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Abstract: In this study, a machine learning method is proposed for online diagnosis of battery state of health. 

A prediction model for future voltage profiles is established based on the extreme learning machine algorithm 

with the short-term charging data. A fixed size least squares-based support vector machine with a mixed kernel 

function is employed to learn the dependency of state of health on feature variables generated from the charging 

voltage profile without preprocessing data. The simulated annealing method is employed to search and 

optimize the key parameters of the fixed size least squares support vector machine and the mixed kernel 

function. By this manner, the proposed algorithm requires only partial random and discontinuous charging 

data, enabling practical online diagnosis of state of health. The model training and experimental validation are 

conducted with different kernel functions, and the influence of voltage range and noise are also investigated.

The results indicate that the proposed method can not only maintain the state of health estimation error within 

2%, but also improve robustness and reliability.

Key Words: state of health; voltage prediction; mixed kernel function; fixed size least squares support vector 

machine; lithium-ion battery

I. INTRODUCTION

Lithium-ion batteries have been considered as a mainstream solution of storing electrical energy and have 

been popularly used as energy storage elements in electric vehicles (EVs) due to their long lifespan, fast 

charging capability and high energy density, compared to other energy storage media [1]. However, the

performances of lithium-ion batteries will be gradually deteriorated with operation [2]. Knowledge of current

health status is imperative to guarantee reliable safe operation of lithium-ion batteries [3]. State of health (SOH),
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which often gives the percentage value of capacity degradation and/or internal resistance increase, can supply 

valuable references to indicate healthy status of batteries. In addition, SOH is also crucial for estimation of 

state of charge (SOC) and state of energy (SOE) [4]. Nonetheless, SOH estimation is difficult, especially in 

EV applications, to be directly measured or counted, as full charge/discharge is quite time-consuming and 

difficult to implement. In this context, a body of researches have been spurred to achieve SOH diagnosis based 

on advanced algorithms [5]. Generally, these SOH prediction methods can be categorized into three types:

direct measurement/calibration, machine learning approaches and adaptive algorithm-based methods.

The measurement/calibration approaches obtain SOH through specially designed experiments, such as 

the electrochemical impedance spectroscopy (EIS) test, coulomb counting calibration and hybrid pulse power 

characterization (HPPC) test. As the battery’s impedance increases with degradation, EIS is commonly used 

to account for impedance variation, thus supplying an effective index for aging diagnosis [6]. HPPC test can 

contribute to identification of open circuit voltage (OCV) and internal resistance, thereby establishing a 

nonlinear relationship between internal resistances or OCV and SOH [7]. The coulomb counting method 

simply discharges the battery to empty, or fully charges the battery from empty, and then SOH can be

calculated by dividing the released/accumulated capacity over the nominal value [8]. Unfortunately, the direct 

measurement approaches entail special current excitation and long duration. Obviously, they are more suitable 

under laboratory conditions, rather than applications in real scenarios.

Adaptive algorithm-based approaches have been successfully exploited in the literature. Their estimation 

processes mainly involve model establishment and application of adaptive algorithms. To achieve SOH 

estimation, an efficient model characterizing battery’s degradation performance is usually indispensable, like

equivalent circuit models (ECM) and semi-empirical models. On this basis, advanced adaptive algorithms are 

synchronously employed to track the deterioration of battery capacity. Ref. [9] leverages a dual H-infinity filter 

(DHIF) in a multi-scale framework to monitor battery SOC and capacity online. In [10], a forgetting factor 

recursive expanded least square method is proposed to identify the OCV of the built fractional order model 

and the battery capacity is recognized through incremental capacity analysis (ICA). In [11], two extended 

Kalman filters (EKFs) are incorporated to calibrate SOC microscopically and update SOH macroscopically.

In addition, other adaptive algorithms, such as slide mode observer [12], particle filter (PF) [13] and Lyapunov-

based adaptive observer [14], are also investigated for SOH estimation. These algorithms can be implemented 
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in different loading scenarios without specially designed current profiles; in other words, fixed current tests 

are usually not required. These methods can intuitively describe the physical relationship between battery 

parameters and intrinsic aging processes [15]. Nevertheless, their precision and adaptability are susceptive to

noise and operating conditions. 

