6 research outputs found

    Coupled FPGA/ASIC Implementation of Elliptic Curve Crypto-Processor

    Full text link

    Prime Field ECDSA Signature Processing for Reconfigurable Embedded Systems

    Get PDF
    Growing ubiquity and safety relevance of embedded systems strengthen the need to protect their functionality against malicious attacks. Communication and system authentication by digital signature schemes is a major issue in securing such systems. This contribution presents a complete ECDSA signature processing system over prime fields for bit lengths of up to 256 on reconfigurable hardware. By using dedicated hardware implementation, the performance can be improved by up to two orders of magnitude compared to microcontroller implementations. The flexible system is tailored to serve as an autonomous subsystem providing authentication transparent for any application. Integration into a vehicle-to-vehicle communication system is shown as an application example

    Studies on high-speed hardware implementation of cryptographic algorithms

    Get PDF
    Cryptographic algorithms are ubiquitous in modern communication systems where they have a central role in ensuring information security. This thesis studies efficient implementation of certain widely-used cryptographic algorithms. Cryptographic algorithms are computationally demanding and software-based implementations are often too slow or power consuming which yields a need for hardware implementation. Field Programmable Gate Arrays (FPGAs) are programmable logic devices which have proven to be highly feasible implementation platforms for cryptographic algorithms because they provide both speed and programmability. Hence, the use of FPGAs for cryptography has been intensively studied in the research community and FPGAs are also the primary implementation platforms in this thesis. This thesis presents techniques allowing faster implementations than existing ones. Such techniques are necessary in order to use high-security cryptographic algorithms in applications requiring high data rates, for example, in heavily loaded network servers. The focus is on Advanced Encryption Standard (AES), the most commonly used secret-key cryptographic algorithm, and Elliptic Curve Cryptography (ECC), public-key cryptographic algorithms which have gained popularity in the recent years and are replacing traditional public-key cryptosystems, such as RSA. Because these algorithms are well-defined and widely-used, the results of this thesis can be directly applied in practice. The contributions of this thesis include improvements to both algorithms and techniques for implementing them. Algorithms are modified in order to make them more suitable for hardware implementation, especially, focusing on increasing parallelism. Several FPGA implementations exploiting these modifications are presented in the thesis including some of the fastest implementations available in the literature. The most important contributions of this thesis relate to ECC and, specifically, to a family of elliptic curves providing faster computations called Koblitz curves. The results of this thesis can, in their part, enable increasing use of cryptographic algorithms in various practical applications where high computation speed is an issue

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Hardware processors for pairing-based cryptography

    Get PDF
    Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ÉłT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications

    Design of secure and trustworthy system-on-chip architectures using hardware-based root-of-trust techniques

    Get PDF
    Cyber-security is now a critical concern in a wide range of embedded computing modules, communications systems, and connected devices. These devices are used in medical electronics, automotive systems, power grid systems, robotics, and avionics. The general consensus today is that conventional approaches and software-only schemes are not sufficient to provide desired security protections and trustworthiness. Comprehensive hardware-software security solutions so far have remained elusive. One major challenge is that in current system-on-chip (SoCs) designs, processing elements (PEs) and executable codes with varying levels of trust, are all integrated on the same computing platform to share resources. This interdependency of modules creates a fertile attack ground and represents the Achilles’ heel of heterogeneous SoC architectures. The salient research question addressed in this dissertation is “can one design a secure computer system out of non-secure or untrusted computing IP components and cores?”. In response to this question, we establish a generalized, user/designer-centric set of design principles which intend to advance the construction of secure heterogeneous multi-core computing systems. We develop algorithms, models of computation, and hardware security primitives to integrate secure and non-secure processing elements into the same chip design while aiming for: (a) maintaining individual core’s security; (b) preventing data leakage and corruption; (c) promoting data and resource sharing among the cores; and (d) tolerating malicious behaviors from untrusted processing elements and software applications. The key contributions of this thesis are: 1. The introduction of a new architectural model for integrating processing elements with different security and trust levels, i.e., secure and non-secure cores with trusted and untrusted provenances; 2. A generalized process isolation design methodology for the new architecture model that covers both the software and hardware layers to (i) create hardware-assisted virtual logical zones, and (ii) perform both static and runtime security, privilege level and trust authentication checks; 3. A set of secure protocols and hardware root-of-trust (RoT) primitives to support the process isolation design and to provide the following functionalities: (i) hardware immutable identities – using physical unclonable functions, (ii) core hijacking and impersonation resistance – through a blind signature scheme, (iii) threshold-based data access control – with a robust and adaptive secure secret sharing algorithm, (iv) privacy-preserving authorization verification – by proposing a group anonymous authentication algorithm, and (v) denial of resource or denial of service attack avoidance – by developing an interconnect network routing algorithm and a memory access mechanism according to user-defined security policies. 4. An evaluation of the security of the proposed hardware primitives in the post-quantum era, and possible extensions and algorithmic modifications for their post-quantum resistance. In this dissertation, we advance the practicality of secure-by-construction methodologies in SoC architecture design. The methodology allows for the use of unsecured or untrusted processing elements in the construction of these secure architectures and tries to extend their effectiveness into the post-quantum computing era
    corecore