
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

8-9-2005

Global Semantic Integrity Constraint Checking for
a System of Databases
Praveen Madiraju

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Madiraju, Praveen, "Global Semantic Integrity Constraint Checking for a System of Databases." Dissertation, Georgia State University,
2005.
https://scholarworks.gsu.edu/cs_diss/1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

GLOBAL SEMANTIC INTEGRITY CONSTRAINT CHECKING FOR A SYSTEM OF

DATABASES

by

PRAVEEN MADIRAJU

Under the Direction of Rajshekhar Sunderraman

ABSTRACT

In today’s emerging information systems, it is natural to have data distributed across

multiple sites. We define a System of Databases (SyDb) as a collection of autonomous and

heterogeneous databases. R-SyDb (System of Relational Databases) is a restricted form of SyDb,

referring to a collection of relational databases, which are independent. Similarly, X-SyDb

(System of XML Databases) refers to a collection of XML databases.

Global integrity constraints ensure integrity and consistency of data spanning multiple

databases. In this dissertation, we present (i) Constraint Checker, a general framework of a

mobile agent based approach for checking global constraints on R-SyDb, and (ii) XConstraint

Checker, a general framework for checking global XML constraints on X-SyDb. Furthermore,

we formalize multiple efficient algorithms for varying semantic integrity constraints involving

both arithmetic and aggregate predicates. The algorithms take as input an update statement, list

of all global semantic integrity constraints with arithmetic predicates or aggregate predicates and

outputs sub-constraints to be executed on remote sites. The algorithms are efficient since (i)

constraint check is carried out at compile time, i.e. before executing update statement; hence we

save time and resources by avoiding rollbacks, and (ii) the implementation exploits parallelism.

We have also implemented a prototype of systems and algorithms for both R-SyDb and X-SyDb.

We also present performance evaluations of the system.

INDEX WORDS: Multidatabases, Global Semantic Integrity Constraints, XML Databases, XML

Constraints

GLOBAL SEMANTIC INTEGRITY CONSTRAINT CHECKING FOR A SYSTEM OF

DATABASES

by

Praveen Madiraju

Presented in Partial Fulfillment of Requirements for the Degree of

Doctor of Philosophy

Georgia State University

2005

Copyright by
Praveen Madiraju

2005

GLOBAL SEMANTIC INTEGRITY CONSTRAINT CHECKING FOR A SYSTEM OF

DATABASES

by

PRAVEEN MAIDRAJU

Major Professor: Rajshekhar Sunderraman

Committee: Anu G. Bourgeois

 Jeff Qin

 Yanqing Zhang

Electronic Version Approved:

Office of Graduate Studies

College of Art and Sciences

Georgia State University

August 2005

 iv

ACKNOWLEDGEMENTS

During the process of completing my Ph.D., many people have helped me in

realizing my goal.

First, and foremost, I would like to thank my advisor, Dr. Raj Sunderraman for

introducing me to the area of databases and the research problems in this area. As a

researcher, he is sharp, quick and smart. As a person, he is very humble, easily

approachable, plain hearted, and straightforward. One can learn lot of fascinating things,

both technical and non-technical issues from him. I hope I have learnt at least some of

them. I would also like to thank my other Ph.D committee members - Dr. Anu Bourgeois,

Dr. Yanqing Zhang, and Dr. Jeff Qin for advising me and reviewing the document. I

sincerely appreciate the advice and help I have received from Dr. Yi Pan on many issues

during the course of my study.

This course of study would not have been pleasant and enjoyable without the love

of my life – my Bujji. I also would like to thank my friends – Abbi, Ajay, Ramu,

Amarnath, Arthi, Arun, Ayyappa, Ramna, Bhanu, Shilpa, Harshi, Laxmikanth, Arvind,

Bindu, Varsha, Mugdha, Janaka, Praveena, Naresh, Swaroop, Somu, Amar, Venu,

Srikanth, Smitha, Vijay, Vamshi, Anna, Vinod, Rhony and others.

Finally, definitely not the least, without the loving support and patience of my

family – mummy, daddy, and Sugandhi, I would not have realized my goals.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ……………………………………………………………………iv

LIST OF FIGURES……….…………………………………………………………………….v

LIST OF ACRONYMS………………………………………………………………………….vi

1. INTRODUCTION... 1

1.1 Motivation .. 2

1.2 Problem Statement.. 2

1.3 Contributions .. 3

1.4 Research Path ... 4

1.5 Organization ... 6

2. SYSTEM OF DATABASES... 7

2.1 SyDb Architecture .. 8

2.2 Global Queries and SyDbQL Syntax.. 10

2.2.1 Global Queries ... 11

2.2.2 SyDbQL Syntax .. 11

3. CONSTRAINT CHECKING IN A SYSTEM OF RELATIONAL DATABASES 14

3.1 Preliminaries... 14

3.1.1 Example Database ... 14

3.1.2 Constraints ... 15

3.1.3 Integrity Constraint Classification... 16

3.1.4 Mobile Agents... 17

3.2 Constraint Checker Overview .. 18

3.3 Constraint Checker Internal Architecture... 21

3.4 Constraint Planning Algorithm... 28

3.4.1 CPA-insert.. 29

3.4.2 CPA-delete ... 34

3.4.3 CPA-modify .. 35

3.4.4 Discussion .. 35

3.5 Constraint Planning Involving Aggregates... 36

3.5.1 Example Database ... 36

3.5.2 Aggregate Constraints ... 37

3.5.3 CPAggreg-insert .. 39

3.5.4 CPAggreg-delete .. 44

3.5.5 CPAggreg-modify... 45

3.5.6 Discussion .. 45

3.6 Implementation... 47

3.7 Performance Evaluations.. 48

4. CONSTRAINT CHECKING IN A SYSTEM OF XML DATABASES......................... 51

4.1 Overview of XConstraint Checking ... 53

4.2 Preliminaries... 54

4.2.1 Example XML Database .. 54

4.2.2 XUpdate ... 55

4.2.3 XML Constraint Representation... 57

4.3 XConstraint Checker .. 61

4.3.1 Assumptions ... 61

4.3.2 XConstraint Architecture ... 62

4.4 XConstraint Decomposer ... 66

4.5 Implementation... 74

5. RELATED WORK ... 76

5.1 Constraint Checking in Relational Databases .. 76

5.2 Constraint Checking in XML databases ... 78

5.2.1 Constraints for XML .. 78

5.2.2 Constraint Checking in XML ... 78

5.3 Agent Based Approach... 79

6. CONCLUSIONS ... 81

7. BIBLIOGRAPHY ... 85

LIST OF FIGURES

FIGURE 1 : SYSTEM OF DATABASES ARCHITECTURE..8

FIGURE 2: OVERVIEW OF CONSTRAINT CHECKING SYSTEM...19

FIGURE 3: CONSTRAINT CHECKING ARCHITECTURE FOR R-SYDB ...20

FIGURE 4: CONSTRAINT CHECKER INTERNAL ARCHITECTURE...22

FIGURE 5 : THE CONSTRAINT DATA SOURCE TABLE..23

FIGURE 6 : THE CONSTRAINT OPTIMIZED TABLE ...25

FIGURE 7 : ALGORITHM CPA-INSERT...30

FIGURE 8 : EXAMPLE MULTIDATABASE INVOLVING BOTH HORIZONTAL AND VERTICAL PARTITIONS37

FIGURE 9 : ALGORITHM CPAGGREG-INSERT..41

FIGURE 10 : CONSTRAINT CHECKER IMPLEMENTATION ...47

FIGURE 11: TIME CONSUMED BY USING CPA-INSERT AND WITHOUT USING IT ...49

FIGURE 12 : OVERVIEW OF XCONSTRAINT CHECKING SYSTEM...53

FIGURE 13: TREE REPRESENTATION OF HEALTHDB.XML ...55

FIGURE 14: XCONSTRAINT ARCHITECTURE ...62

FIGURE 15: TREE REPRESENTATION OF HEALTHDB.XML BEFORE XUPDATE..63

FIGURE 16: MODIFIED TREE REPRESENTATION, IF XUPDATE IS SUCCESSFUL ...64

FIGURE 17: XCST..65

FIGURE 18 : XML CONSTRAINT CHECKER ALGORITHM...68

FIGURE 19 : XCONSTRAINT CHECKER GUI..75

FIGURE 20: XCONSTRAINT CHECKER GUI AFTER DECOMPOSE...75

FIGURE 21: CONSTRAINT VIOLATION CHART FOR INSERT/UPDATE/DELETE..82

v

LIST OF ACRONYMS

System of Databases SyDb

System of Relational Databases R-SyDb

System of XML Databases X-SyDb

Constraint Planning Algorithm CPA

System of Databases Query Language SyDbQL

Constraint Data Source Table CDST

Database Object List DOL

XConstraint Source Table XCST

XML Node Value List XNVL

vi

 1

1. INTRODUCTION

A multidatabase system consists of autonomous component heterogeneous

database systems. Multidatabase research is an important field in the area of database

systems. Some of the important sub problems in this area are: (i) global schema mapping

and integration ([1], [2], [13], [34]); (ii) global query decomposition and optimization

([43]); and (iii) global constraint checking ([26], [28], [39], [40]).

We consider a restricted form of multidatabase system; we call it System of

Databases (SyDb). SyDb consists of autonomous multiple database systems which are

homogeneous. Data is distributed among multiple sites. The reasons for data distribution

may be the inherent nature of the data, performance reasons, or individual sites being

incapable of hosting large amounts of data (mobile environment). Data distribution is

quite natural in a healthcare database system. Say for instance that patient information is

stored at site S1. Insurance company stores patient’s claim information at site S2 and a

different agency stores doctor's information at site S3. It is difficult to enforce a

centralized scheme as we have different agencies operating at their own rules. In some

cases, where large volumes of data with millions of records are stored, it is just not

possible to have centralized data due to performance factors. Data at these individual sites

are not necessarily independent, but may participate in a relationship with data from other

sites. Integrity constraints are valuable tools for enforcing consistency of data in a

database ([51]). Global integrity constraints ensure integrity and consistency of data

spanning multiple databases.

 2

1.1 Motivation

In the general setting of a multidatabase, when multiple database systems

interoperate, there is a very large likelihood of global constraints to be violated. Global

constraints specify and enforce that a particular database state is consistent and ensures

integrity of data across multiple databases. Much of the previous research and

commercial database systems consider integrity constraint checking at run time and are

inefficient as they suffer from rollbacks. An update statement issued on a single site

might cause a global constraint to be violated, essentially endangering the consistency of

the database. Frequent changes in data causes frequent global constraint violations

causing the system to rollback frequently. Such systems are inherently inefficient as they

consume lot of resources for rolling back the database state. Hence, we need a complete,

standalone system that enables efficient and speedy checking of global constraint

violations. Efficiency of the system needs to be achieved at both analytical and

implementation level that avoids rollback situations.

1.2 Problem Statement

In a SyDb, given an update1 statement and list of global constraints, the proposed

system should check if the update statement violates any of the global constraints. The

proposed system needs to check for global constraint violations for both relational and

XML databases before updating the database i.e. at compile time. Compile time checking

1 An update statement could be either insert or delete or update in a database

 3

of constraints avoids time and resources spent on rolling back the database state in case

of constraint violation.

1.3 Contributions

Here, we give the overall contributions of this dissertation. We also cite the

papers that resulted from this dissertation work.

Constraint Checker ([39]): None of the literature so far has considered using mobile

agents for global constraint checking in multidatabases. We introduce a general

framework of a mobile agent based constraint checker in our research. The motivations

for using mobile agents in our context are given in Section 3.6. The constraint checker

has five major modules: update parser, metadatabase extractor, constraint planner,

constraint optimizer, and constraint executor.

Constraint Planning Algorithm ([40]): The constraint planning algorithm is the

algorithmic back bone for the constraint checker system. Given an update statement and

list of global constraints, constraint planning algorithm decomposes global constraints

into a set of sub-constraints based on the locality of the sites. More formally, the

approach of the constraint planning algorithm (CPA) is to scan through the global

constraint Ci, update statement U and then generate the conjunction of sub-constraints,

Cij's2, based on the locality of the sites. The value of each conjunct (Cij) is either 0 or 1

and if the overall value of the conjunction is 1, constraint is violated, otherwise not.

2 Cij indicates the sub constraint corresponding to a global constraint Ci on site Sj

 4

Agent Based Execution Engine ([38]): An agent based execution engine aids in

creation, management and destruction of agents on remote sites.

Implementation of Constraint Checker: We have implemented the constraint planning

algorithm using JAVA. We used a java based mobile agent framework – aglets ([32]) for

implementing the overall constraint checker system

Constraint Checking for XML databases ([41], [42]): Very few research results exist

in the area of integrity constraint checking on a single XML database. To our knowledge,

we have not come across any research on semantic integrity constraint checking for

multiple XML databases. We have introduced notations for representing XML

constraints. We proposed a general framework and algorithmic description of constraint

checking for multiple XML databases. We have also implemented a prototype of the

system.

1.4 Research Path

Here, we discuss our overall vision for carrying out the entire research. Initially,

we started with the literature survey on integrity constraint checking for multidatabases,

its motivation, why it is needed, what has been done, and what needs to be done. We

quickly found out that research on multidatabase systems started in the early 1990’s ([1],

[9], [48]). In the mid 1990’s and in later part of the 1990’s, an abundant body of literature

started concentrating on transaction aspects of multidatabases ([7]), global querying

([43]), schema mapping and integration ([2], [5], [19]). However, surprisingly not much

research concentrated on global constraint checking for multidatabases ([28]) under

 5

updates. The motivation for our research is well known as global integrity constraints are

valuable tools that preserve the consistency of a multidatabase system. Only when all the

integrity constraints are satisfied (not violated), the multidatabase is consistent and

reliable. Hence efficient and speedy checking for constraint violations is an important

area of research. In our research, we consider a restricted form of multidatabases; we call

it System of Databases (SyDb). We also introduce R-SyDb (System of Relational

Databases) and X-SyDb (System of XML Databases). R-SyDb considers collection of

autonomous component database systems, which are all relational database systems and

X-SyDb contains a collection of autonomous XML database systems.

During the process of analysing what is needed in this area, we identified a

number of interesting research problems. First, we realized that global integrity constraint

checking at compile time (before updating) for relational databases is a very interesting

idea. At the same time, we also recognized mobile agents from AI field have been

recently used for distributed information processing, distributed computing and

intersection of agent approach with global constraint checking is definitely new and

promising field. Second, we outlined important sub problems related to global constraint

checking under updates to R-SyDb. We made a classification of integrity constraints and

narrowed our problem to semantic integrity constraint violations. Third, we further

drilled down semantic integrity constraints and classified them in to two major groups:

semantic integrity constraints with simple arithmetic predicates and semantic integrity

constraints with aggregate predicates. Therefore, we summarized that global semantic

integrity constraint checking at compile time with arithmetic predicates and aggregates

 6

predicates, with algorithmic description would make the semantic integrity constraint

checking complete. Fourth, we proposed an architecture identifying other major modules

for a constraint checker such as constraint optimiser. However, at this point we observed

that our approach of semantic integrity constraint checking for R-SyDb can be extended

to X-SyDb. The effort has been to expand our research ideas to XML databases (new

area) instead of being confined to only one area. Fifth, we started undertaking a literature

survey on global semantic integrity constraints for XML databases in an effort to broaden

our impact and coverage of research areas. We understood that none of the research

results exist in the area of semantic integrity constraint checking for XML databases.

