7,887 research outputs found

    Multidimensional Database Reconstruction from Range Query Access Patterns

    Get PDF
    This work considers the security of systems that process encrypted multi-dimensional range queries with only access pattern leakage. Recent work of Kellaris et al. (CCS 2016) showed that in one dimension, an adversary could use the access patterns of several uniformly random range queries to reconstruct a plaintext column of numbers “up to reflection.” We extend this attack to two dimensions and find that the situation is much more complicated: Information theoretically it is complex to describe even what is possible to recover for the adversary in general. We provide a classification of these limits under certain technical conditions. We also give a faster algorithm that works for “dense” databases that contain at least one record for each possible value. Finally we explore the implications for our classification with real data sets

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future

    A Business Intelligence Solution, based on a Big Data Architecture, for processing and analyzing the World Bank data

    Get PDF
    The rapid growth in data volume and complexity has needed the adoption of advanced technologies to extract valuable insights for decision-making. This project aims to address this need by developing a comprehensive framework that combines Big Data processing, analytics, and visualization techniques to enable effective analysis of World Bank data. The problem addressed in this study is the need for a scalable and efficient Business Intelligence solution that can handle the vast amounts of data generated by the World Bank. Therefore, a Big Data architecture is implemented on a real use case for the International Bank of Reconstruction and Development. The findings of this project demonstrate the effectiveness of the proposed solution. Through the integration of Apache Spark and Apache Hive, data is processed using Extract, Transform and Load techniques, allowing for efficient data preparation. The use of Apache Kylin enables the construction of a multidimensional model, facilitating fast and interactive queries on the data. Moreover, data visualization techniques are employed to create intuitive and informative visual representations of the analysed data. The key conclusions drawn from this project highlight the advantages of a Big Data-driven Business Intelligence solution in processing and analysing World Bank data. The implemented framework showcases improved scalability, performance, and flexibility compared to traditional approaches. In conclusion, this bachelor thesis presents a Business Intelligence solution based on a Big Data architecture for processing and analysing the World Bank data. The project findings emphasize the importance of scalable and efficient data processing techniques, multidimensional modelling, and data visualization for deriving valuable insights. The application of these techniques contributes to the field by demonstrating the potential of Big Data Business Intelligence solutions in addressing the challenges associated with large-scale data analysis

    A Perceptually Based Comparison of Image Similarity Metrics

    Full text link
    The assessment of how well one image matches another forms a critical component both of models of human visual processing and of many image analysis systems. Two of the most commonly used norms for quantifying image similarity are L1 and L2, which are specific instances of the Minkowski metric. However, there is often not a principled reason for selecting one norm over the other. One way to address this problem is by examining whether one metric, better than the other, captures the perceptual notion of image similarity. This can be used to derive inferences regarding similarity criteria the human visual system uses, as well as to evaluate and design metrics for use in image-analysis applications. With this goal, we examined perceptual preferences for images retrieved on the basis of the L1 versus the L2 norm. These images were either small fragments without recognizable content, or larger patterns with recognizable content created by vector quantization. In both conditions the participants showed a small but consistent preference for images matched with the L1 metric. These results suggest that, in the domain of natural images of the kind we have used, the L1 metric may better capture human notions of image similarity

    HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing

    Get PDF
    The increasing demand for Exa-byte-scale storage capacity by high end computing applications requires a higher level of scalability and dependability than that provided by current file and storage systems. The proposal deals with file systems research for metadata management of scalable cluster-based parallel and distributed file storage systems in the HEC environment. It aims to develop a scalable and adaptive metadata management (SAM2) toolkit to extend features of and fully leverage the peak performance promised by state-of-the-art cluster-based parallel and distributed file storage systems used by the high performance computing community. There is a large body of research on data movement and management scaling, however, the need to scale up the attributes of cluster-based file systems and I/O, that is, metadata, has been underestimated. An understanding of the characteristics of metadata traffic, and an application of proper load-balancing, caching, prefetching and grouping mechanisms to perform metadata management correspondingly, will lead to a high scalability. It is anticipated that by appropriately plugging the scalable and adaptive metadata management components into the state-of-the-art cluster-based parallel and distributed file storage systems one could potentially increase the performance of applications and file systems, and help translate the promise and potential of high peak performance of such systems to real application performance improvements. The project involves the following components: 1. Develop multi-variable forecasting models to analyze and predict file metadata access patterns. 2. Develop scalable and adaptive file name mapping schemes using the duplicative Bloom filter array technique to enforce load balance and increase scalability 3. Develop decentralized, locality-aware metadata grouping schemes to facilitate the bulk metadata operations such as prefetching. 4. Develop an adaptive cache coherence protocol using a distributed shared object model for client-side and server-side metadata caching. 5. Prototype the SAM2 components into the state-of-the-art parallel virtual file system PVFS2 and a distributed storage data caching system, set up an experimental framework for a DOE CMS Tier 2 site at University of Nebraska-Lincoln and conduct benchmark, evaluation and validation studies

    Spatiotemporal Indexing With the M-Tree

    Get PDF
    Modern GIS applications for transportation and defense often require the ability to store the evolving positions of a large number of objects as they are observed in motion, and to support queries on this spatiotemporal data in real time. Because the M-Tree has been proven as an index for spatial network databases, we have selected it to be enhanced as a spatiotemporal index. We present modifications to the tree which allow trajectory reconstruction with fast insert performance and modifications which allow the tree to be built with awareness of the spatial locality of reference in spatiotemporal data

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals
    • …
    corecore