Due to less dependence on physical insights and deterministic characteristic models, machine learning 

approaches have progressively emerged to achieve SOH estimation [16], including Gaussian process 

regression (GPR) [17], support vector machine (SVM) [18], neural network (NN) [19] and relevance vector 

machine (RVM) [20]. These methods usually find hidden variation laws and statistical information between

SOH and measured voltage, current and temperature data during charge/discharge process. To diagnose battery 

SOH by means of machine learning methods, an overarching task is to process the measured data and derive 

representative features to highlight aging variation. In [21], four geometrical parameters are generated from 

battery cycling processes, including the length of constant voltage (CV) charging mode, the maximum 

curvature radius of CV profile, the area under the CV stage and the maximum slope of the early stage discharge

voltage profile. Ref. [22] employs the RVM to map the nonlinear relationship between SOH and five variables,

i.e., the final charge current, the initial charge voltage, the final charging voltage, the charging capacity during 

the CV stage and the constant current (CC) stage capacity. The reported health feature extraction methods can 

greatly contribute to the estimation of battery SOH. Nevertheless, these methods often entail full cycling

experiment, which is seldom encountered in engineering practice. To cope with it, SOH calibration is fulfilled 

by partial discharge/charge voltage curves [23]. In [24], a small portion of data extracted from the CC charging 

process is selected as the inputs of the GPR model to attain capacity estimation. In [25], the peak and valley 

of the incremental capacity and differential voltage (DV) are prudentially detected as the feature inputs of three 

different regression methods: SVM, NN and linear regression. The SOH prediction is extensively investigated

based on partial charging segments; however, the initial and terminal voltages of these features are fixed, and 

the battery needs to be charged across the initial and terminal voltages in these algorithms [26]. In real 

applications, the battery charging behavior is often a stochastic process, and end-users may start and stop

charging randomly. From this point of view, SOH estimation based on full charge or fixed voltage range is

usually infeasible in practice.
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Additionally, performances of SOH estimation methods are also related to selected algorithms. Among 

all the existing machine learning algorithms, SVM can construct a multidimensional nonlinear relationship

with a small training set [20]. Furthermore, it is insensitive to the dimension of test data [18]. In [27], a hybrid 

method incorporating SVM and differential evolution (DE) is introduced to forecast the remaining useful life

(RUL), and the DE is furnished to explore the optimal parameters of SVM. Through the established OCV and 

Thevenin models, Ref. [28] employs the least squares-SVM (LS-SVM) algorithm to achieve reliable SOH 

prediction. However, existing SVM based methods, to the best of authors’ knowledge, still do not optimize

the prediction performance when they are employed to estimate SOH of lithium-ion batteries. We find that,

when diagnosing SOH of lithium-ion batteries, most of the existing SVM methods in literature employ only

traditional kernel functions, which usually lose generalization for ensuring the estimation accuracy. In other 

words, the benefits of single kernel function still need to be improved for better SOH estimation. It may be a 

promising way to upgrade the single kernel function knowledge to a mixed kernel function, thereby merging 

both advances of two single kernel functions and enhancing the estimation performance of SVM in terms of

estimation accuracy and generalization ability.

For the sake of filling the gap of research, we devoted our contribution to developing an online SOH 

diagnosis algorithm for lithium-ion batteries based on short-term random discontinuous charging data. In 

particular, an advanced voltage prediction approach is developed based on the extreme learning machine (ELM)

algorithm, which is proved to be a quick manner to train and learn inherent laws of voltage variation. An 

effective online SOH diagnosis method is presented based on the fixed size LS-SVM. We accentuate the 

significance of opting for proper kernel functions, which are often neglected in previous studies, and the 

benefits of applying mixed kernel functions. In addition, to prevent inaccurate diagnosis incurred by

inappropriate parameters of fixed size LS-SVM, the simulated annealing (SA) algorithm is exploited to 

optimize the algorithm parameters. The validation results demonstrate that the proposed method can effectively 

diagnose the SOH with less than 2% error. 

The rest of this study is structured in the following manner: Section II discusses the fundamental 

knowledge of ELM and fixed size LS-SVM. The overall procedures of voltage forecast and SOH estimation

for lithium-ion batteries are described in Section III. Section IV presents the experiment processes and analyzes

the validation results. The main conclusions are drawn in Section V.
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II. METHODOLOGY

The goal of this study is to find a machine learning method to estimate the battery SOH based on short-

term charging data. To achieve a robust design, we assume the data are randomly selected and endeavor to

predict the complete charging voltage curve from the short-term data by the ELM algorithm. On this basis, the 

feature variables are extracted, and the SVM is employed to learn the mapping function from the inputs to 

SOH. In this section, the principles of ELM and fixed size LS-SVM techniques are elaborated.

A. Extreme Learning Machine

The ELM has been extensively investigated because of its single hidden layer structure and fast learning 

speed [29]. These characteristics can well meet the requirement of voltage online training and prediction.