Sixth, we have come across integrity constraints in logic databases, relational databases

and XML databases. We identified that a mapping of constraints from one to another is

another interesting research issue.

1.5 Organization

In Chapter 2, we discuss our System of Databases architecture. Throughout the

dissertation, we use a sample healthcare multidatabase system as a running example to

illustrate our ideas. We present the sample healthcare multidatabase system, the

architecture and algorithms for constraint checking for a System of Relational Databases

in Chapter 3. In Chapter 4, we summarize our research on constraint checking in a

System of XML Databases. We discuss related work in Chapter 5. Finally, we present the

conclusions and future work in Chapter 6.

 7

2. SYSTEM OF DATABASES

A System of Databases (SyDb) refers to a collaborating set of heterogeneous data

resources. Global querying refers to the problem of information retrieval from

heterogeneous and distributed sources. Global updates allow the user to store data to a set

of heterogeneous and distributed sources. The significant problems related to Global

queries and updates are:

(i) Global schema mapping and integration ([1], [2], [13], [34]);

(ii) Global query decomposition and optimization ([43]); and

(iii) Global constraint checking ([26], [28], [39], [40]).

However, the application developer should not be bogged down with the above problems.

Just as JDBC (Java Database Connectivity) hides connection and retrieval details from

the user, SyDb provides a framework/API that would hide all the complexities and

empower the user with a ready to use package for Global queries and updates. Earlier, we

proposed a principled extension to the current SQL standard, SyDbQL ([49]). The

SyDbQL allows a user to specify global queries and global updates. We have also set

forth the design and implementation of SyDbQL Java API that allows global queries and

updates through a Java JDBC program.

Assumptions of SyDb

The assumptions of the system under consideration are:

(i) A system of collaborating heterogeneous databases,

 8

(ii) Schema integration and schema mapping of the individual component

databases is resolved using the techniques such as [1], [2], [13], and [34],

and

(iii) An application that needs to query/update the component databases.

2.1 SyDb Architecture

The System of Databases (SyDb) architecture and the detailed steps involved in

executing a global query/update is presented in [49]. Figure 1 gives the overall

architecture of SyDb.

Figure 1 : System of Databases Architecture

 9

The SyDb architecture has three layers. At the lowest layer, we have multiple

heterogeneous databases. The middle layer consists of constraint checker (details in

Chapter 3) and any SyDbQL based application. The top layer consists of the client

making a global query/update request.

Step 1: Using the SyDbQL API, the user issues a global query/update

Step 2: If the user issued a global query, the query is parsed, decomposed into a set of

sub queries and sent to the component databases. The results obtained from the

component databases are gathered, modified and finally the output is displayed.

Step 3: If the user issued a global update, the update is input to the Constraint checker

module. A general framework and an algorithm for the constraint checker module are

given in Chapter 3. Given an update statement U and the list of all global constraints C,

the constraint checker module checks if any global constraints are violated without

actually updating the database (compile time). In the current set up, global constraints can

be stored in the temporary workspace.

Step 4: Constraint Checker generates sub constraint checks on to the component

databases, gathers results and finally makes a decision if a constraint is violated. In case

of non constraint violation, the global update statement is executed. The temporary

workspace shown in Figure 1 is a local temporary workspace that a SyDbQL-based

application can interact with.

We broadly categorize data resources into three groups: (1) Type I: Relational

databases that support remote clients, where data can be retrieved in Java by using JDBC

 10

drivers. (2) Type II: Relational Databases that do not support remote clients, where data

can be retrieved by using either JDBC-ODBC bridge or by using JDBC drivers. (3) Type

III: Remaining data resources, such as object-oriented databases, flat files, and XML

data, where data can be retrieved using a wrapper that would convert the specific data

format to relational tables and vice versa. The wrapper is data-source type dependent.

2.2 Global Queries and SyDbQL Syntax

Consider the personal database which several individuals keep in their personal

computers/personal digital assistants (PDAs). Typical data kept in these databases are

appointments, addresses of acquaintances, etc. Let us assume there are three individuals,

John, Tony and Aaron who maintain such data in their PCs/PDAs. John's database may

have the following schema:

schedule (date, startTime, endTime, event)

addressBook (name, email, address, wphone, hphone, cphone, fax)

Tony's database may have the following slightly different schema:

schedule (date, startTime, endTime, event)

addressBook (name, email)

Aaron's database may have the following schema, similar to John's except email

addresses are not kept:

schedule (date, startTime, endTime, event)

addressBook (name, address, wphone, hphone, cphone, fax)

 11

These three databases are assumed to be located on different nodes of a network

and are assumed to be autonomous. Let us assume that these three individuals work

together and hence a need for their databases to collaborate exists.

2.2.1 Global Queries

Global queries allow users in one database to extract information from their local

database as well as remote databases. Such queries will have references to remote

database objects. As an example of a global query, consider Aaron's problem of locating

email addresses of all individuals in his addressBook. To accomplish this task, Aaron

may execute the following global query in his database:

SELECT t.email

FROM tony.addressBook t, addressBook a

WHERE t.name = a.name

Notice that in the above global query which executes within Aaron's database,

there are references to tables in Tony. We are assuming the name of Tony's database is

tony. Aaron is joining his addressBook table with that of Tony's to obtain email

addresses.

2.2.2 SyDbQL Syntax

SyDbQL extends SQL by allowing tables to be referenced by the databases they

are located in. A database naming mechanism is introduced, and tables in SyDbQL

queries are identified by the databases they belong to. This is accomplished by preceding

each table name with the database name of the table in the form of database.table.

Following is a list of standard SyDbQL statements and their syntax:

 12

Creating tables

CREATE TABLE [dbname.]<tablename>[, [dbname.]<tablename>]* (

col-def, …, col-def, table-constr, …, tab-constr);

where col-def is:

<column-name><data-type>[DEFAULT <expr>][<column-constraints>]

and tab-constr is:

[CONSTRAINT <constraint_name>] [NOT] NULL | CHECK (<condition>) |
UNIQUE | PRIMARY KEY | REFERENCES
[dbname.]<table_name>[(<column_name>)] [ON DELETE CASCADE]

This statement allows one or more tables with the same schema to be created in remote

databases. Constraints on table(s) can also be specified after CONSTRAINT keyword

such as primary key, foreign key (REFERENCES), and cascading delete constraints.

Deleting tables

DROP TABLE [dbname.]<tablename> [, [dbname.]<tablename>]*
[CASCADE CONSTRAINTS];

This statement allows one or more tables to be deleted from multiple database schemas.

CASCADE CONSTRAINTS allows the user to delete referenced tables as well.

Inserting rows into table

INSERT INTO [dbname.]<tablename>[, [dbname.]<tablename>]*
[(column {,column})] VALUES (expression, {,expression});

Same row is inserted to one or more distributed database tables using SyDbQL INSERT

statement.

Selecting rows from table(s)

<sub-select>

 13

{ UNION [ALL] <sub-select> }[ORDER BY result_column [ASC | DESC
]

{ , result_column [ASC | DESC]}]

where <sub-select> is:

SELECT [DISTINCT] <expression> {,<expression>}

FROM [dbname.]<tablename>[<alias>]
{,dbname.]<tablename>[<alias>]}

[WHERE <search_condition>]

[GROUP BY <column> {,<column>}]

[HAVING <condition>]

SyDbQL SELECT statement is similar to standard SQL SELECT statement, but it

allows querying tables from distributed databases. UNION statement provides a

mechanism to get the union of the results of two SELECT statements. ORDER clause

allows sorting the results.

 14

3. CONSTRAINT CHECKING IN A SYSTEM OF RELATIONAL DATABASES

We present a general framework of an agent based Constraint Checker module.

We then, give an efficient algorithm, CPA (Constraint Planning Algorithm) for

decomposing a global constraint into conjunction of sub-constraints based on the locality

of sites. CPA forms the algorithmic backbone for the constraint checker module. We also

discuss the implementation and performance results of constraint checker.

3.1 Preliminaries

Here, we give an example healthcare multidatabase system that will be referred

throughout this chapter. We then present constraint representation notations and their

classification. We also give a brief overview of agents.

3.1.1 Example Database

Consider a typical health care multidatabase management system as an example.

It is a very natural scenario to have patient's information distributed across multiple sites.

In a multidatabase system, we can have the same predicate names at two different sites.

Hence, we need a notation that distinguishes one predicate from the other. We use the

notation of: (Si: table t), where t is the name of the table stored on site Si.

At site S1: Patient information is stored. A PATIENT relation with attributes name and

type of healthplan is recorded. S1:PATIENT (name, healthplan). A PATIENTDETAILS

relation with attributes name, address where the patient lives, employer name and salary

of the patient is recorded. S1:PATIENTDETAILS (name,address,employer,salary).

 15

At site S2: Health insurance companies store patient's claim information. A CLAIM

relation with attributes name (patient name), amount of claim, date of claim and type of

claim is recorded. S2:CLAIM (name, amount, claimdate, type). A CLAIMREVIEW

relation records patient’s name, date of claim and reviewer name. S2:CLAIMREVIEW

(name, claimdate, reviewer).

At site S3: Doctor's office maintains patient's name, doctor treating the patient and

disease for which the patient is being diagnosed. A DOCTOR relation with attributes

name (patient name), doctorname and disease is recorded. S3:DOCTOR (name,

doctorname, disease).

3.1.2 Constraints

In order to represent integrity constraints in the context of a database as query

evaluation in the database, we consider integrity constraints in the form of range-

restricted denials.

L1 ^ L2 ^ … ^ Ln

 where each Li is a literal or an aggregate literal involving a base predicate and

global variables are assumed to be universally quantified over the whole formula ([18]).

Say integrity constraint C0 states, the sum of all claim amounts of a patient with

healthplan ‘C’ may not be more than 200000.

 S1:PATIENT (name,’C’),Sum(amount,S2:CLAIM(name,amount,-,-),s),

s > 200000.

 16

 This can be conveniently represented using the approach of [27]. A constraint is a

query whose result is either 0 or 1(Gupta and Widom ([28]) call it "panic"). If the query

produces 0 on the multidatabase D, then D is said to satisfy the constraint, or the

constraint is violated on D.

PanicC0 :- S1:PATIENT(name,’C’),Sum(amount,S2:CLAIM(name,amount,-,-),s),

 s > 200000.

 For convenience, we will refer to PanicC0 as just C0.

3.1.3 Integrity Constraint Classification

Integrity constraints can be classified into six major categories. They are:

• Domain constraints: They are the most primitive form of integrity constraints

and they make sure that the comparisons and the values inserted into the database

are logical. For example, if we try to test the name of a person to digit 10, domain

constraints are violated as name of the person is varchar and 10 is numeric.

• Key constraints: These are the unique/primary key constraints.

Every patient name is unique.

 C1:- S1:PATIENT (name, X), S1:PATIENT (name, Y), X<>Y.

• Referential integrity constraints: They ensure that values that appear in one

relation also appear in another relation.

Every name referenced by CLAIM relation exists in PATIENT relation

 C2:- S2:CLAIM (name, -, -, -), not PATIENTNAMES (name).

 17

 PATIENTNAMES (name): - S1:PATIENT (name, -).

• Semantic integrity constraints (general form of assertions): They specify a

general condition in a database that needs to be always true. Integrity constraints

of this type deal with information in a single state of the world

Any patient with healthplan ‘B’ may not file a claim type of ‘emergency’

 C3:- S1: PATIENT (name, healthplan),

 S2:CLAIM (name,_,_,‘emergency’), healthplan = ‘B’.

• State transition constraints: These constraints deal with two consecutive

database states. Example of such a constraint would be: when a claim is updated,

the new claimdate must be greater than the older claimdate.

 C4:- CLAIM_new(_,_,cd1,_),CLAIM_old(_,_,cd2,_),cd1 < cd2.

• State sequence (temporal constraints): These constraints refer to more than two

database states (not necessarily consecutive database states). "An employee

salary must never decrease"([51]) is an example of such a constraint.

Our constraint checking procedure is limited to only the class of semantic integrity

constraints.

3.1.4 Mobile Agents

Mobile agents can be considered as an incremental evolution of the earlier idea of

"process migration". A mobile agent is an autonomous, active program that can move

both data and functionality (code) to multiple places within a distributed system. The

 18

state of the running program is saved and transported to the new host, allowing the

program to continue execution from where it left off before migration ([29]). Mobile

agents require two components for their successful execution. The first component is the

agent itself. The second component being the place where in an agent can execute. This is

often referred to as the software agent framework. It provides services and primitives that

help in the use, implementation and execution of systems deploying mobile agents. This

generic framework allows the developers to focus on the logic of the application being

implemented, instead of focusing on the implementation details of the mobile agent

system. Specifically, it should support the creation, activation, deactivation and

management of agents, which include mechanisms to help in the migration,

communication, persistence, failure recovery, management, creation and finalization of

agents. Additional services as naming and object persistence can also be provided. This

environment must also be safe, in order to protect the resources of the machine from

malicious attacks and possible bugs in the implementation of the agent code. Some of the

popular examples are: IBM’s Aglets ([32]), Mitsubishi Electric ITA’s Concordia ([33])

and Object Space’s Voyager ([23]).

3.2 Constraint Checker Overview

In this section, we discuss details of the overview of the system, constraint

checking architecture and constraint checking procedure. Figure 2 shows an outline of

our approach. Using the database description of remote database objects, global

metadatabase is constructed. Global constraints to be enforced are also stored in the

global metadatabase. We provide a design of constraint checker module that accepts an

 19

insert/update/delete request from a user and considers one constraint at a time from

global metadatabase and decides if any constraint is violated.

Figure 2: Overview of Constraint Checking System

The system architecture is shown in Figure 3. R-SyDb (System of Relational

Databases) consists of (i) collection of data sources on multiple sites that are all

autonomous relational databases and (ii) global metadatabase. The global metadatabase is

a repository of site and domain information. Site information gives description of sites

where data sources reside. Domain information gives metadata description of database

objects of all data sources and global constraints, say C1…Cn.

 20

Figure 3: Constraint Checking Architecture for R-SyDb

A constraint checker module resides on each of the data sources. This module is

responsible for interfacing with the global metadatabase. In Figure 3, say, an update

statement U1 is issued on site S1. It modifies/updates some of the database objects.

