tweak setting. Also, we found several 19-round inte-

gral distinguishers in both chosen tweak-plaintext and chosen tweak-ciphertext settings.

This allowed us to attack an extra three rounds more than TWINE block cipher.Precisely,

We employed meet-in-the-middle and partial-sum techniques to convert the best distin-

guishing attack to key recovery attacks against 26 (27) out of 36 rounds of T-TWINE-80

(T-TWINE-128) by appending 7 (8) rounds after the disntinguisher. Finally, we extended

the attack one more round without using the full codebook of the plaintext by prepending

one round before the distinguisher and using dynamically chosen plaintexts. Therefore,

we were able to attack 27 and 28 rounds of T-TWINE-80 and T-TWINE-128.

In Chapter 8, we proposed a new MILP model for the propagation of the BDP

through large non-bit-permutation linear layers. The previous models are either inaccurate

or inefficient for large linear layers. The new model employs the one-to-one map between

the valid division trails through the primitive matrix represented the linear layer and
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its invertible sub-matrices. With the help of our model, we improved the previous 3-

and 4-round integral distinguishers of Kuznyechik block cipher and the 4-round one of

PHOTON’s internal permutation (P288). We also found, for the first time, two 4-round

integral distinguishers for Kalyna block cipher and a 5-round integral distinguisher for

PHOTON’s internal permutation (P288).

9.2 Future Work

In this section, we discuss some topics that would be of interest for future research.

• We have utilized MILP models in differential and integral cryptanalysis to auto-

mate finding distinguishers. It would be of interest to apply the same concept

to other cryptanalysis techniques that are not automated yet such as differential-

linear cryptanalysis. Furthermore, finding the best differential is more important

than finding the best differential trail in the context of differential cryptanalysis as

mentioned in Chapter 2. However, the current automation tools target the best

differential trail only. Finding the best differential is still an open problem. It would

be of interest to develop an automation tool that helps to find the best differential.

Moreover, the current automation tools focus on propagating the XOR differences

(∆Xinput = Xinput ⊕X
′
input). However, there are other forms of the differences may

be more powerful such as the modular differences (∆Xinput = Xinput�X
′
input) in the

context of ARX-based block ciphers.

• Recently, Gohr highlighted in [46] a new research direction in theoretical cryptanal-

ysis. He showed that machine learning (ML) could potentially be very useful to

finding cryptographic distinguishers. These distinguishers could use features that

are invisible to purely traditional distinguishers. Firstly, he trained several neural

network classifiers to distinguish the output of round-reduced SPECK block cipher

with a given input difference from random data. Then, he used one of these clas-
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sifiers to mount a key recovery attack. It would be interesting to apply the new

ML-based cryptanalysis to other symmetric-key primitives. Also, the presented

classifiers exploit differential properties of SPECK. Therefore, it would be interest-

ing to investigate the possibility to exploit other properties of block ciphers such as

the integral properties.

• Format-Preserving Encryption (FPE) [8] is a kind of encryption algorithm in which

the plaintext and the ciphertext have the same format, e.g., encrypting a 16-digit

credit card number so that the ciphertext is another 16-digit credit card number.

FFX [9], VAES3 [101], and BPS [20] are examples for FPE schemes. Generally

speaking, FPE schemes and block ciphers rely on the same design strategies. There-

fore, it would be interesting to investigate the ability to apply the attacks presented

in this thesis to FPE schemes.

154



Bibliography

[1] A. Abdelkhalek, Y. Sasaki, Y. Todo, M. Tolba, and A. Youssef. MILP modeling for

(large) s-boxes to optimize probability of differential characteristics. IACR Trans-

actions on Symmetric Cryptology, 2017(4):99–129, Dec. 2017.

[2] A. Abdelkhalek, M. Tolba, and A. M. Youssef. Related-key Differential Attack on

Round-Reduced Bel-T-256. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, 101(5):859–862, 2018.

[3] R. AlTawy, M. ElSheikh, A. M. Youssef, and G. Gong. Lelantos: A Blockchain-

Based Anonymous Physical Delivery System. In 2017 15th Annual Conference on

Privacy, Security and Trust (PST), pages 15–1509. IEEE, 2017.

