634 research outputs found

    Schema architecture and their relationships to transaction processing in distributed database systems

    Get PDF
    We discuss the different types of schema architectures which could be supported by distributed database systems, making a clear distinction between logical, physical, and federated distribution. We elaborate on the additional mapping information required in architecture based on logical distribution in order to support retrieval as well as update operations. We illustrate the problems in schema integration and data integration in multidatabase systems and discuss their impact on query processing. Finally, we discuss different issues relevant to the cooperation (or noncooperation) of local database systems in a heterogeneous multidatabase system and their relationship to the schema architecture and transaction processing

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    Protocols for Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected database systems that primarily operate independently but cooperate to a certain extent. Global integrity constraints can be very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. This paper presents a threefold contribution to integrity constraint checking in federated databases: (1) The problem of constraint checking in a federated database environment is clearly formulated. (2) A family of protocols for constraint checking is presented. (3) The differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed by the protocols, and processing and communication costs. Thus, our work yields a suite of options from which a protocol can be chosen to suit the system capabilities and integrity requirements of a particular federated database environment

    Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected databases that cooperate in an autonomous fashion. Global integrity constraints are very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. The paper presents a threefold contribution to integrity constraint checking in federated databases: (1) the problem of constraint checking in a federated database environment is clearly formulated; (2) a family of cooperative protocols for constraint checking is presented; (3) the differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed, and costs involved. Thus, we provide a suite of options with protocols for various environments with specific system capabilities and integrity requirement

    Design and evaluation of a new transaction execution model for multidatabase systems

    Get PDF
    Cataloged from PDF version of article.In this paper, we present a new transaction execution model that captures the formalism and semantics of various extended transaction models and adopts them to a multidatabase system (MDBS) environment. The proposed model covers nested transactions, various dependency types among transactions, and commit independent transactions. The formulation of complex MDBS transaction types can be accomplished easily with the extended semantics captured in the model. A detailed performance model of an MDBS is employed in investigating the performance implications of the proposed transaction model. © Elsevier Science Inc. 1997

    A Data Transformation System for Biological Data Sources

    Get PDF
    Scientific data of importance to biologists in the Human Genome Project resides not only in conventional databases, but in structured files maintained in a number of different formats (e.g. ASN.1 and ACE) as well a.s sequence analysis packages (e.g. BLAST and FASTA). These formats and packages contain a number of data types not found in conventional databases, such as lists and variants, and may be deeply nested. We present in this paper techniques for querying and transforming such data, and illustrate their use in a prototype system developed in conjunction with the Human Genome Center for Chromosome 22. We also describe optimizations performed by the system, a crucial issue for bulk data

    Global Semantic Integrity Constraint Checking for a System of Databases

    Get PDF
    In today’s emerging information systems, it is natural to have data distributed across multiple sites. We define a System of Databases (SyDb) as a collection of autonomous and heterogeneous databases. R-SyDb (System of Relational Databases) is a restricted form of SyDb, referring to a collection of relational databases, which are independent. Similarly, X-SyDb (System of XML Databases) refers to a collection of XML databases. Global integrity constraints ensure integrity and consistency of data spanning multiple databases. In this dissertation, we present (i) Constraint Checker, a general framework of a mobile agent based approach for checking global constraints on R-SyDb, and (ii) XConstraint Checker, a general framework for checking global XML constraints on X-SyDb. Furthermore, we formalize multiple efficient algorithms for varying semantic integrity constraints involving both arithmetic and aggregate predicates. The algorithms take as input an update statement, list of all global semantic integrity constraints with arithmetic predicates or aggregate predicates and outputs sub-constraints to be executed on remote sites. The algorithms are efficient since (i) constraint check is carried out at compile time, i.e. before executing update statement; hence we save time and resources by avoiding rollbacks, and (ii) the implementation exploits parallelism. We have also implemented a prototype of systems and algorithms for both R-SyDb and X-SyDb. We also present performance evaluations of the system
    corecore