Constraint checker on S1 sends out mobile agent on to the global metadatabase. The

mobile agent at the global metadatabase is equipped with the knowledge of database

objects being modified and also data processing code. The mobile agent computes the list

of global constraints being affected by U1, say C1…Cm. The mobile agent returns this list

to the constraint checker. Constraint checker takes as input one global constraint at a

time, C1. For each global constraint, sub-constraints corresponding to remote sites are

generated. Mobile agents rmagent2, rmagent3, rmagent4 are spawned to individual sites

S2, S3, S4. Constraint checker gathers results from these mobile agents and makes a

 21

decision if a global constraint is violated. This process is repeated for all remaining

constraints C2…Cm.

3.3 Constraint Checker Internal Architecture

The internal architecture of the constraint checker and the overall procedure of

constraint checking are explained using Figure 4. The constraint checker has five major

modules: update parser, metadatabase extractor, constraint planner, constraint optimizer,

and constraint executor.

Update parser: parses an update statement input by the user and identifies the database

objects involved in the update statement.

Metadatabase extractor: extracts all the global constraints being affected by the update

statement.

Constraint planner: devises an effective plan for generating sub-constraints based on

the locality of the sites.

Constraint optimizer: optimizes sub-constraints for efficient constraint checking.

Constraint executor: generates and spawns mobile agents. The mobile agents execute

the sub-constraints and with the summarized information gathered from all the mobile

agents, a decision is made if a global constraint is violated.

 22

Figure 4: Constraint Checker Internal Architecture

STEP 1

The user issues an update statement onto his local data source. For example, the

user issues an update statement U1 on site S2. Let

U1 = insert into S2:CLAIM values
 (5, to_date ('02/20/2005','MM/DD/YYYY'),25000,'Emergency');

STEP 2 (Update Parser)

The update parser parses the given update statement and identifies database

objects being modified. The output from this step is the database object list (DOL). For

the running example,

 23

DOL = {S2:CLAIM (CaseId=5,ClaimDate='02/20/2005',amount=25000,
 type='Emergency'}.

STEP 3 (Metadatabase Extractor)

The metadatabase extractor takes as input a database object list. It contacts the

metadatabase and gets the list of constraints being affected by the update statement and

also the list of sites involved for each such constraint. The metadatabase extractor

constructs the Constraint Data Source Table (CDST) as shown in Figure 5.

CDST (Ci) = <Ci, list (Sj)> where

Ci is the global constraint identifier

list(Sj) is the list of data sources being affected by Ci

Ci list(Sj)

C5 (S1,S2,S3)

C6 (S1,S2)

Figure 5 : The Constraint Data Source Table

C5:-S1:PATIENT(name, 'B'), S2:CLAIM(name, amount, _, _),
 S3:DOCTOR(name, _, 'smallpox'), amount > 20000.

C6:-S1:PATIENT(name, healthplan),
 S2:CLAIM(name, _, _, 'emergency'), healthplan = 'B'.

Constraint C5 states that a patient with healthplan 'B' diagnosed with 'smallpox'

may not claim more than 20000 dollars. Constraint C6 states that a patient with healthplan

'B' may not file a claim of type 'emergency'.

 24

STEP 4

The metadatabase extractor sends CDST to the constraint planner module.

STEP 5 (Constraint Planner)

The constraint planner takes as input DOL (Database Object List) and CDST

(Constraint Data Source Table). It outputs the list of sub-constraints list (Cij) for each

global constraint. list(Cij) is the list of sub-constraints corresponding to each Ci and site

Sj. The value of each Cij is either 0 or 1. The constraint planning algorithm given in the

next sub section decomposes a global constraint Ci into a set of sub-constraints Cij to be

executed locally on remote sites (decomposition is based on locality of sites).

For the running example, for C5, the corresponding sub-constraints generated are:

C51, C52, C53 and for C6, the sub-constraints generated are: C61, C62. The algorithmic

procedure for generating these sub-constraints can be found in Section 3.4. However, to

preserve the flow of the dissertation, the values of these sub-constraints are given below:

C51 = select 1 from dual where exists (select * from patient where

 name = 'john' and healthplan = 'B')

C52 = return 1 if {'john' = 'john' and 25000 > 20000} else

 return 0

C53 = select 1 from dual where exists (select * from DOCTOR

 Where name='john' and disease = 'smallpox')

C61 = select 1 from dual where exists (select * from patient where

 name = 'john' and healthplan = 'B')

C62 = return 1 if {'john'='john' and 'emergency' = 'emergency'}

 else return 0

 25

STEP 6 (Constraint Optimizer)

The constraint optimizer optimizes the constraint checking process. The

constraint optimizer generates constraint optimized table (COT), as shown in Figure 6.

Any optimizations that increase efficiency of the constraint checking process are carried

out here. The parameters considered are: number of sites accessed, locality of sites, and

history of constraint failures on a site. For the running example, C6 involves accessing two

sites S1 and S2, where as C5 involves accessing sites S1, S2, and S3. Constraint optimizer

orders the execution of the constraints and also sub-constraints.

Figure 6 : The Constraint Optimized Table

Observe that if C6 is violated, we will not check C5 and since the constraint checking is

much faster doing C6 first and then C5 (C6 involves accessing lesser number of sites), we

have gained efficiency. Hence, in Figure 6, the row for C6 occurs before C5, indicating

order of execution of the constraints. Also, the cot-list is ordered for each sub constraint.

In the running example, since U1 is initiated on S2, we have ordered the cot-list (C6) in the

order of C62 and C61. The idea is to first check for local sub-constraints (local to S2) and

then any remote sub-constraints. The reason is, if one of C62 or C61 returns “false” or “no

rows returned”, then constraint C6 is satisfied. In a similar way cot-list (C5) is also

 26

ordered. Further optimization is possible by keeping track of the history information of

constraint violations on every site.

Constraint Optimizations

A classic optimization strategy that could be employed for checking global

constraints is the Local Verification of Global Integrity Constraints ([28]). For each site

Sj and global constraint Ci, whenever possible, a local test condition is checked instead of

having to check for sub-constraints on remote data. Say integrity constraint C7 requires

that every “name” referenced by a tuple in CLAIM relation exists in the PATIENT

relation.

C7:- S2:CLAIM(name,_,_,_), not PATIENTNAMES(name).

PATIENTNAMES(name) :- PATIENT(name,_);

Let us consider, we have an update U2 on S2

U2 = insert into S2:claim values
 ('john',10000,'06/10/2003','prescription');

Traditionally, we will have to check for the occurrence of name 'john' in the

PATIENT relation on S1. However, if we can first do a local test condition such as

t1 = select * from S2:CLAIM where name = 'john';

If the above query has a non-empty answer, then we can conclude that U2 does not

violate C3. This is the basic idea suggested in [28]. We are saving time spent on accessing

remote data and also any issues related to data transfer through the network are nullified.

We are proposing to expand this basic idea to the next level.

 27

Consider a particular database state D where the CLAIM relation has a tuple with

name ‘john’. This state D satisfies C7. At this point if we delete tuple with name 'john'

from CLAIM, at all subsequent database states, whenever an insert on CLAIM relation

with name 'john' is performed, the local test condition t1 fails. Our belief is referential

integrity constraints need to be checked often. Since, for a scenario described like above,

if the local verification approach fails then we will have to check for data at remote site.

We are also spending extra time in checking for local test t1 and then doing the remote

check. We are proposing that, when a delete statement is issued on S2, we do not actually

delete the tuple with name 'john', we instead "mark it for deletion". For normal queries

and other database related tasks, CLAIM relation with name 'john' does not exist,

however, the constraint checker on S2, knows john was marked for deletion and existed

before. With this approach, in a scenario like above, we do not have to do a remote

constraint check. However for this approach to work, the parent relation PATIENT needs

to be monitored whenever 'john' gets deleted. Constraint checker or S1, can monitor for

such a deletion and in the event of deletion, it can inform the constraint checker on S2 that

‘john’ no longer exists in the PATIENT relation. Constraint checker on S2 can then

completely delete it from its database. The only extra burden is the monitoring step of

constraint checker on S1. We believe that this is reasonable as most of the times, parent

keys are not deleted from the database. Hence, our approach adds efficiency to the local

verification approach by extending it by one more step.

 28

STEP 7 (Constraint Executor)

 The constraint executor reads the COT and spawns mobile agent for each Cij. The

results are gathered from the mobile agents and the constraint executor makes a decision

if a constraint has been violated. For the running example, C6 = C61 ^ C62. We observe

from step 5, C62 = 1 (true) and C61 = 1 (true). Hence, C6 = true ^ true, implies C6 = true.

Therefore, C6 is violated. In this case, we do not have to check for C5, because, if one of

the constraints is violated, the update statement is rejected.

STEP 8

The results are sent to the user.

3.4 Constraint Planning Algorithm

The basic idea of constraint planning is to decompose a global constraint into a

conjunction of sub-constraints, where each conjunct represents constraint check as seen

from each individual database ([26]). Given an update statement, a brute force approach

would be to go ahead and update the database state from D to D' and then check for

constraint violation. However, we want to be able to check for constraint violation with

out updating the database. Hence, the update statement is carried out only if it is a non

constraint violator.

The approach of the constraint planning algorithm (CPA) is to scan through the

global constraint Ci, update statement U and then generate the conjunction of sub-

 29

constraints, Cij's3. The value of each conjunct (Cij) is either 0 or 1 and if the overall value

of the conjunction is 1, the constraint is violated, otherwise not. An update U can be an

update involving an insert or a delete or a modify statement. Hence, we have three

different cases for the algorithm. They are given in the following sections: 3.4.1, 3.4.2,

and 3.4.3.

3.4.1 CPA-insert

Algorithm CPA-insert (constraint planning algorithm for an insert statement)

shown in Figure 7 gives constraint decompositions (Cij's), corresponding to global

constraint Ci and an update statement involving an insert statement. Algorithm CPA-

insert takes as input the update statement U and the list of all global constraints C and

outputs the list of sub-constraints (Cij) for each Ci being affected by U.

Algorithm CPA–insert
1: INPUT: (a) U: insert Sm:R(t1,…,tn)
 (b) C: list of all global constraints /* Note: insert is occurring on site Sm */
2: OUTPUT: list of sub-constraints < Ci1 ,…,Ciki > for each Ci affected by U
3: DOL (U) = < R (a1= t1,…,an= tn) >
4: CDST(C,DOL(U)) = < <C1, (S11,…,S1n1)>,…,<Cq, (Sq1,…,Sqnq)> >
5: let θ = {x1 t1,…,xn tn}be obtained from DOL(U) where x1…xn are variables
 corresponding to the columns of table R
6: for each i in {1… q} do
7: for each j in {1…ni} do

8: let Sj:p1 (X1) ,p2 (X2),…,pr (Xr) be the sub goals of Ci associated with Sj and A be all
 arithmetic sub goals associated with Sj
9: if (j <> m) then /* site where update is not occurring */

3 Recall that Cij indicates the sub constraint corresponding to a global constraint Ci on site Sj

 30

10: Cij = select 1 from dual where exists
 (select * from p1 …pr where <cond1>)
11: <cond1> is obtained from X1…Xr using standard method of joining tables. It
also
 includes any arithmetic sub goal conditions
12: else if (j=m) then /* site where update is occurring */
13: if (there exists variables in A that do not appear among X1…Xr) then
14: for each variable ν in A that do not appear among X1…Xr do
15: let k be the site where ν appears in a sub goal, S:t(X) in Ci
16: IPikd = (select Col(ν) from S:t where <cond2>)

17: Col (ν) is the column name corresponding to ν
18: <cond2> is obtained from X1…Xr and X. d is nth intermediate predicate
19: end for
20: end if
21: Cij = return 1 if (<cond3> and A′) else return 0.
22: <cond3> is obtained from θ and X1…Xr and A′ is A with IP’s replacing
corresponding
 variables
23: end if
24: end for
25: end for
26: apply the substitution θ(U) to all Cij

Figure 7 : Algorithm CPA-insert

Database Object List (DOL) identifies the database objects being modified by the

update statement, U. DOL (line 3) identifies, the table R with attributes (column names)

a1…an inserted with values t1…tn. CDST (line 4) gives the list of sites involved, for each

constraint being affected by the update statement. The outer for loop variable i (line 6)

loops through all the constraints C1…Cq affected by the update U. The inner for loop

variable j (line 7) loops through each site (<S11,…,S1n1 >,…,<Sq1,…,Sqnq >) for each

constraint i. Inside the for loop (lines 6-25), all the sub-constraints Cij’s are generated.

Sj:p1 (X1) ,p2 (X2),…,pr (Xr) (line 8) denotes, for a particular site Sj, X1…Xr is the vector of

 31

variables corresponding to the predicates (table names), p1…pr. A critical feature of the

algorithm is the generation of intermediate predicates (IP). IP’s are generated only at the

site where update is occurring. In concept, IP’s represent information that needs to be

shared from a different site. Implementation wise, IP is a SQL query returning value of

the variable, ν (line 14) from a different site. IPikd (line 16) means the dth intermediate

predicate corresponding to constraint Ci and site SK. The table dual (line 10) is like a

“dummy” table provided by the oracle. It is a convenience table provided by Oracle that

has exactly one column and only one row.

Theorem 3.1: The conjunction of sub-constraints Cij’s, generated from Algorithm CPA-

insert conclusively determines, if an update statement involving an insert statement

violates a global constraint Ci.

Proof:

Consider an update statement on site Sm, global constraint Ci and the list of sub-

constraints, Cij’s generated from algorithm CPA-insert. The generation of each Cij needs

to achieve the same affect as sub goal corresponding to Sj. Let Sj:P1(X1),P2(X2),…,Pr(Xr)

be the sub goals of Ci associated with Sj and A be all arithmetic sub goals associated with

Sj. At this point each Cij falls in one of the two cases. We will show that each Cij in both

the cases achieves the same affect as the sub goal corresponding to site Sj.

Case I (j<>m): This is the case where sub goal is associated with a site other than where

update is occurring (lines 9-11). The generation of Cij in this case is rather straight

forward as it generates a sub constraint check from all the predicates involved on site j

 32

using appropriate join conditions and it also includes any arithmetic sub goal conditions.

Hence Cij naturally achieves the exact same result as the sub goal corresponding to site Sj.

Case II (j=m): This is the case where sub goal is associated with a site where update is

occurring (lines 12-23). The generation of Cij’s in this case consists of two parts. Part 1

consists of information from the same site – trivial case (just as Case I). Part 2 relates to

information acquired from a remote site. For each such variable a unique intermediate

predicate is generated. IP’s are SQL queries returning values of such variable by

computing appropriate joins and arithmetic conditions involved with such variables.

Hence, IP’s guarantees correct exchange of information from a different site. The reason

we are generating unique IP’s is we can either store all the IP’s at a global directory such

as the metadatabase or we can generate IP’s at run time.