[4] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo. GIFT:

A Small Present. In W. Fischer and N. Homma, editors, Cryptographic Hardware

and Embedded Systems – CHES 2017, volume 10529 of Lecture Notes in Computer

Science, pages 321–345. Springer, 2017.

[5] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers. The

SIMON and SPECK lightweight block ciphers. In 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[6] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sas-

drich, and S. M. Sim. The SKINNY Family of Block Ciphers and Its Low-Latency

155



Variant MANTIS. In M. Robshaw and J. Katz, editors, Advances in Cryptology –

CRYPTO 2016, volume 9815 of Lecture Notes in Computer Science, pages 123–153.

Springer, 2016.

[7] C. Beierle, G. Leander, A. Moradi, and S. Rasoolzadeh. CRAFT: Lightweight

Tweakable Block Cipher with Efficient Protection Against DFA Attacks. IACR

Transactions on Symmetric Cryptology, 2019(1):5–45, Mar. 2019.

[8] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-Preserving Encryp-

tion. In M. J. Jacobson, V. Rijmen, and R. Safavi-Naini, editors, Selected Areas

in Cryptography — SAC 2009, volume 5867 of Lecture Notes in Computer Science,

pages 295–312. Springer, 2009.

[9] M. Bellare, P. Rogaway, and T. Spies. The FFX mode of operation for format-

preserving encryption. NIST submission, 2010.

[10] Data Encryption and Integrity Algorithms. Preliminary State Standard of Republic

of Belarus (STBP 34.101.312011), 2011. http://apmi.bsu.by/assets/files/std/

belt-spec27.pdf.

[11] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31

Rounds Using Impossible Differentials. In J. Stern, editor, Advances in Cryptology

— EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages

12–23. Springer, 1999.

[12] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In

A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology – CRYPT0 ’90,

volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer, 1991.

[13] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-

dard. Springer, 1993.

156

http://apmi.bsu.by/assets/files/std/belt-spec27.pdf
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf


[14] A. Biryukov, D. Khovratovich, and L. Perrin. Multiset-Algebraic Cryptanalysis of

Reduced Kuznyechik, Khazad, and secret SPNs. IACR Transactions on Symmetric

Cryptology, 2016(2):226–247, Feb. 2017.

[15] A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. In B. Pfitzmann,

editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture

Notes in Computer Science, pages 395–405. Springer, 2001.

[16] A. Biryukov and V. Velichkov. Automatic Search for Differential Trails in ARX

Ciphers. In J. Benaloh, editor, Topics in Cryptology – CT-RSA 2014, volume 8366

of Lecture Notes in Computer Science, pages 227–250. Springer, 2014.

[17] A. Bogdanov. Analysis and Design of Block Cipher Constructions. PhD thesis,

Ruhr University Bochum, 2009.

[18] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-

shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.

In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded

Systems – CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages

450–466. Springer, 2007.

[19] A. Bogdanov and V. Rijmen. Linear hulls with correlation zero and linear crypt-

analysis of block ciphers. Designs, Codes and Cryptography, 70(3):369–383, Mar 01,

2014.

[20] E. Brier, T. Peyrin, and J. Stern. BPS: a format-preserving encryption proposal.

NIST submission, 2010.

[21] Z. Chu, H. Chen, X. Wang, L. Li, X. Dong, Y. Ding, and Y. Hao. Improved integral

attacks without full codebook. IET Information Security, 12(6):513–520, 2018.

157



[22] T. Cui, S. Chen, K. Jia, K. Fu, and M. Wang. New Automatic Search Tool for

Impossible Differentials and Zero-Correlation Linear Approximations. Cryptology

ePrint Archive, Report 2016/689, 2016. https://eprint.iacr.org/2016/689.

[23] J. Daemen, L. Knudsen, and V. Rijmen. The block cipher Square. In E. Biham,

editor, Fast Software Encryption – FSE 1997, volume 1267 of Lecture Notes in

Computer Science, pages 149–165. Springer, 1997.

