28 research outputs found

    ODN: Opening the Deep Network for Open-set Action Recognition

    Full text link
    In recent years, the performance of action recognition has been significantly improved with the help of deep neural networks. Most of the existing action recognition works hold the \textit{closed-set} assumption that all action categories are known beforehand while deep networks can be well trained for these categories. However, action recognition in the real world is essentially an \textit{open-set} problem, namely, it is impossible to know all action categories beforehand and consequently infeasible to prepare sufficient training samples for those emerging categories. In this case, applying closed-set recognition methods will definitely lead to unseen-category errors. To address this challenge, we propose the Open Deep Network (ODN) for the open-set action recognition task. Technologically, ODN detects new categories by applying a multi-class triplet thresholding method, and then dynamically reconstructs the classification layer and "opens" the deep network by adding predictors for new categories continually. In order to transfer the learned knowledge to the new category, two novel methods, Emphasis Initialization and Allometry Training, are adopted to initialize and incrementally train the new predictor so that only few samples are needed to fine-tune the model. Extensive experiments show that ODN can effectively detect and recognize new categories with little human intervention, thus applicable to the open-set action recognition tasks in the real world. Moreover, ODN can even achieve comparable performance to some closed-set methods.Comment: 6 pages, 3 figures, ICME 201

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    Fitting Jump Models

    Get PDF
    We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determine the shape of the resulting jump model.Comment: Accepted for publication in Automatic

    Aspects of Credit Risk Modeling

    No full text
    Imperial Users onl

    Analysis of Microarray Data using Machine Learning Techniques on Scalable Platforms

    Get PDF
    Microarray-based gene expression profiling has been emerged as an efficient technique for classification, diagnosis, prognosis, and treatment of cancer disease. Frequent changes in the behavior of this disease, generate a huge volume of data. The data retrieved from microarray cover its veracities, and the changes observed as time changes (velocity). Although, it is a type of high-dimensional data which has very large number of features rather than number of samples. Therefore, the analysis of microarray high-dimensional dataset in a short period is very much essential. It often contains huge number of data, only a fraction of which comprises significantly expressed genes. The identification of the precise and interesting genes which are responsible for the cause of cancer is imperative in microarray data analysis. Most of the existing schemes employ a two phase process such as feature selection/extraction followed by classification. Our investigation starts with the analysis of microarray data using kernel based classifiers followed by feature selection using statistical t-test. In this work, various kernel based classifiers like Extreme learning machine (ELM), Relevance vector machine (RVM), and a new proposed method called kernel fuzzy inference system (KFIS) are implemented. The proposed models are investigated using three microarray datasets like Leukemia, Breast and Ovarian cancer. Finally, the performance of these classifiers are measured and compared with Support vector machine (SVM). From the results, it is revealed that the proposed models are able to classify the datasets efficiently and the performance is comparable to the existing kernel based classifiers. As the data size increases, to handle and process these datasets becomes very bottleneck. Hence, a distributed and a scalable cluster like Hadoop is needed for storing (HDFS) and processing (MapReduce as well as Spark) the datasets in an efficient way. The next contribution in this thesis deals with the implementation of feature selection methods, which are able to process the data in a distributed manner. Various statistical tests like ANOVA, Kruskal-Wallis, and Friedman tests are implemented using MapReduce and Spark frameworks which are executed on the top of Hadoop cluster. The performance of these scalable models are measured and compared with the conventional system. From the results, it is observed that the proposed scalable models are very efficient to process data of larger dimensions (GBs, TBs, etc.), as it is not possible to process with the traditional implementation of those algorithms. After selecting the relevant features, the next contribution of this thesis is the scalable viii implementation of the proximal support vector machine classifier, which is an efficient variant of SVM. The proposed classifier is implemented on the two scalable frameworks like MapReduce and Spark and executed on the Hadoop cluster. The obtained results are compared with the results obtained using conventional system. From the results, it is observed that the scalable cluster is well suited for the Big data. Furthermore, it is concluded that Spark is more efficient than MapReduce due to its an intelligent way of handling the datasets through Resilient distributed dataset (RDD) as well as in-memory processing and conventional system to analyze the Big datasets. Therefore, the next contribution of the thesis is the implementation of various scalable classifiers base on Spark. In this work various classifiers like, Logistic regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Radial basis function network (RBFN) with two variants hybrid and gradient descent learning algorithms are proposed and implemented using Spark framework. The proposed scalable models are executed on Hadoop cluster as well as conventional system and the results are investigated. From the obtained results, it is observed that the execution of the scalable algorithms are very efficient than conventional system for processing the Big datasets. The efficacy of the proposed scalable algorithms to handle Big datasets are investigated and compared with the conventional system (where data are not distributed, kept on standalone machine and processed in a traditional manner). The comparative analysis shows that the scalable algorithms are very efficient to process Big datasets on Hadoop cluster rather than the conventional system

    Supervised Classification and Mathematical Optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data
    corecore