Hence, from both the cases, we observe that the conjunction of Cij’s entails the original

global constraint, Ci. Therefore, if Ci determines whether an update involving an insert

statement violates a global constraint Ci, then the conjunction of its sub-constraints Cij’s

also determines if the constraint Ci is violated. In other words, if the conjunction of Cij’s

evaluates to 0 (false), constraint Ci is not violated, otherwise Ci is violated. ▄

We show the working of the Algorithm CPA-insert on some sample examples given

below:

 33

Example 3.1

This example considers constraint defined on the healthcare multidatabase system

from sub section 3.1.1. It showcases how sub-constraints are generated in a simple case,

when intermediate predicates are not involved.

Input:

U = insert into S2:CLAIM values ('John', 25000, '06/10/2003',
'emergency')

C = list of all global constraints

Output:

List of sub-constraints <Ci1 … Ciki > for each Ci affected by U

DOL(U) = S2:CLAIM{name='john',amount=25000,
 claimdate='06/10/2003',type='emergency'}

CDST(C,DOL(U)) = <C5,(S1,S2,S3)>

where

C5:-S1:PATIENT(name, 'B'),S2:CLAIM(name, amount, _, _),

 S3:DOCTOR(name, _, 'smallpox'), amount > 20000.

/* C5 states that “A patient with health plan 'B' diagnosed with 'smallpox' may not claim

more than 20,000 dollars”. */

θ = {S
2
:CLAIM(name1='john', amount1=25000, claimdate1='06/10/2003'

 ,type1='emergency') }

/* C51 is generated from algorithm CPA-insert (lines 9-11)*/

C51 = select 1 from dual where exists (select * from patient where
 name = name1 and healthplan = 'B')

/* C52 is generated from algorithm CPA-insert (lines 12-23) */

C52 = return 1 if {name=name1 and amount1 > 20000} else return 0.

/* C53 is generated from algorithm CPA-insert (lines 9-11) */

 34

C53 = select 1 from dual where exists (select * from DOCTOR where
 name=name1 and disease = 'smallpox')

apply θ to each of the sub-constraints

θ(C51) = select 1 from dual where exists (select * from patient
where name = 'john' and healthplan = 'B')

θ(C52)= return 1 if {'john' = 'john' and 25000 > 20000}
 else return 0

θ(C53)= select 1 from dual where exists (select * from DOCTOR
 where name='john' and disease = 'smallpox')

C5 = C51 ^ C52 ^ C53. In this example, θ(C51) = 1 (true), θ(C52) = 1 (true) and θ(C53) = 1

(true). The conjunction of C51, C52 and C53 evaluates to true. Hence, C5 is violated (from

Theorem 3.1)

Similarly, for the example constraint C6 from sub section 3.3, we generate:

θ(C61) = select 1 from dual where exists (select * from patient
 where name = 'john' and healthplan = 'B')

θ(C62)= return 1 if {'john'='john' and 'emergency' = 'emergency'}
 else return 0

C6 = C61 ^ C62. In this example, θ(C61) = 1(true), θ(C62) = 1(true). The conjunction of C61

and C62 evaluates to true. Hence, C6 is also violated (from Theorem 3.1). Note that we do

not need to evaluate other constraints if one of the constraints is violated by an update

statement. In this example, since C5 is violated, we do not need to evaluate/check for C6.

We show the evaluation of C6 simply for illustrative purposes.

3.4.2 CPA-delete

Here, we make an important observation that an update statement involving a

delete can only violate referential integrity constraints, semantic integrity constraints

involving aggregate predicates (sum, max, min, avg and count), state transition and state

 35

sequence constraints involving aggregate predicates. It does not violate semantic integrity

constraints involving arithmetic predicates considered in this sub section.

3.4.3 CPA-modify

The constraint planning algorithm for a modify statement can be modeled as a

delete followed by an insert statement.

3.4.4 Discussion

The CPA considers only elementary update statements. The elementary update

statements are statements affecting only one row of a table at a time. However, note that

any update statement can be translated equivalently to a set of elementary updates. Hence

the generality of the CPA is not lost.

We have not considered the issue of constraint checking in the presence of

transactions. Let a transaction T change the current database state D to D'. A naïve

approach would be to check for constraint violations in D' and if any constraints are

violated, we rollback to the previous state D.

 The CPA can generate sub-constraints for constraints having universally

quantified variables over a simple conjunction of predicates. We extend our work on

CPA for sub goals of the global constraint involving aggregate predicates (sum, max,

min, avg and count) in the next section. The extensions are: a) modified Algorithm CPA-

insert to deal with aggregates; b) a new algorithm CPA-delete (constraint planning

algorithm for a delete statement).

 36

3.5 Constraint Planning Involving Aggregates

Similar to concepts in Section 3.4, here, we present constraint checking

algorithms involving aggregate predicates. For the aggregate predicates, we extend the

example database from before to having both horizontal and vertical partitioning as given

in the next sub section.

3.5.1 Example Database

To make the problem interesting and generic, we consider both vertical and

horizontal distribution of data (see Figure 8). CLAIM table is horizontally distributed

across all the three sites, S1, S2 and S3. A patient can make multiple claims uniquely

identified by their CaseId. For example, John is associated with multiple claims (with

CaseId's - 1, 3, and 4) on sites S1 and S3. We avoid the description of the tables and

columns as they are self explanatory from their names.

 37

Figure 8 : Example Multidatabase Involving Both Horizontal and Vertical
Partitions

3.5.2 Aggregate Constraints

In order to represent integrity constraints in the context of a database as query

evaluation in the database, we consider integrity constraints in the form of range-

restricted denials (datalog style notation).

 A1 ^ A2 ^ … ^ An

Where each Ai is a literal or an aggregate literal involving a base predicate and global

variables are assumed to be universally quantified over the whole formula ([18]). An

aggregate literal is expressed as

Ai(ŝ, α(y):v):- B

 38

Where

(i) B is a conjunction of predicate atoms that represent relations,

(ii) ŝ is the grouping list of attributes that must appear some where in the body of

the rule – B,

(iii) α is aggregate function such as avg, count, max, and min,

(iv) y is the aggregate variable, and

(v) v is the result of applying the aggregate function.

We assume that the aggregate literals are not recursive.

For example integrity constraint C1 states “the sum of claim amounts for each

patient with healthplan 'B' may not be more than 100000”. This can be conveniently

represented using the approach of [28]. A constraint is a query whose result is either 0 or

1 (Gupta and Widom ([28]) calls it "panic"). If the query produces 0 on the multidatabase

D, then D is said to satisfy the constraint, or the constraint is violated on D.

A(SSN,SUM(Amount):v1) :- S1:PATIENT(SSN,-,'B'),
 S1:CASE(CaseId,SSN,-),
 S1:CLAIM(CaseId,-,Amount,-).

B(SSN,SUM(Amount):v2):- S1:PATIENT(SSN,-,'B'),

 S1:CASE(CaseId,SSN,-),

 S2:CLAIM(CaseId,-,Amount,-).

 39

C(SSN,SUM(Amount):v3):- S1:PATIENT(SSN,-,'B'),

 S1:CASE(CaseId,SSN,-),

 S3:CLAIM(CaseId,-,Amount,-).

PanicC1 A(SSN,v1),B(SSN,v2),C(SSN,v3),v1+v2+v3 >10000.

For convenience, we will refer to PanicC1 as just C1.

3.5.3 CPAggreg-insert

Algorithm CPAggreg-insert (constraint planning involving aggregates for an insert

statement) shown in Figure 9 gives constraint decompositions (Cij's), corresponding to

global constraint Ci (involving aggregates) and an insert statement (decomposition is

based on the locality of sites). Algorithm CPAggreg-insert takes as input the insert

statement U and the list of all global constraints C and outputs the list of sub-constraints

(Cij) for each Ci being affected by U.

DOL (database object list) identifies the database objects being modified by the update

statement, U. DOL (line 3) identifies, the table R with attributes (column names) a1…an

inserted with values t1…tn. The constraint data source table, CDST (line 4) gives the list

of sites involved, for each constraint being affected by the update statement. The outer for

loop variable i (line 6) loops through all the constraints C1…Cq affected by the update U.

The inner for loop variable j (line 7) loops through each site (<S11,…,S1n1

>,…,<Sq1,…,Sqnq >) for each constraint i. Inside the for loop (lines 6-40), all the sub-

constraints Cij’s are generated. Sj:p1 (X1) ,p2 (X2),…,pr (Xr) (line 8) denotes, for a particular

 40

site Sj, X1…Xr are the vector of variables corresponding to the predicates (table names),

p1…pr.

Algorithm CPAggreg–insert
1: INPUT: (a) U: insert Sm:R(t1,…,tn)
 (b) C: list of all global constraints /* Note: insert is occurring on site Sm */
2: OUTPUT: list of sub-constraints < Ci1 ,…,Ciki > for each Ci affected by U
3: DOL (U) = < R (a1= t1,…,an= tn) >
4: CDST(C,DOL(U)) = < <C1, (S11,…,S1n1)>,…,<Cq, (Sq1,…,Sqnq)> >
5: let θ = {x1 t1,…,xn tn}be obtained from DOL(U) where x1…xn are variables
 corresponding to the columns of table R
6: for each i in {1… q} do
7: for each j in {1…ni} do

8: let A be all arithmetic sub goals associated with Sj , Aggreg be all Aggregate literals
 associated with site Sj (atleast one of the predicates in the body of aggregate literal
 belongs to Sj) and Sj: p1(X1), p2(X2)… pr(Xr) be sub goals of Ci associated with Sj
9: if (j <> m) then /* site where update is not occurring */
 for each Aggregate literal, aggreg(ŝ,α(y):v):- B do

 Aijd = select ŝ,α(y)
 from predicates in the Body B
 where <cond1>
 group by ŝ
10: if all the predicates in B belong to same site Sj, <cond1> is obtained by standard
 joining of tables from B using variables from θ; else semi-join operation is
 employed for distributed tables. It also includes any arithmetic sub goal conditions.
 Aijd is the value of the aggregate literal corresponding to constraint Ci, site Sj and
 d is the nth such literal. Vijd is the value of aggregate operation corresponding to
 Aijd
11: end for
12: else if (j=m) then /* site where update is occurring */
13: for each Aggregate literal, aggreg(ŝ,α(y):v):- B do
14: Aijd = select ŝ,α(y)
 from predicates in the Body B
 where <cond2>
 group by ŝ /* this step is similar to line 10 */
15: if α = “sum”
16: vijd = θ(y)+ vijd /* vijd is the value calculated from Aijd of line 14 */
17: else if α = “min”

 41

18: vijd = min(θ(y),vijd)
19: else if α = “max”
20: vijd = max(θ(y),vijd)
21: else if α = “count”
22: if θ(y) is not null then vijd = vijd + 1 /* we are assuming single row inserts
*/
23: else if α = “avg”
24: add θ(y)to the sum aggregate and divide by total count
25: end if
26: end for
27: if (there exists variables in A that do not appear in Aggreg or θ) then
28: for each variable νar in A that do not appear in Aggreg or θ do
29: let k be the site where νar appears in a sub goal, S:t(X) in Ci
30: IPikd = (select Col(νar) from S:t where <cond3>)
31: Col(νar) is the column name corresponding to νar
32: <cond3> is obtained from joining X and θ . d is nth intermediate predicate
33: end for
34: end if
35: Cij = return 1 if (<cond4> and (logical and) A′) else return 0.
36: <cond4> is obtained from θ and X1…Xr. A′ is A with IP’s replacing corresponding
 variables and vijd’s replacing corresponding aggregate values
37: end if /* end of the “else if” on line 12 */
38: end for
39: end for
40: apply the substitution θ(U) to all Cij

Figure 9 : Algorithm CPAggreg-insert

A critical feature of the algorithm is the generation of vijd’s (lines 15-28) at the

site where update is happening. Also, an intermediate predicate (IP) is generated only at

the site where update is occurring. In concept, IP’s represent information that needs to be

shared from a different site. Implementation wise, IP is a SQL query returning value of

 42

the variable, νar (line 30) from a different site. IPikd (line 32) means the dth intermediate

predicate corresponding to constraint Ci and site SK.

Theorem 3.2: The conjunction of sub-constraints Cij’s, generated from Algorithm

CPAggreg-insert conclusively determines, if an insert statement violates a global

constraint Ci involving aggregates.

Proof: The proof is similar to the proof of Theorem 3.1. The idea is to prove that

conjunction of Cij’s generated from CPAggreg-insert entails the original global constraint

Ci. Hence, it logically follows that if Ci is violated by an insert statement, so is the

conjunction of Cij’s. ▄

Example 3.2

Here, we show the working of the algorithm CPAggreg-insert on the example

database and constraints introduced in Chapter 3.5.1. Consider the initial multidatabase

state as shown in Figure 8.

Input: U1 = insert into S2:CLAIM values

 (5,'02/20/2005',25000,'Emergency');

C = list of all global constraints

Output: list of sub-constraints Ci1 ,…,Ciki for each Ci affected by U1

DOL = {S2:CLAIM (CaseId=5,ClaimDate='02/20/2005',

 Amount=25000,Type='Emergency'}.

CDST = <C1, (S1, S2, S3)> /* C1 is given in Section 2.2 */

 43

θ = {S2:CLAIM(CaseId1=5,ClaimDate1='02/20/2005',

 Amount1 = 25000,Type1 = 'emergency') }

/* A111 and A112 are generated from CPAggreg-insert from line 11 */

A111 = select PA.SSN,sum(CL.Amount) "v111"

 from S1_PATIENT PA, S1_CASE CA, S1_CLAIM CL

 where PA.SSN = CA.SSN and PA.HealthPlan = 'B'

 and CA.CaseId = CL.CaseId and CA.CaseId = CaseId1

 group by PA.SSN;

A112 = select PA.SSN,sum(CL.Amount) "v112"

 from S1_PATIENT PA, S1_CASE CA, S3_CLAIM CL

 where PA.SSN = CA.SSN and PA.HealthPlan = 'B'

 and CA.CaseId = CL.CaseId and CA.CaseId = CaseId1

 group by PA.SSN;

/* A121 is generated from CPAggreg-insert from line 16 */

A121 = select PA.SSN,sum(CL.Amount) "v121"

 from S1_PATIENT PA, S1_CASE CA, S2_CLAIM CL

 where PA.SSN = CA.SSN and PA.HealthPlan = 'B'

 and CA.CaseId = CL.CaseId and CA.CaseId = CaseId1

 group by PA.SSN;

V121 = amount1 + v121; /* from line 18 */

C12 = return 1 if {V111+V112+V121 > 100000} /* line 36 */

 44

θ(C12) = return 1 if { θ(V111)+θ(V112)+θ(V121) > 100000 }

/* θ(V111) is obtained by substituting CaseId1=5 in A111 and similarly we

calculate θ(V112) and θ(V121) */

Hence, θ(C12) = return 1 if (50000+30000+25000 > 100000)

Therefore, C1 = C12 = 1 (true). Hence, constraint C1 is violated by the

given update statement.