[24] J. Daemen and V. Rijmen. Probability distributions of Correlation and Differentials

in Block Ciphers. Journal of Mathematical Cryptology JMC, 1(3):221–242, 2007.

[25] Y. De Mulder. White-Box Cryptography: Analysis of White-Box AES Implementa-

tions (White-Box Cryptografie: Analyse van White-Box AES implementaties). PhD

thesis, KU Leuven, 2014.

[26] FIPS-46: Data Encryption Standard (DES). National Institute of Standards and

Technology, 1979. https://csrc.nist.gov/csrc/media/publications/fips/

46/3/archive/1999-10-25/documents/fips46-3.pdf.

[27] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, 1976.

[28] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. Biryukov.
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Appendix A

Recovery of 80-bit Keys of

T-TWINE-80 Attack

During the key recovery attack against T-TWINE-80 in Chapter 7, we have got 272

76-bit candidates of the 19 round keys RK26
[0,1,2,3,4,5,6,7], RK

25
[0,1,2,3,4,5,7], RK

24
[6,7], RK

23
0 , RK

22
5

as shown in Section 7.4.1. In this appendix, we describe how we can transform them to

the 80-bit candidates of the master key.

Based on the key schedule of T-TWINE-80, these 19 round keys can be expressed as:

RK23
0 = V1 ⊕ CL9 ⊕ CH12

RK25
0 = V2 ⊕ CL11 ⊕ CH14

RK26
0 = V3 ⊕ CL12 ⊕ CH15

RK25
4 = V4 ⊕ CL14 ⊕ CH17

RK26
4 = V5 ⊕ CL15 ⊕ CH18

RK22
5 = V6 ⊕ CL16 ⊕ CH19

RK26
3 = V7 ⊕ CL18 ⊕ CH21

RK25
3 = V8 ⊕ CL17 ⊕ CH20

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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RK26
5 = V9 ⊕ CL20 ⊕ CH23

RK26
1 = V10 ⊕ CL22 ⊕ CH25

RK25
1 = V11 ⊕ CL21 ⊕ CH24

RK26
2 = V12

RK25
2 = V13

RK25
5 = V14 ⊕ CL19 ⊕ CH22

RK24
7 = V15

RK26
7 = V2 ⊕ CL11 ⊕ CH14 ⊕ S(V16 ⊕ CL6 ⊕ CH9 ⊕ S(V11)⊕ S(V15))

RK24
6 = V17 ⊕ CL3 ⊕ CH6 ⊕ S(V7)⊕ S(V16 ⊕ CL6 ⊕ CH9 ⊕ S(V11))⊕ CL23

RK26
6 = V18 ⊕ CL5 ⊕ CH8 ⊕ S(V9)⊕ S(V12)⊕ CL25

RK25
7 = V19 ⊕ CL10 ⊕ CH13 ⊕ S(V18 ⊕ CL5 ⊕ CH8 ⊕ S(V9)⊕ S(V12))

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

where CLi = 0||CON i
L and CHi = 0||CON i

H are predefined constants. The variables

V1, . . . , V19 are expressed as follows:

V9 = K15 ⊕ CH3 ⊕ S(V5)⊕ S(V17 ⊕ CL3 ⊕ CH6 ⊕ S(V7))

V8 = K3 ⊕ S(V3)⊕ S(K15 ⊕ CH3 ⊕ S(V5))

V4 = K10 ⊕ S(V1)⊕ S(K3 ⊕ S(V3))

V2 = K17 ⊕ S(V16))⊕ S(K10 ⊕ S(V1))

V12 = K5 ⊕ S(V17)⊕ S(K17 ⊕ S(V16)))⊕ CL8 ⊕ CH11⊕ S(V17 ⊕ CL3

⊕ CH6 ⊕ S(V7)⊕ S(V16)⊕ CL6 ⊕ CH9 ⊕ S(V11)))

V18 = K12 ⊕ S(K5 ⊕ S(V17))

V10 = K0 ⊕ CL2 ⊕ CH5 ⊕ S(V8)⊕ S(V18 ⊕ CL5 ⊕ CH8 ⊕ S(V9))

