3,761 research outputs found

    A Multicomponent proximal algorithm for Empirical Mode Decomposition

    Get PDF
    International audienceThe Empirical Mode Decomposition (EMD) is known to be a powerful tool adapted to the decomposition of a signal into a collection of intrinsic mode functions (IMF). A key procedure in the extraction of the IMFs is the sifting process whose main drawback is to depend on the choice of an interpolation method and to have no clear convergence guarantees. We propose a convex optimization procedure in order to replace the sifting process in the EMD. The considered method is based on proximal tools, which allow us to deal with a large class of constraints such as quasi-orthogonality or extrema-based constraints

    Quantitative Imaging of Protein-Protein Interactions by Multiphoton Fluorescence Lifetime Imaging Microscopy using a Streak camera

    Full text link
    Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in multiphoton FLIM methods and also present a description of a novel multiphoton FLIM system using a streak camera that was developed in our laboratory. We provide an example of a typical application of the system in which we measure the fluorescence resonance energy transfer between a donor/acceptor pair of fluorescent proteins within a cellular specimen.Comment: Overview of FLIM techniques, StreakFLIM instrument, FRET application

    MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

    Get PDF
    MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC

    Three-dimensional reconstruction of a masonry building through electrical and seismic tomography validated by biological analyses

    Get PDF
    In this paper, we present an integrated approach, for assessing the condition of an ancient Roman building, affected by rising damp and cracking phenomena. The combination of high-resolution geophysical methods, such as seismic and electrical tomography, with biological information, allowed a more detailed evaluation of the state of conservation of the masonry building. A preliminary three-dimensional electrical survey was conducted to detect the existing building foundations and to determine the variation of the resistivity in the ground. Then, electrical and seismic tomography investigations were carried out on an inner wall of opus caementicium, subjected to rising damp effects and cracks. This approach was adopted to obtain a high-resolution image of the wall, which allowed to identify the inner mortar and the outer brick component from resistivity and velocity contrasts. Furthermore, the geophysical results revealed evidence of wall fractures (indicated by low velocity and high resistivity values) and a significant volume where rising of damp was taking place (resulting in a low resistivity zone). Biological analyses validated the geophysical model: in fact, the biological proliferation occurred up to a height of 0.75 m, where the interface between high and low resistivity values was recovered. This approach can be employed to reconstruct a three-dimensional model of masonry structures in order to plan recovery actions

    Vortices in multicomponent Bose-Einstein condensates

    Full text link
    We review the topic of quantized vortices in multicomponent Bose-Einstein condensates of dilute atomic gases, with an emphasis on that in two-component condensates. First, we review the fundamental structure, stability and dynamics of a single vortex state in a slowly rotating two-component condensates. To understand recent experimental results, we use the coupled Gross-Pitaevskii equations and the generalized nonlinear sigma model. An axisymmetric vortex state, which was observed by the JILA group, can be regarded as a topologically trivial skyrmion in the pseudospin representation. The internal, coherent coupling between the two components breaks the axisymmetry of the vortex state, resulting in a stable vortex molecule (a meron pair). We also mention unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein condensate. Next, we discuss a rich variety of vortex states realized in rapidly rotating two-component Bose-Einstein condensates. We introduce a phase diagram with axes of rotation frequency and the intercomponent coupling strength. This phase diagram reveals unconventional vortex states such as a square lattice, a double-core lattice, vortex stripes and vortex sheets, all of which are in an experimentally accessible parameter regime. The coherent coupling leads to an effective attractive interaction between two components, providing not only a promising candidate to tune the intercomponent interaction to study the rich vortex phases but also a new regime to explore vortex states consisting of vortex molecules characterized by anisotropic vorticity. A recent experiment by the JILA group vindicated the formation of a square vortex lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International Journal of Modern Physics

    Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    Get PDF
    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity
    • …
    corecore