3.5.4 CPAggreg-delete

CPAggreg-delete (Constraint Planning involving Aggregates for a delete)

proceeds in a similar way as the CPAggreg-insert. We identify major differences from

the previous algorithm. The first part of CPAggreg-delete contains almost same logic as

lines 1-13 of CPAggreg-insert. The only difference is that input is a delete statement as

opposed to insert. The calculation of aggregate literals at the site(s) where delete is not

occurring is similar to the insert algorithm. In the second part of the algorithm, the site

where delete is occurring, line 16 of CPAggreg-insert is modified in the where clause

and <cond2> is obtained by negating the variables from θ (negation is done because it is a

delete statement). To illustrate the negation idea, let us consider a delete statement on Site

S1, where we delete all claims, where amount < 5000. The calculation of aggregate

literals on S1 would then consider only amounts > 5000, if the delete were to happen.

Lines 17-27 of insert algorithm are not necessary for the delete case.

 45

Theorem 3.3: The conjunction of sub-constraints Cij’s, generated from Algorithm

CPAggreg-delete conclusively determines, if a delete statement violates a global

constraint Ci involving aggregates.

Proof: similar to the proof of Theorem 3.2. ▄

3.5.5 CPAggreg-modify

The constraint planning algorithm for a modify statement can be modeled as a

delete followed by an insert statement.

3.5.6 Discussion

The constraint planning algorithm considers only elementary update statements.

The elementary update statements are statements affecting only one row of a table at a

time. However, note that any update statement can be translated equivalently to a set of

elementary updates. Hence the generality of the algorithm is not lost. Also, note that we

have not considered the issue of constraint checking in the presence of transactions.

Hence, the issues regarding deferred or immediate constraint checking does not apply.

Although it is trivial, we can say, by default, we use immediate constraint checking. It

would be challenging to extend the constraint checking algorithms involving transactions

without allowing the update to occur.

The aggregate literals of the constraints are executed in an order which respects

dependencies among them. This order can be computed from a dependency graph of

literals by evaluating bottom up in such a graph. The graph is acyclic, as we do not

consider recursion for aggregate literals.

 46

NULL values are automatically handled by the system by conforming to the

ANSI SQL standard. ANSI SQL standard specifies that a constraint (CHECK

(<searchcondition>)) is violated only when <searchcondition> evaluates to false. In the

other cases (true or unknown), constraint is satisfied. In our context, when

<searchcondition> is false, conjunction of sub-constraints evaluates to true; hence,

constraint is violated. Otherwise, constraint is satisfied.

When we compare approach of constraint checking after update vs. constraint

checking before update, the only extra time we are spending is the time spent in the part

of the algorithm, where the site is the updating site. Even at this site, performance gain

can be obtained by carrying out most of the steps at compile time. If we have a template

of possible update statements, most of the steps of the algorithm can be executed in

compile time and when an actual update statement is given, a template match can occur

and only the last line of the algorithm (line 41 of CPAggreg-insert) happens at run time.

By pushing most of the processing at compile time, we gain efficiency at run time.

Hence, constraint checking before the update statement saves lot of time and resources

that are spent on rollbacks and also uses very less time at run time.

Once the decomposition of each constraint into sub-constraints happens, any

optimizations that increase the efficiency of the constraint checking process can be

employed. The parameters we consider are: number of sites accessed by a sub constraint,

locality of sites, and, history of constraint failures on a site. Constraint optimizations are

part of our on-going future work.

 47

3.6 Implementation

The constraint planning algorithms discussed earlier have been implemented

using JDK version 1.3 and the system UI is designed using javax.swing package. We use

aglets agent framework [35] for implementing agents. A prototype of the system

implementation is given in Figure 10

Figure 10 : Constraint Checker Implementation

When the user clicks “Decompose”, sub-constraints are generated and displayed in the

“Result Area”. The resulting sub-constraints are executed by mobile agents on remote

sites, when the user clicks “Constraint Check”.

The motivation for using mobile agents are: (i) For each sub constraint generated

from CPA, a mobile agent would carry the data processing code and execute the sub

 48

constraint check on the remote site. Agents on the remote site process the data and only

filtered data is transported to the base site. Thus we save on the network bandwidth. (ii)

Constraint checking mechanism is much faster as the sub constraint checks on remote

sites are executed in parallel by mobile agents. 3) Since the mobile agent framework is

inherently asynchronous, the algorithm can be extended to carry sub constraint checks on

mobile multidatabases.

The constraint executor module inside constraint checker interfaces with agent

based execution engine. The agent based execution engine is responsible for creating,

dispatching, managing and terminating of agents. The constraint executor gathers the

results obtained by dispatching agents using execution engine and makes a decision if a

global constraint is violated.

A prototype of an agent execution engine ([38]) has been implemented in the

context of System of Mobile Devices (SyD) middleware ([44, [45], [46]]. SyD is a new

middleware that enables rapid application development for heterogeneous, autonomous

and mobile devices. More details on the SyD and our agent based execution engine can

be found in [38], [44], [45], and [46].

3.7 Performance Evaluations

We calculate the time constraint checker takes to check the Global constraint for

C1 and C2 that we mentioned earlier in Section 3.1.2 separately and then we exclude the

time the remote aglets itself use for communication. We calculate this timing by

repeating the experiment over a number of times and taking the average of all the timings

 49

obtained. Also, we experiment with different timings by allowing rollback on the

database, and without the need for rollback.

In Figure 11, we summarize the time taken by the system in 3 cases, which are

total time to check constraints without using the algorithm (allowing rollback), total time

to check constraints using CPA-insert algorithm and time for aglet communication.

Constraint C1 involves sites S1, S2, and S3 and constraint C2 involves S1 and S2.

 Total time to check

constraints without

using algorithm

(allowing rollback)

Total time to check

constraints using CPA-

insert algorithm

Time for aglet

communication

C1 9884 miliseconds 328 miliseconds 235 miliseconds

C2 671 miliseconds 266 miliseconds 172 miliseconds

Figure 11: Time Consumed By Using CPA-insert And Without Using It

The first column is the time to check constraints without using the CPA-insert

algorithm. In this case, the constraint checker will go ahead and insert the insert

statement after getting it from user on local source. If the constraint checker detects that

the insert statement is violated, the system will rollback the update statement to the

previous database state.

 50

The second column is the time to check constraints using the CPA-insert

algorithm. The system will start by waiting for the insert statement from user on local

source. After that, the system will follow the same steps as the first case, but it will not

execute the insert statement at first. Also, the system will use the CPA-insert algorithm to

decide and construct the sub constraint for the constraint planner.

The third column is the time for aglet communication. We calculate the time from

when the constraint checker spawns all the remote agents until all the results are

obtained.

We can see from the table that the constraint checker with CPA-insert algorithm

saves lot of time.

From the given experiments, we can comfortably generalize that as the number of

constraint violations increases, our system performs better as we do not incur the

overhead of time spent on rolling back the database state. Our future additions to these

sets of experiments would be to undertake an exhaustive list of performance evaluations

for insert/delete/modify statements. Also, we would like to generate random sets of

update statements and then check for the system behavior.

 51

4. CONSTRAINT CHECKING IN A SYSTEM OF XML DATABASES

Consider a scenario wherein two or three different companies host XML data

(native XML database management system) at different and independent sites. Data at

these sites is not necessarily independent, but may participate in a relationship with data

from other sites. A single XUpdate ([50], [36]) on one site might cause a global

constraint (global XConstraint4) to be violated. Hence we need an approach to check for

such constraint violations. In the XML database setting, the majority of the times, users

are interested in generating (updating), integrating and exchanging data. So, frequent

updates on XML data may cause frequent global constraint violations. Hence we need a

plan that will efficiently and speedily check for such global constraint violations.

Plan A would be to translate the XML document to relational data using methods

such as those found in [14] and [47 , and then, map the updates and constraints on the

XML data to corresponding updates and constraints on the relational data ([15]). Now the

problem of constraint checking on XML data is pushed to the problem of constraint

checking on relational data. There are well established models for constraint checking in

the relational world. However, this approach suffers from the overhead cost involved in

transforming and storing XML data to relational data ([31]). Plan B would be to check for

constraint violations on the XML data without transforming to relational data. It should

4 By global XConstraints we mean global semantic integrity constraints affecting multiple XML databases.

 52

be noted that using plan A vs. plan B depends on the application being considered. If the

application contains millions of records and if it benefits to use relational database

features such as querying, fast indexing, etc., it is worth while to consider plan A;

otherwise plan B suffices for a normal sized application. In this paper, we consider the

plan B route.

A brute force approach would first update the XML document and then check for

constraint violations. If a constraint is violated, we can rollback. However, such a brute

force approach suffers from the overhead of time and resources spent on rollback. Hence,

we need an approach that would check for constraint violations before updating the

database and therefore obviates the need for rollback situations.

In our constraint checking procedure, constraint violations are checked at compile

time, before updating the database. Our approach centers on the design of the

XConstraint Checker. Given an XUpdate statement and a list of global XConstraints, we

generate sub XConstraint5 checks corresponding to local sites. The results gathered from

these sub XConstraints determine if the XUpdate statement violates any global

XConstraints. Our approach is efficient; since we do not require the update statement to

be executed before the constraint check is carried out and hence, we avoid any rollback

situations. Our approach achieves speed as the sub constraint checks can be executed in

parallel.

5 Sub XConstraint is a XML constraint, expressed as an XQuery, local to a single site (more details in Section 4).

 53

4.1 Overview of XConstraint Checking

 Figure 12 gives overview of the system. We propose three-tier architecture.

Figure 12 : Overview Of XConstraint Checking System

The server side consists of two or more sites hosting native XML databases. In Figure 12

we show three sites S1, S2 and S3. The client makes an XUpdate request through the

middleware. The middleware consists of XConstraint Checker and the XML/DBC API

([22]). We have introduced our notations for representing XConstraints and proposed

architecture for XConstraint Checker. One of the important modules in XConstraint

Checker is the XConstraint Decomposer. Furthermore, we (i) give the algorithmic

description for the XConstraint Decomposer, (ii) illustrate the algorithm with clear

examples, and (iii) implement the system. The XConstraint Decomposer takes as input a

global XUpdate and a list of global XConstraints and outputs sub XConstraints to be

executed on remote sites. XML/DBC is the standard XML XQuery API that facilitates

access to XML based data products. The XML/DBC API consists of two API's: 1) The

 54

Java API is a JDBC extension to query XML collections using XQuery. 2) The web

services API is designed to provide a SOAP style server interface to clients. In our case,

XML/DBC API executes sub XConstraints corresponding to remote sites. The

XConstraint Checker gathers results obtained from sub XConstraints and makes a

decision whether a constraint is violated. Only in the event of no constraint being

violated, the XUpdate statement is executed.

The rest of the chapter is organized as follows: In Section 4.2, we give example

XML databases that will be referred to throughout the paper. We also give the syntax of

XUpdate language and introduce our notations for defining global XConstraints. In

Section 4.3, we give the internal architecture of the XConstraint Checker. In Section 4.4,

we present the algorithmic description of the XConstraint Decomposer that decomposes a

global XConstraint into a conjunction of sub XConstraints. In Section 4.5, we give

implementation details.

4.2 Preliminaries

Here we give an example healthcare XML database and explain the notations of

XUpdate. We also introduce our notation for defining XConstraints.

4.2.1 Example XML Database

Consider a sample healthdb.xml represented in a tree form in Figure 13. Figure 13

gives the logical representation of the HEALTHDB XML databases. Physically,

information is distributed across multiple sites:

 55

Site S1: PATIENT information such as SSN (primary key), PName and HealthPlan is

stored. CASE information with CaseId (primary key – like a sequence number), SSN, and

InjuryDate is also stored.

Site S2: patient’s CLAIM information such as CaseId (primary key), ClaimDate, Amount

and Type is recorded.

Site S3: TREATMENT information such as CaseId (primary key), DName (doctor name),

TDate (Treatment Date), and Disease is stored.

Note that a patient can suffer multiple injuries uniquely identified by their CaseId at Site

S1, and can also make multiple claims identified by their CaseId at site S2.

Figure 13: Tree Representation of Healthdb.xml

4.2.2 XUpdate

XUpdate is the language extension to XQuery to accommodate insert, replace,

delete and rename operations. Tatarinov et al. ([50]) gives XUpdate language syntax and

 56

semantics. For purpose of better presentation, we give brief description and syntax of

XUpdate. The syntax of XUpdate is given below.

FOR $binding1 IN XPath-expr, ...
LET $binding: = XPath-expr, ...
WHERE predicate1, ...
updateOP, ...

where updateOP is defined in EBNF as :

UPDATE $binding { subOP {,subOP}* }

where subOP is defined as :

DELETE $child |
RENAME $child TO name |
INSERT content [BEFORE | AFTER $child] |
REPLACE $child with $content |
FOR $binding IN XPath-subexpr, ...
 WHERE predicate1, ... updateOP

The semantics of the FOR, LET, WHERE clauses (FLW) are taken from XQuery,

while the updateOP clause specifies a sequence of update operations to be executed on

the target nodes identified by FLW clause. Here, we note that, in our context, the XPath-

expr from the FOR clause can only refer to nodes from a single site, restricting the

updates to only a single site. This is a reasonable assumption, as an XUpdate on a single

site might cause one or more global XConstraints to be violated and we want to check for

such constraint violations at compile time (before the XUpdate is executed). Below, we

show a sample XUpdate occurring on the XML tree (node 20) of Figure 13.

FOR $cl in document("healthdb.xml")/HEALTHDB/S2:CLAIMS
UPDATE $cl
{
INSERT <CLAIM>
 <CaseId>1</CaseId>
 <ClaimDate>03/05/2004</ClaimDate>
 <Amount>25000</Amount>
 <Type>Emergency</Type>
 </CLAIM>
}

 57

For a detailed description of the XUpdate language, readers are referred to [36] and [50].

4.2.3 XML Constraint Representation

Semantic integrity constraints can be considered as a general form of assertions.

They specify a general condition in the database which needs to be true always.

Constraints of this type deal with information in a single state of the world. Throughout

the paper, we denote semantic integrity constraints for XML database as XConstraints.

Global XConstraints are the constraints spanning multiple XML databases. Here we give

the constraint representation for global XConstraints.

A datalog rule (expressed as Head Body) without a Head clause is referred to

as a denial. It is customary to represent integrity constraints in the logic databases as

range restricted (safe or allowed) denials.

Definition 4.1: In order to represent global XConstraint in the context of XML database

as query evaluation, we consider global XConstraint in the form of range restricted

denials (datalog style notation) given below:

C X1 ^ X2 ^,…, Xn , where C is the name of the global XConstraint and each Xi

is either an XML literal or Arithmetic literal ▄

We define both XML literal and arithmetic literal below. The definition of XML literal is

chiefly inspired from [11] and [15]. Semantics for representing key constraints for a

single XML database are given there. We extend their semantics by introducing user

defined variables, term paths and XML literals for representing global XConstraints for

multiple XML databases.