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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V14 = K11 ⊕ CH2 ⊕ S(V4)⊕ S(K0 ⊕ CL2 ⊕ CH5 ⊕ S(V8))

V6 = K18 ⊕ S(V2)⊕ S(K11 ⊕ CH2 ⊕ S(V4))

V15 = V1 ⊕ CL9 ⊕ CH12⊕ S(A)⊕ CL4 ⊕ CH7 ⊕ S(V14)⊕ S(V13))

V11 = K19 ⊕ CL1 ⊕ CH4 ⊕ S(V6)⊕ S(A)⊕ CL4 ⊕ CH7 ⊕ S(V14))

V7 = B ⊕ S(K19 ⊕ CL1 ⊕ CH4 ⊕ S(V6))

V5 = K14 ⊕ S(V19)⊕ S(B)

V13 = C ⊕ CL7 ⊕ CH10⊕ S(V10)

V3 = K2 ⊕ S(C)⊕ S(K14 ⊕ S(V19))

V1 = K9 ⊕ S(A))⊕ S(K2 ⊕ S(C))

V16 = K16 ⊕ S(K9 ⊕ S(A))

V17 = K4 ⊕ S(K16)

V19 = K13 ⊕ S(V18)⊕ S(K6 ⊕ S(K5 ⊕ S(V17)⊕ S(K17 ⊕ S(V16)))))

B = K7 ⊕ CH1 ⊕ S(K6 ⊕ S(K5 ⊕ S(V17)⊕ S(K17 ⊕ S(V16))))⊕ S(K18

⊕ S(V2)))

C = K1 ⊕ S(K0)⊕ S(K13 ⊕ S(V18))

A = K8 ⊕ S(K1 ⊕ S(K0)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

Therefore, we can compute the values of the variables V1, . . . , V19 directly from

equations (A.1)–(A.19). Hence, we substitute their values into the equations (A.20)–

(A.41). Thus, it is easy to obtain the values of K15, K3, K10, K17, K5, K12, K0, K11, K18,

A,K19, B,K14, C,K2, K9, K16, K4 one by one from equations (A.20)–(A.37). Next, we

guess the value of K6 and obtain the values of K13, K7, K1, K8 from equations (A.38)–

(A.41).
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Appendix B

Gaussian Elimination for the Toy

Linear Layer



1 0 0 0 0 r0

1 1 0 0 1 r1

0 1 0 0 0 r2

0 0 1 0 0 r3

0 0 0 1 0 r4

0 1 0 0 1 r5

1 1 0 0 0 r6

0 0 1 1 0 r7



→



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 1 0 0 0 r2

0 0 1 0 0 r3

0 0 0 1 0 r4

0 1 0 0 1 r5

0 1 0 0 0 r6 + r0

0 0 1 1 0 r7



→



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 0 0 1 r2 + r1 + r0

0 0 1 0 0 r3

0 0 0 1 0 r4

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 1 r6 + r1

0 0 1 1 0 r7



→
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1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 1 0 0 r3

0 0 0 0 1 r2 + r1 + r0

0 0 0 1 0 r4

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 1 r6 + r1

0 0 1 1 0 r7



→



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 1 0 0 r3

0 0 0 0 1 r2 + r1 + r0

0 0 0 1 0 r4

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 1 r6 + r1

0 0 0 1 0 r7 + r3



→



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 1 0 0 r3

0 0 0 1 0 r4

0 0 0 0 1 r2 + r1 + r0

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 1 r6 + r1

0 0 0 1 0 r7 + r3



→



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 1 0 0 r3

0 0 0 1 0 r4

0 0 0 0 1 r2 + r1 + r0

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 1 r6 + r1

0 0 0 0 0 r7 + r3 + r4



→



1 0 0 0 0 r0

0 1 0 0 1 r1 + r0

0 0 1 0 0 r3

0 0 0 1 0 r4

0 0 0 0 1 r2 + r1 + r0

0 0 0 0 0 r5 + r1 + r0

0 0 0 0 0 r6 + r2 + r0

0 0 0 0 0 r7 + r3 + r4



→


r0 + r1 + r5 = 000

r0 + r2 + r6 = 000

r3 + r4 + r7 = 000
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