 58

Definition 4.2: XML literal is defined as follows:

Xi : (Qi , (Qi' , [Vi1 = ti1 , Vi2 = ti2 ,…, Viki = tiki]))

Using the syntax from [11], [15], Qi , Qi' and ti1, ti2 ,…, tiki are path expressions

corresponding to Xi . Vi1, Vi2 ,…, Viki are user defined variables corresponding to ti1, ti2

,…, tiki . Qi is called the context path, Qi' the target path and ti1, ti2 ,…, tiki are the term

paths. Context path Qi identifies the set of context nodes, с and for each с, Vi1, Vi2 ,…,

Viki are the set of user defined variables corresponding to the term paths, ti1, ti2 ,…, tiki

reachable from с via Qi'. ▄

Definition 4.3: Arithmetic literal is defined as: expression θ expression, where

expression – is a linear expression made of variables occurring in XML literals, integer

constants, and the four arithmetic operator +, -, *, /; θ – is a comparison operator (=, <, >,

<=, >=, <>). Joins between nodes are expressed either as an equality (=) between two

variables in an arithmetic literal or by having the same variable name appear in different

XML literals within the same global XConstraint. Note that variables with the same

name cannot appear in the same XML literal. ▄

Now, we are ready to define the satisfiability of a global semantic integrity

constraint (global XConstraint), C.

Definition 4.4: A XML tree T is said to satisfy a global integrity constraint (global

XConstraint), C, if and only if the conjunction of X1, X2 ,…, Xn evaluates to false

▄

 59

The motivation behind using our constraint representation and negative semantics

for checking the satisfiability of a global semantic integrity constraint are: 1) constraint

representation using our approach resembles query evaluation for heterogeneous

databases (logic, relational, XML) and hence is very generic due to the inherent logic

based approach used in representing the XConstraints. 2) Global XConstraints

decomposed using Algorithm 4.1 (Section 4) are much easier using our XConstraint

representation, as the sub XConstraints generated are XQueries evaluated against local

database and can return a true/false. Hence the overall conjunction (which is also

true/false) of sub XConstraints determines the satisfiability of a global XConstraint.

Note that each Qi ,Qi', user defined variables and the term paths corresponding to

each XML literal - Xi has the site information referred to as Sj and can only refer to a

single site. However, a global XConstraint has one or more XML literals and hence can

refer to multiple XML databases. In case of Arithmetic literal, expression θ expression,

the variables in the expression could belong to different sites. If two variables are not the

leaf nodes, the equality join among the two variables is similar to the node equality

considered in [11].

Example 4.1: Consider two global XConstraints C1 and C2 defined on healthdb.xml.

Constraint C1 states that a patient with HealthPlan ‘B’ diagnosed with ‘SmallPox’ may

not claim more than 40000 dollars. Constraint C2 states that a patient with HealthPlan ‘B’

may not file a claim of type ‘Emergency’.

C1:-
 (//S1:PATIENTS,
 (./PATIENT,[ssn=./SSN,healthplan=./HealthPlan])),

 60

 (//S1:CASES,(./CASE,[caseid=./CaseId,ssn=./SSN])),
 (//S2:CLAIMS,(./CLAIM,[caseid=./CaseId,amount=./Amount])),
 (//S3:TREATMENTS,
 (./TREATMENT,[caseid=./CaseId,disease=./Disease])),
 healthplan = 'B',disease = 'SmallPox',amount > 40000.

C2:-
 (//S1:PATIENTS,
 (./PATIENT,[ssn=./SSN,healthplan=./healthplan])),
 (//S1:CASES,(./CASE,[caseid=./CaseId,ssn=./SSN])),
 (//S2:CLAIMS,(./CLAIM,[caseid=./CaseId,type=./type])),
 healthplan = 'B',type = 'Emergency'.

For the example contained in Figure 13, C1 is satisfied, but C2 is violated. C1 is satisfied

for the healthdb.xml as one of the arithmetic literals amount (node 25, value = 25000) >

40000 returns false and hence the whole conjunction for C1 evaluates to false. C2 is

violated as the conjunction for C2 evaluates to true. Arithmetic literal, healthplan (node 7,

value = 'B') = 'B' evaluates to true and similarly, type (node 27, value='Emergency') =

'Emergency' evaluates to true and hence the whole conjunction for C2 evaluates to true.

We also note that keys introduced in [15], can be expressed using our

representation. Consider a key constraint, C3, which states that within the context of

PATIENTS, a PATIENT is uniquely identified by SSN. Using the notation of [15], C3 can

be expressed as follows:

C3:- (/HEALTHDB/S1:PATIENTS,(./PATIENT,{./SSN}))

A key constraint such as C3 could be expressed in our notation (a functional dependency)

as follows:

C3:-
 (//S1:PATIENTS,(./PATIENT,[ssn=./SSN,name1=./PName])),
 (//S1:PATIENTS,(./PATIENT,[ssn=./SSN,name2=./PName])),
 name1 <> name2.

This has some similarity with the notion of template dependencies ([20]), wherein we can

represent any general constraints in relations.

 61

4.3 XConstraint Checker

We first give the assumptions of the system and then present the detailed

architecture of the XConstraint Checker.

4.3.1 Assumptions

XConstraint Checker relies on the fundamental concepts (XConstraint, XUpdate)

introduced in Chapter 4.2. The assumptions we make for the XConstraint Checker are:

1. A restricted set of XUpdate language is considered without losing the generality of the

approach. We permit the following SubOP’s: DELETE $child, INSERT content

[BEFORE | AFTER $child] and REPLACE $child with $content. The optional

[BEFORE | AFTER $child] is applicable for an ordered execution model of XML tree.

Also, we restrict the updates to elementary updates. The elementary update considers:

(i) updates occurring only on one single node of an XML tree and (ii) updates with

only one SubOP at a time. However, note that any update can be equivalently

transformed to a set of elementary updates; therefore, we do not lose the generality of

the approach.

2. XML constraint representation follows from Section 4.2.3. We consider semantic

integrity constraints with arithmetic literals affecting multiple XML databases. A topic

for future work would be to consider XML constraints with aggregate literals (sum,

max, min, avg and count).

 62

4.3.2 XConstraint Architecture

The internal architecture of the XConstraint Checker is presented in Figure 14. The

XConstraint checker interfaces with the rest of the system as shown in Figure 12. The

XConstraint Checker consists of the following modules.

o XUpdate Parser: parses a XUpdate statement input by the user and identifies the

XNode Value List (XNVL), involved in the XUpdate.

o XMetadatabase: stores and acts as a repository of global XConstraints.

o XMeta Extractor: extracts only the global XConstraints being affected by the

XUpdate.

o XConstraint Decomposer: decomposes a global XConstraint into a set of sub

XConstraints to be validated locally on remote sites.

The overall process of constraint checking is explained in the following four steps (see

Figure 14).

Figure 14: XConstraint Architecture

 63

STEP 1

The user issues a XUpdate statement on one of the sites. Figure 15 gives the

initial XML database state before the XUpdate statement is executed. For example, user

issues a XUpdate statement, XU1 on site S2.

XU1 =
FOR $cl in document("healthdb.xml")/HEALTHDB/S2:CLAIMS
UPDATE $cl
{
INSERT <CLAIM>
 <CaseId>1</CaseId>
 <ClaimDate>03/05/2004</ClaimDate>
 <Amount>25000</Amount>
 <Type>Emergency</Type>
 </CLAIM>
}

 Figure 16 gives the modified tree representation of the healthdb.xml, if the update is

successful. The nodes affected by the XUpdate are shown in filled circles.

Figure 15: Tree Representation of Healthdb.xml before XUpdate

 64

Figure 16: Modified Tree Representation, If XUpdate Is Successful

STEP 2 (XUpdate Parser)

The XUpdate Parser parses the given XUpdate statement and identifies the XML

node being modified. The output from this step is the XML Node Value List (XNVL).

XNVL = N(a1=v1,a2=v2,…,an=vn), where N is the node being updated and is obtained

from the $binding in the XUpdate syntax, v1,v2,…,vn are the values being updated

corresponding to the attributes a1,a2 , … ,an. a1,a2, …,an are either the XML sub elements or

XML attributes being updated and are obtained from the content of the XUpdate

statement (Section 2.2). For the running example,

XNVL = {/HEALTHDB/S2:CLAIMS/CLAIM(CaseId = 1,
 ClaimDate = '03/05/2004', Amount = 25000,
 Type='Emergency')}

 65

STEP 3 (XMeta Extractor)

Let XU↓ denote the path involved in executing the XUpdate statement, XU on the

XML tree T. Similarly, C↓ denotes path in defining the constraint C. We say that a

XUpdate, XU might violate a constraint C if, XU↓ ∩ C↓ is not empty. For the running

example, XU1↓ corresponds to the following nodes: {20,21,22,23,24,25,26,27,28}, C1↓

matches {3,4,7,8,12,13,14,15,21,22,25,26,31,32,37,38} and C2↓ matches

{3,4,7,8,12,13,14,15, 21,22,27,28} (refer to Figure 16). XU1 ∩ C1↓ is not empty and XU1 ∩

C2 is also not empty; hence, both the constraints might be violated by the update

statement. If a global schema or a global DTD (Document Type Definition) is given, we

can identify the list of global XConstraints that might be violated by simply consulting

the global DTD.

The XMeta Extractor identifies the list of constraints being affected by the

XUpdate and constructs the XConstraint Source Table (XCST). XCST(Ci) = < Ci,

list(Sj)>, where Ci is the constraint identifier and list(Sj) is the list of sites being affected

by Ci. For the running example, XCST is given in Figure 17. The XMeta Extractor sends

the XCST to the XConstraint Decomposer.

Ci list(Sj)
C1 (S1,S2,S3)
C2 (S1,S2)

Figure 17: XCST

 66

STEP 4 (XConstraint Decomposer)

The XConstraint Decomposer generates a set of sub XConstraints, Cij on the basis

of locality of sites. Cij is the sub XConstraint corresponding to constraint - Ci and site - Sj.

We present algorithmic description of generating Cij’s in the next section. For the running

example, C11, C12, C13, C21 and C22 are generated. The values of the sub XConstraints are

also given in the next section.

4.4 XConstraint Decomposer

The basic idea of XConstraint Decomposer is to decompose a global constraint

into a conjunction of sub XConstraints, where each conjunct represents the constraint

check as seen from each individual site. Given an XUpdate statement, a brute force

approach would be to go ahead and update the XML document and then check for

constraint violations. However, we want to be able to check for constraint violations

without updating the database. In other words, the XUpdate is carried out only if it is a

non constraint violator. Thus, we avoid any potential rollbacks.

Our idea here is to scan through a global XConstraint Ci, XUpdate U and then

generate conjunction of sub XConstraints, Cij’s. The value of each conjunct (each Cij) is

either 0 or 1. If the overall value of conjunction is 1, constraint Ci is violated (from

Theorem 4.1).

Algorithm 4.1 presented in Figure 18 gives the constraint decompositions (Cij’s)

corresponding to a global constraint Ci and an XUpdate statement involving an insert

statement.

 67

Algorithm 4.1

1: INPUT : (a) XNVL = $Sm:N(a1=v1,a2=v2,…,an=vn) on XML tree T

 // Note: insert is occurring on Site Sm

2: (b) XCST = < <C1,(S11,S12,…,S1n1)>,…,<Cq,(Sq1,Sq2,…,Sqnq > >

3: OUTPUT: list of sub XConstraints <Ci1,Ci2,…,Ciki > for each Ci affected by XUpdate, XU

4: for each i in {1…q} do

5: for each j in {1…ni} do

6: let Sj:(Q1,(Q1',[X1])),…, Sj:(Qr,(Qr',[Xr])) be XML literals and A be all arithmetic literals

 associated with Sj

7: if (j <> m) then

8: Cij = for $var1 in document(“T”)Q1.Q1' ,

9: for $var2 in document(“T”)Q2.Q2', …,

10: for $varr in document(“T”)Qr.Qr'

11: where <cond1>

12: return 1

13: <cond1> is obtained by joining variables with same name appearing in

 XML literals and including any arithmetic conditions

14: else if (j = m) then /* site where update is occurring */

15: if (there exists variables in A that do not appear among X1…Xr) then

16: for each variable, ν in A that do not appear among X1…Xr do

17: let k be the site where ν appears as one of the XML literals, (Sk:Q(Q'[X]))

18: IPikd = for $ν in document (“T”)Q.Q'

19: where <cond2>

20: return {$ν /tν }

21: tν is the path expression corresponding to $ν in XML literal and <cond 2> is obtained from

 X1…Xr and X and d is the nth intermediate predicate

22: end for

23: end if

24: Cij = return 1 if (<cond3> and A') else return 0

25: <cond3> is obtained from XNVL and (logical and) X1…Xr

 A' is A with IP’s replacing corresponding variables in A

 68

26: end if

27: end for

28: end for

Figure 18 : XML Constraint Checker Algorithm

Algorithm 4.1 takes as input XML Node Value List, XNVL (STEP2, Section 3.2) and

XConstraint Source Table - XCST (STEP3, Section 3.2) and gives as output the sub

XConstraints. XNVL (line 1) identifies the node N being inserted with the values v1…vn

corresponding to attribute names, a1...an (similar to XUpdate syntax). The update is

occurring on site Sm. The outer for loop variable i (line 4) loops through all the

constraints C1…Cq affected by the XUpdate. The inner for loop variable j (line 5) loops

through each site < (S11,S12,…,S1n1),…,(Sq1,Sq2,…,Sqnq)> for each constraint Ci. Inside the

for loop (lines 4-28), all the sub-constraints Cij’s are generated. X1…Xr (line 6) denotes

vector of user defined variable v = path expression t in a XML literal (Definition 2.2).

Q1.Q1' (line 8) denotes the conjunction of path expressions Q1 and Q1'. A critical feature

of the algorithm is the generation of intermediate predicate, IP (line 18). IP’s are

generated only at the site where update is occurring. For each variable that occurs in a

different site, we generate IP. Conceptually, IP denotes information that needs to be

shared from a different site; implementation wise, IP is an XQuery returning the value of

the variable from a different site. IPikd means the dth intermediate predicate

corresponding to constraint Ci and site Sk.

Theorem 4.1: The conjunction of sub XConstraints, Cij’s generated from Algorithm 4.1

conclusively determines if a XUpdate statement violates a global XConstraint, Ci.

 69

Proof sketch:

1. Given a XUpdate statement occurring on site Sm and a global constraint Ci, Ci can be

written as conjunction of XML literals and arithmetic literals. If the whole conjunction

evaluates to false, Ci is satisfied (from Definition 2.4).

2. Each sub XConstraint Cij needs to achieve the exact same result as the XML literal and

Arithmetic literals corresponding to site Sj.

3. At this point Cij falls in one of the two cases depending on the site Sj :

Case 1: (j <> m) - This is the case where Cij corresponds to a site other than where

update is occurring. The generation of Cij in this case involves computing appropriate

join conditions and applying arithmetic conditions on XML literals and Arithmetic

literals associated with Sj. Hence Cij naturally achieves the exact same result as the XML

literals and Arithmetic literals associated with Sj.

Case 2: (j = m) - This is the case where Cij corresponds to the site where update is

occurring. The generation of Cij in this case consists of two parts. Part 1 consists of

information from the same site Sj – trivial case (just like Case 1). Part 2 consists of

acquiring information from a different site. For each such variable, a unique intermediate

predicate is generated. IP’s are XQueries that return the values of such variables by

computing appropriate joins and arithmetic conditions involved with such variables.

Hence, IP’s guarantee correct information exchange from a different site. The reason, we

generate unique IP’s is we can either store all the IP’s at a global directory such as the

XMeta database or we can generate IP’s at run time.

 70

From steps 2 and 3 we observe that the conjunction of sub XConstraints Cij’s,

entails the global XConstraint, Ci. Hence, if Ci determines whether a XUpdate violates

the constraint, then conjunction of its Cij’s also determines if the constraint Ci is violated.

In other words, if the whole conjunction of Ci evaluates to false, constraint Ci is not

violated, otherwise Ci is violated. ▄

Example 4.2

We illustrate the working of the algorithm on the example from Chapter 4.2.1.

Here, we illustrate the sub XConstraints generated when intermediate predicates are not

involved.

XNVL = {/HEALTHDB/S2:CLAIMS/CLAIM(CaseId = 1,
 ClaimDate = '03/05/2004', Amount = 25000,
 Type='Emergency')}

CDST (C1) = <C1, (S1, S2, S3)>
where
C1:-
 (//S1:PATIENTS,
 (./PATIENT,[ssn=./SSN,healthplan=./HealthPlan])),
 (//S1:CASES,(./CASE,[caseid=./CaseId,ssn=./SSN])),
 (//S2:CLAIMS,(./CLAIM,[caseid=./CaseId,amount=./Amount])),
 (//S3:TREATMENTS,
 (./TREATMENT,[caseid=./CaseId,disease=./Disease])),
 healthplan = 'B',disease = 'SmallPox',amount > 40000.

/* C11 is generated from Algorithm 4.1 (lines 7-13) */
C11 = for $var1 in document("healthdb.xml")//S1_PATIENTS/PATIENT,
 for $var2 in document("healthdb.xml")//S1_CASES/CASE,
 where $var1/SSN = $var2/SSN and $var2/CaseId = 1 and
 $var1/HealthPlan = "B"
 return 1

/* C12 is generated from Algorithm 4.1 (lines 14-26) */
C12 = return 1 if {1 = 1 and 25000 > 40000}
 else return 0

/* C13 is generated from Algorithm 4.1 (lines 7-13) */

C13 = for $var1 in
 document("healthdb.xml")//S3_TREATMENTS/TREATMENT

 71

 where $var1/CaseId = 1 and $var1/Disease = "SmallPox"
 return 1

So, C1 = C11 ^ C12 ^ C13. In this example, C11 = 1(true), C12 = 0(false) and C13 = 1(true).

The conjunction of C11, C12 and C13 evaluates to false. Hence the update statement does

not violate constraint C1 (from Theorem 4.1)

Similarly,

C21 = for $var1 in document("healthdb.xml")//S1_PATIENTS/PATIENT,
 for $var2 in document("healthdb.xml")//S1_CASES/CASE,
 where $var1/SSN = $var2/SSN and $var2/CaseId = 1 and
 $var1/HealthPlan = "B"
 return 1

C22 = return 1 if {1 = 1 and "Emergency" = "Emergency"}
 else return 0

So, C2 = C21 ^ C22. In this example, C21 = 1(true), C22 = 1(true). The conjunction of C21

and C22 evaluates to true. Hence the update statement violates constraint C2 (from

Theorem 4.1)

Example 4.3

Here, we illustrate the generation of sub-constraints when intermediate predicates

are involved. For the example database given in Chapter 4.2.1, consider C4, which states

“A patient’s date of claim may not be earlier than his/her injury date”. Constraint C4 can

be expressed as:

C4:- (//S1:PATIENTS,(./PATIENT,[ssn=./SSN])),
 (//S1:CASES,
 (./CASE,[caseid=./CaseId,ssn=./SSN,idate=./InjuryDate])),
 (//S2:CLAIMS,(./CLAIM,[caseid=./CaseId,cdate=./ClaimDate])),
 cdate<idate.

We also assume date arithmetic is available for both XConstraints and sub XConstraints

represented as XQueries.

Say, an update statement XU2 is occurring on site S2 of the XML tree given in Figure 15.

 72

XU2 =
FOR $claim in document ("healthdb.xml")/HEALTHDB/S2:CLAIMS
UPDATE $claim
{
INSERT <CLAIM>
 <CaseId>1</CaseId>
 <ClaimDate>09/14/2003</ClaimDate>
 <Amount>25000</Amount>
 <Type>emergency</Type>
 </CLAIM>
}

Applying steps 1-4 from Chapter 4.3, we obtain

XNVL = {/HEALTHDB/S2:CLAIMS/CLAIM(CaseId = 1,
 ClaimDate = '09/14/2003',Amount = 25000,
 ,Type='Emergency')}

CDST (C4) = <C4, (S1, S2)>

IP411= for $var1 in document("healthdb.xml")//S1_PATIENTS/PATIENT,
 for $var2 in document("healthdb.xml")//S1_CASES/CASE,
 where $var1/SSN = $var2/SSN and $var2/CaseId = 1
 return $var2/InjuryDate

C42 = return 1 if (1 = 1 and (09/14/2003 < IP411))
 else return 0

C4 = C42. C42 evaluates to true. Hence, C4 is violated (from Theorem 4.1).

Discussion

Algorithm 4.1 considers elementary XUpdate statements involving an insert

statement. The elementary XUpdate statements are statements affecting only one node of

an XML tree. However, note that any XUpdate statement can be translated equivalently

to a set of elementary updates; hence, the generality of the algorithm is not lost. Also, we

do not consider the issue of transactions. Hence, rollbacks caused by failed transactions

can not be avoided.

Here, we make an important observation that a XUpdate statement involving a

delete can only violate referential integrity constraints, semantic integrity constraints

 73

involving aggregate predicates (sum, max, min, avg and count), state transition and state

sequence constraints involving aggregate predicates. It does not violate semantic integrity

constraints involving arithmetic predicates considered in this paper. XUpdate statement

involving a modify can be modeled as a delete followed by insert. Hence, we have

presented a complete model for global semantic integrity constraint checking for XML

databases with arithmetic predicates under insert/delete/modify statements.

Let m be the number of global constraints, n is the number of sites, and p is the

number of tables at the site where update is occurring. The time complexity of Algorithm

4.1 is O(m*n). If we have a template of possible XUpdate statements, note that all the

steps of the algorithm can be carried out during compile time and we can generate sub-

constraints for each such template. However, at run time, when an actual XUpdate

statement is given, a template match can occur and the corresponding sub-constraints,

which are already decomposed at compile time, can be executed in parallel at the

corresponding sites. Hence, the run time complexity is O(p) plus the communication time

required for executing at the corresponding sites. P is usually a smaller number and is

usually much smaller than m*n. Hence, we say the run time complexity is O(1). If we did

not execute sub-constraints in parallel, the run time complexity would be O(m*n). Hence,

by pushing most of the processing at compile time, we gain efficiency at run time.

Algorithm 4.1 considers global XConstraints involving a simple conjunction of

XML literals and arithmetic literals. We will extend our semantic integrity constraint

checking for global XConstraints involving aggregate literals (sum, count, max, min and

avg).

 74

4.5 Implementation

The XConstraint Checker architecture and Algorithm 4.1 have been implemented

using JDK version 1.3 and the system UI is designed using javax.swing package. A

prototype of the system implementation is given in Figure 19. The XMetadatabase panel

(top left panel) stores global XConstraints, result area (centre panel) displays the results,

XUpdate panel (lower left panel) gives the user to input XUpdate statement and XML

database panel (right most panel) shows the xml files of two or more different sites.

 The GUI has two buttons, “Decompose” and “XConstraint Check”. When the

user clicks “Decompose”, sub XConstraints are generated and displayed in the result area

panel, shown in Figure 20. The resulting sub XConstraints need to be executed on their

corresponding remote XML database sites using the XML/DBC API ([22]), when

“XConstraint Check” button is clicked. However, for our system implementation, we are

not considering the action of XConstraint Check, as we have not seen a working version

of the XML/DBC kind of products. We have checked for the validity of the sub

XConstraints by executing them on the Galax XQuery interpreter version 0.3.5 ([21])

using the sample healthdb.xml file.

 75

Figure 19 : XConstraint Checker GUI

Figure 20: XConstraint Checker GUI After Decompose

 76

5. RELATED WORK

Our related work section broadly spans three areas: constraint checking in relational

databases, constraint checking in XML databases and mobile agents for constraint

checking.

5.1 Constraint Checking in Relational Databases

Much of the research concerning integrity constraint checking has been done in the area

of relational database systems. Grefen and Apers ([24]) provide an excellent survey of

constraint checking and enforcement methods in relational database systems. Grefen and

Widom ([25]) give an exhaustive survey of protocols for integrity constraint checking in

federated database systems. Gupta and Widom ([28]) give approaches for constraint

checking in distributed databases at a single site. They show how a class of distributed

constraints can be broken down into local update checks. Some of the approaches for

distributed databases and federated databases can be easily applied to multidatabases with

some minor changes. Ceri and Widom ([12]) propose inter-database triggers for

maintaining equality constraints between heterogeneous databases. Their approach relies

on active rules and assumes a persistent queue facility between sites. Widom and Ceri

([52]) mention research on active databases and constraints.

 Grufman et al. ([26]) provide a formal description of distributing a constraint

check over a number of databases. They propose that the problem of generating sub-

constraints from a global constraint is the same as rewriting a predicate calculus

expression of the constraint check into a form in which the distribution of the data is

 77

respected. The rewritten predicate can be seen as a conjunction of sub-constraints, where

each sub constraint may be visualized as the constraint check as seen from each

individual database. During the process of rewriting the constraint check predicate, they

introduce the concept of intermediate predicates. We use the idea of intermediate

predicates in our constraint planning algorithm discussed in Section 3.4. In their

constraint distribution model, an update statement is first carried out and the new

database state is checked for constraint violation. If the constraint is violated, the update

is rolled back. Our work differs from theirs by giving an algorithm that automatically

decomposes a global constraint in to a conjunction of sub-constraints. Our approach is

much more sophisticated, as we check for constraint violation without actually updating

the database. The update is executed only when there are no constraint violations. Hence

our algorithm is efficient as there are no problems involved with rollbacks as such. Also,

the overhead introduced from our algorithms are very negligible as the only extra

overhead is the time required for constraint checking on the site where update is

happening. At all the remaining sites, constraint check takes the same time.

 Ibrahim ([30]) proposes a strategy for constraint checking in distributed database

where data distribution is transparent to the application domain. They propose an

algorithm for transforming a global constraint into a set of equivalent fragment

constraints. However, our algorithm coverage is much broader as we can have different

tables on different sites. In our approach, the constraint planning algorithm generates the

sub-constraints, which can be readily implemented on Oracle database system. With

minor changes, it can be implemented on any commercial database.

 78

5.2 Constraint Checking in XML databases

Constraint checking in XML databases is very new and very few research results exist in

this area. Here, literature survey spans two major topics: constrains for XML and

constraint checking in XML.

5.2.1 Constraints for XML

The idea of keys and foreign keys for XML was introduced in [11] and [15]. The basic

approach is to express constraints using path expressions. We also study constraint

representation in distributed databases. In [28], a constraint is treated as query whose

result is either 0 or 1.If the query produces 0 on the database D, D is said to satisfy the

constraint. Otherwise, constraint is violated (Gupta and Widom ([28]) call it “panic”). We

have extended the approach of [11] and [15] with datalog style notations and also used

the concepts from [28] in representing XConstraints. Our XConstraint representation is

limited to only semantic integrity constraints involving arithmetic literals. We plan to

extend the representation to aggregate literals.

5.2.2 Constraint Checking in XML

Our approach of constraint checking for multiple XML databases is novel as we have not

seen any research on semantic integrity constraint checking for multiple XML databases.

Research on validating keys for XML can be found in [3], [6], and [15]. To our

knowledge, the only work closest to ours is from Kane et al. ([31]). Kane et al. execute

only those XUpdates that would preserve the consistency of the XML document with

respect to a particular schema. The underlying idea is to generate constraint check sub

 79

queries. The constraint check sub queries check if the given XUpdate statement violates

the consistency of the XML document. The XUpdate statement is executed only if it is

safe. Hence they avoid any potential rollbacks. We also take a similar route. However,

they do not consider semantic integrity constraint checking for multiple XML databases.

5.3 Agent Based Approach

Mobile agents have been recently recognized as an efficient means for distributed

information retrieval ([8]). Recent research has considered using mobile agents for global

querying, but none of the literature so far has looked in to the aspect of using mobile

agents for global constraint checking. We intend on using a suitable mobile agent

platform for implementing our constraint checker system.

ACQUIRE ([17]), an agent based complex query and information retrieval engine

considers an agent-based approach for information retrieval from distributed data

sources. ACQUIRE translates each user query into a set of sub queries by employing a

combination of planning and traditional database query optimisation techniques. For each

sub query ACQUIRE then sends a corresponding mobile agent which does the

computation work and retrieves the result. When all the agents have returned, ACQUIRE

filters and merges retrieved data and the results are displayed to the user. MOMIS ([4])

gives a framework for information integration that deals with the integration and query of

multiple, heterogeneous information sources. MOMIS (Mediator environment for

multiple information sources) uses agent-based approach, where in they have multiple

agents doing different kinds of tasks. A Global virtual view of all the sources is generated

 80

using XML as the basis. A Global schema is generated from the individual source sites

(wrapper agent). The wrapper agent resides at each of the individual source sites and

monitors for any changes in the data structure of the sources. The Query Manager agent

is responsible for querying information from all the source sites. Similar to ACQUIRE

sub queries are generated and Query Manager Agent is responsible for querying from

individual data sources. Our intent is also similar to the above, however they are using

mobile agents in a different context of global querying and we intend on using mobile

agents for global constraint checking.

 81

6. CONCLUSIONS

It is well understood that constraint checking for a System of Databases is an

important area of research. We have made contributions primarily along two lines of

research: constraint checking for a System of Relational Databases (R-SyDb) and

constraint checking for a System of XML Databases (X-SyDb).

Chapter 3 summarized our research results in the area of semantic integrity

constraint checking for R-SyDb. We have designed and implemented a general

framework of an agent based constraint checker for checking constraint violations in a

System of Relational Databases. We have also proposed constraint planning algorithms

that form as an algorithmic backbone for constraint checker. The constraint planning

algorithms take as an input an update statement, a list of global constraints and make a

decision, if a constraint has been violated. The performance results have shown that

constraint planning algorithm shows better timing as compared to the other approaches.

Figure 21 gives the constraint violation chart under insert/update/delete statement. An X

indicates a possible constraint violation corresponding to the column. Research on Row

ID of “1” is trivial and Row ID 2 is a special case of Row ID 4, which we have already

completed. Research on Row ID’s 2 and 5 is a major component of our research, which

has been summarized in Chapter 3. We intend on proposing algorithms in the future for

checking constraint violations for semantic integrity constraints involving state transition,

state sequence and referential integrity constraints.

 82

Figure 21: Constraint Violation Chart for Insert/Update/Delete

 We have proposed solutions for semantic integrity constraint checking for

multiple XML databases (refer Chapter 4). As stated earlier, none of the research has

considered the issue of semantic integrity constraint checking for multiple XML

databases. Although, native XML databases are not being used very much for

commercial purposes, we believe that with the growing popularity of XQuery coupled

with efficient storage and indexing techniques for native XML databases, multiple XML

databases will be a norm. With this goal in mind, we have presented the architecture of

XConstraint Checker. XConstraint Checker is part of a middleware module that

determines if an XUpdate statement violates any global XConstraints. In the area of X-

SyDb, we have:

(i) introduced a notation for representing XConstraints,

(ii) proposed architecture for XConstraint Checker,

(iii) formalized an algorithm for XConstraint Decomposer, and

 83

(iv) implemented a prototype of the system with the ideas discussed in Chapter 4.

Given an XUpdate statement and a list of global XConstraints, XConstraint Decomposer

(Algorithm 4.1) generates sub XConstraints to be validated locally on remote sites. Since

most of the steps of the algorithm can be carried out at compile time, we achieve

efficiency at run-time.

Future Work

In the near future, we would like to pursue research by extending on the current work and

possibly work in new emerging areas in databases.

Hybrid Execution Engine Module

As stated earlier in Chapter 3.6, we implemented an agent based execution engine

module and applied it in the context of SyD Middleware. We propose to implement a

hybrid engine module for system on mobile devices middleware. Hybrid engine module

exploits the best of the features of Asynchronous RMI and mobile agents. When the user

on a mobile device tries to execute a method call on another device, the hybrid engine

module can automatically switch between agent approach and RMI approach based on a

decision algorithm.

R-SyDb and X-SyDb

We are interested in extending the dissertation topic to develop new algorithms

and systems for checking integrity constraint violations for state transition and state

sequence constraints. We would like to tailor the existing algorithms to work for state

transition and state sequence constrains. XML database is a new research area and we are

 84

keenly interested in checking for all types of constraint violations for XML databases.

We have been considering constraint checking for homogeneous databases. We aim to

pursue research for constraint checking in heterogeneous databases.

Constraint Optimizations

So far, for both R-SyDb and X-SyDb, we have only looked at finding correctly

and efficiently, if a constraint is being violated by an update statement. However, we

have left out the issue of constraint optimizations. For each global XConstraint (or

constraint) that could be violated, multiple sub-XConstraints (or constraints) are

generated. Hence, we have a large number of sub XConstraints (or constraints) when we

consider all the set of global XConstraints (or constraints). All this process can be done in

compile time. Therefore, efficient ordering of sub XConstraints (or constraints) for

executing on remote sites would optimize the constraint checking mechanism. To achieve

this, we plan to introduce an XConstraint Optimizer (Constraint Optimizer) module.

Transactions and Fault Tolerance

We also would like to consider the issue of transactions, concurrency control, and

fault tolerance for Constraint Checker, XConstraint Checker, and Metadatabase modules.

We plan to introduce a concurrency control manager module along with the constraint

checker, which would handle concurrent requests for updates. We also plan to pursue

research on indicating a tolerance level for each constraint. This is especially true for

Bioinformatics databases, as sometimes the biologists would like to ignore the issue of

satisfying constraints.

 85

7. BIBLIOGRAPHY

[1] R. Ahmed, P. De Smedt,W. Du,W. Kent,M. Ketabchi,A. Litwin, W. A., Rafii,

and M. C. Shan. The Pegasus heterogeneous multidatabase system. IEEE

Computer, 1991, pp. 19-27.

[2] Y. Arens, C. A. Knoblock and W.Shen. Query Reformulation for Dynamic

Information Integration. Journal of Intelligent Information Systems, 6(2/3),

1996, pp. 99-130.

[3] M.Benedikt, C.Y. Chan,W. Fan,J.Freire and R.Rastogi.Capturing both Types

and Constraints in Data Integration. ACM SIGMOD, 2003.

[4] S. Bergamaschi, G. Cabri, F. Guerra, L. Leonardi, M. Vincini, F. Zambonelli.

Supporting Information Integration with Autonomous Agents. CIA 2001: 88-99.

[5] A.R. Bobak. Distributed and Multi-Database Systems. Artech House Publishers,

San Francisco,California, USA, 1996.

[6] B. Bouchou, M. Halfeld-Ferrari-Alves, and M. Musicante.Tree Automata to

Verify XML Key Constraints. WebDb 2003.

[7] Y.Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. Overview of

multidatabase transaction management. VLDB Journal: Very Large Data Bases,

1(2):181-293, 1992.

[8] B. Brewington, R. Gray, K. Moizumi, D. Kotz et al. Mobile Agents in

Distributed Information Retrieval, Intelligent Information Agents, Springer-

Verlag, 1999.

 86

[9] M. W. Bright, A. R. Hurson, and S. H. Pakzad. A taxonomy and current issues

in multidatabase systems. IEEE Computer, pages 50--59, Mar.1992.

[10] O. Bukhres and A. Elmagarmid. Object-Oriented Multidatabase Systems: A

Solution for Advanced Applications. Prentice Hall, New Jersey, 1996.

[11] P. Buneman, S. Davidson, W.Fan, C.Hara, and W.Tan. Keys for XML. In

WWW10, 2001, pp.201-210.

[12] S. Ceri, and J. Widom. Managing Semantic Heterogeneity with Production

Rules and Persistent Queues. Proceedings of the Nineteenth International

Conference on Very Large Data Bases, pages 108-119, Dublin, Ireland, August

1993.

[13] S. Chawathe, H. Garcia-Molina, J. Hammer, K.Ireland,Y. Papakonstantinou,J.

Ullman and J. Widom. The TSIMMIS project: Integration of heterogeneous

information sources. Proceedings of IPSJ Conference, 1994.

[14] Y. Chen, S.B. Davidson, C.S. Hara, and Y. Zheng . RRXF: Redundancy

Reducing XML Storage in Relations. Proceedings of the International

Conference on Very Large Databases, 2003.

[15] Y.Chen, S.B. Davidson, and Y.Zheng. Constraint Preserving XML Storage in

Relations. In WebDB, 2002.

[16] Y.Chen, S. Davidson,Y. Zheng. XKvalidator:A Constraint Validator For XML.

Proceedings of ACM CIKM, 2002.

[17] S. K. Das, K. Shuster, C. Wu. ACQUIRE: agent-based complex query and

information retrieval engine. AAMAS 2002: 631-638.

 87

[18] S.K. Das, and M.H. Williams. Extending integrity maintenance capability in

deductive databases. In the proceedings of the UK ALP-90 Conference (Bristol,

England, January), Oxford, England: Intellect, pp.75-111, 1990.

[19] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of heterogeneous

and autonomous database systems. Morgan Kaufmann, Boston, London, 1999.

[20] R.A. Elmasri and S.B. Navathe, S.B. Fundamentals of Database Systems.

Addison-Wesley, 2003, 4th edition.

[21] M. Fernandez and J. Siméon.Growing XQuery. European Conference on Object

Oriented Programming (ECOOP), 2003.

[22] G. Gardarin, A. Mensch, T. Tuyet, and D.L. Smit. Integrating Heterogeneous

Data Sources with XML and XQuery. Proceedings of the 13th International

Workshop on Database and Expert Systems Applications, 2002.

[23] G.Glass. Overview of Voyager: ObjectSpace's Product Family for State-of-the-

Art Distributed Computing. Technical report, ObjectSpace, 1999.

[24] P. Grefen, and P. Apers. Integrity Control in Relational Database Systems - An

Overview, Journal of Data and Knowledge Engineering, 10 (2), 187-223, 1993

[25] P. Grefen, and J, Widom. Protocols for integrity Constraint Checking in

Federated Databases. International Journal of Distributed and Parallel

Databases, 5(4): 327-355, October 1997

[26] S. Grufman, F. Samson, S.M. Embury, P.M.D. Gray, and T. Risch. Distributing

Semantic Constraints between Heterogeneous Databases. Proceedings of the

 88

Thirteenth International Conference on Data Engineering, ICDE 1997, April 7-

11, pages 33-42, Birmingham U.K., April 1997

[27] A. Gupta, Y. Sagiv, J.D. Ullman, and J. Widom. Constraint Checking with

Partial Information. Proceedings of the Thirteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pages 45-55,

Minneapolis, Minnesota, May 1994.

[28] A. Gupta and J. Widom. Local Verification of Global Integrity Constraints in

Distributed Databases. Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 49-58, Washington, D.C., May 1993

[29] C. G. Harrison, D.M. Chessm, A.kershenbaum. Mobile Agents: Are they a good

idea? Research Report, IBM Research Division, 1994.

[30] H. Ibrahim. A Strategy for Semantic Integrity Checking in Distributed

Databases. Proceedings of the ninth International Conference on Parallel and

Distributed Systems, ICPADS 2002, pages 139-144

[31] B. Kane, H. Su, and E. A. Rundensteiner, Consistently Updating XML

Documents using Incremental Constraint Check Queries. Workshop on Web

Information and Data Management (WIDM'02), Nov. 2002. page 1-8,2002.

[32] G. Karjoth, D. Lange, and M. Oshima A Security Model for Aglets. IEEE

Internet Computing, Vol. 1, No. 4, July-August 1997.

[33] R. Koblick. Concordia. Communications of the ACM, 42(3): 96-99, March 1999.

 89

[34] C. T. Kwok and D. S. Weld . Planning to gather information. Technical Report

UW-CSE-96-01-04.Department of Computer Science, University of

Washington,Seattle, WA, 1996.

[35] D.B. Lange and M. Oshima. Mobile Agents with Java: The Aglet API. World

Wide Web 1(3): 111-121 (1998).

[36] A. Laux and L. Martin. XUpdate Working Draft, 2000, last accessed on August

20, 2004 from http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

[38] P. Madiraju, S. K. Prasad, R. Sunderraman et al. An Agent Module for a

System of Mobile Devices, Proceedings of the 3rd International Workshop on

Agents and Peer-to-Peer Computing(AP2PC 2004) in conjucntion with Third

International Joint Conference on Autonomous Agents and Multi Agent Systems

(AAMAS 2004),New York, July 2004.

[39] P. Madiraju and R. Sunderraman. Mobile Agent Approach for Global Database

Constraint Checking. Proceedings of ACM Symposium on Applied Computing

(SAC'04), Nicosia, Cyprus, 2004, pp. 679-683.

[40] P.Madiraju and R. Sunderraman. An Efficient Constraint Planning Algorithm

for Multidatabases. Accepted in 2005 ACS/IEEE International Conference on

Computer Systems and Applications (AICCSA-05)

[41] P. Madiraju, R. Sunderraman, and S.B. Navathe. Semantic Integrity Constraint

Checking for Multiple XML Databases. Proceedings of 14th Workshop on

Information Technology and Systems (WITS 2004), Washington D.C.,

December, 2004

 90

[42] Praveen Madiraju, Rajshekhar Sunderraman, Shamkant B. Navathe and Haibin

Wang. Semantic Integrity Constraint Checking for Multiple XML Databases,

Journal of Database Management (under second revision)

[43] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, A. Dogac: Dynamic Query

Optimization in Multidatabases. Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, 1997.

[44] S. K. Prasad, A. G. Bourgeois, E. Dogdu, R. Sunderraman, Y. Pan, and S.

Navathe. 2003. Implementation of a Calendar Application Based on SyD Co-

ordination Links, Proceedings of The Third International Workshop on Internet

Computing and E-Commerce in conjunction with the 17th Annual International

Par-allel & Distributed Processing Symposium (IPDPS 2003), 22-26 April,

Nice, France

[45] S. K. Prasad, A. G. Bourgeois, E. Dogdu, R. Sunderraman, Y. Pan, S. Navathe

and V. Madisetti. 2003. Enforcing Interdependencies and Executing

Transactions Atomically Over Autonomous Mobile Data Stores Using SyD Link

Technology, Proceedings of Mobile Wireless Network Workshop held in

conjunction with The 23rd International Conference on Distributed Computing

Systems (ICDCS'03), May 19-22, Providence, Rhode Island.

[46] S. K. Prasad, V. Madisetti, S. B. Navathe, R. Sunderraman, E. Dogdu, A.

Bourgeois, M. Weeks, B. Liu, J.Balasooriya, A.Hariharan, W. Xie, P. Madiraju,

S. Malladi, R. Sivakumar, A. Zelikovsky, Y. Zhang, Y. Pan, and S. Belkasim.

SyD: A Middleware Testbed for Collaborative Applications over Small

 91

Heterogeneous Devices and Data Stores, Procs. ACM/IFIP/USENIX, 5th

International Middleware Conference, Toronto, Ontario, Canada, October 18th -

22nd, 2004.

[47] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational Databases for Querying XML documents: Limitations and

Opportunities. Proceedings of the International Conference on Very Large

Databases, 1999.

[48] A.P. Sheth and J. A. Larson. Federated database systems for managing

distributed, heterogeneous,and autonomous databases. ACM Computing Surveys,

22(3):183--236, Sept. 1990.

[49] R. Sunderraman, E. Dogdu, P. Madiraju, L. Malladi. "A Java API for Global

Querying and Updates for a System of Databases", Proceedings of 43rd ACM

South East Conference, Georgia, March, 2005.

[50] I. Tatarinov, Z. G. Ives, A.Y. Halevy and S. Daniel. Updating XML.

Proceedings of the ACM SIGMOD Conference on Management of Data, 2001.

[51] C. Türker, and M. Gertz. Semantic integrity support in SQL: 1999 and

commercial (object) relational database management systems. VLDB Journal

10(4): 241-269 (2001).

[52] J. Widom, and S. Ceri. Active Database Systems: Triggers and Rules for

Advanced Database Processing. Morgan Kaufmann, San Francisco, California,

1996.

	Georgia State University
	ScholarWorks @ Georgia State University
	8-9-2005

	Global Semantic Integrity Constraint Checking for a System of Databases
	Praveen Madiraju
	Recommended Citation

	Microsoft Word - front.doc