Additionally, one only needs to set the number of neurons of ELM, since the input weight and the threshold 

of hidden layer are generated randomly [30]. For a data set containing n samples ( )i i,x y , where n
i Rx

represents the input and n
i Ry denotes the corresponding desired output, the output of the ELM can be

formulated as:

1
( )    1 2

neuronN

j i i j i
i

g b , j , ,...,nt x (1)

where 1 2
T

i i i in, , , denotes the weight vector connecting the input neurons and the i th hidden 

neuron, ib represents the bias of the i th hidden neuron, ( )g is activation function, 1 2, , , T
i i imi

denotes the weight vector corresponding to the i th hidden neuron and the output neurons, and neuronN

represents the number of neurons. The purpose of ELM is to find the optimal output weight quickly and 

minimize the output error. The objective function can be formulated as:

1
0

neuronN

i i
i

y t (2)

It means there exist i , i and ib , such that 

1
( )    1 2y x

neuronN

j i i j i
i

g b , j , ,...,n (3)

Equation (3) can be rewritten as:

H y (4)



6 of 22

where 1 2, , ,
neuronN

T
, and 1 2, , , T

nyy yy . H denotes the hidden layer output matrix and can 

be written as:

1 1 1 1

1 1 1

1 1

( ) ( )
( )

( ) ( )

neuron neuron

neuron neuron

neuron neuron

N N

N n N

n N n N

g x b g x b

, ,x , x ,b , b
g x b g x b

H (5)

In the ELM model, i and ib can be chosen randomly. The optimal solution can be obtained, as:

ˆ +H Y (6)

where +H denotes the Mooree-Penrose generalized inverse of H . Generally, the number of neurons is less

than that of training samples, i.e., neuronN n . Here, the least squares is applied to reformulate (6), as:

1( )T Tˆ H H H Y (7)

Based on the preparation work, the optimal ELM will be constructed. It is apparent that any iteration process 

is not involved, and this advanced manner brings obvious improvement of the modeling speed, which satisfies

the demand of fast online prediction of future voltage. Subsequently, the fixed size LS-SVM will be 

investigated.

B. Fixed Size LS-SVM

SVM stems from statistical theory and is widely implemented in data forecasting and classification. Until

now, SVM has been developed with different extensions, such as LS-SVM [31], fuzzy SVM [32] and Proximal 

SVM (PSVM) [33]. Amongst them, the fixed size LS-SVM can not only improve sparseness but also enhance 

robustness. For this reason, the fixed size LS-SVM is employed and investigated for SOH estimation in this 

study. Similar to ELM, we consider a data set containing n samples ( , )i ix y , and the SVM function is 

designated as:

( )T
i i SVMw by x (8)

where iy stands for the output value, ( ) is a mapping function, and nw R and n
SVMb R represent the 

weight and intercept, respectively. The target of SVM is to learn a mapping function such that the maximum 

divergence between the output obtained from the training set and the real value is less than a preset threshold.

Thus, the optimal problem can be formulated as:
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2 2

1

1min ( , )
2 2

. . ( ) , 1,2, ,

i
i

i i SVM i

n

Q w w e

y w x b e i ns t

e (9)

where 1 2, , , T
ne e ee . By introducing the Lagrange multiplier, a series of inequalities in the standard SVM 

is replaced by a group of linear constraints, and the problem can be translated into an equivalent unconstraint 

problem, as:

2 2
1

1 1

1( , , , ) ( )
2 2

n n

SVM i i i SVM i i
i i

L w b w e w x b e ye (10)

where 1 2 n, , , , and 1 2, , , ne e ee . By finding the partial derivative of (10) and setting the result 

to zero, we can attain:

1

1

0 ( )

0 0

0

0 ( )

1,2, ,

n
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i

n

i
SVM i

i
i

T
SVM i i i

i

L
x

w

L
b

L
e

e

L
b y x e

i n

(11)

By solving (10), the following nonlinear mapping model can be yielded, as:

1
( ) ( , )

n

i i SVM
i

y x K x x b (12)

where ( )K represents the kernel function. Note that the support vectors of SVM are selected randomly, and

we do not give any criteria to choose the optimal support vectors. Obviously, it needs to be improved. With 

this in mind, the arbitrary entropy is introduced to find the optimal support vectors [34], as: 

2lg ( )RH p x dx (13)

where ( )p x represents the density distribution of x , and 

2
2

1 1

1( ) ( ) = ( , )
M M

i
i j

p x dx p x dx K x x
M

(14)

where M denotes the number of support vectors, Consequently, equation (13) can be solved, as:
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2
1 1

1lg ( , )
M M

R i
i j

H K x x
M

(15)

To reach the full potential of fixed size LS-SVM, it is crucial to select or design a suitable kernel function.

Indeed, there are a number of kernel functions; nonetheless, it is a case-by-case issue to select a suitable kernel 

function when facing different problems. Currently, these kernel functions can be roughly classified into two 

groups: global kernel functions and local ones. The radial basis kernel function (RBF), as described in (16), is 

one representative of the former, and one typical local kernel function is the polynomial kernel function, which 

is defined in (17). Global kernel functions usually feature powerful generalization capabilities but lead to 

fragile learning capability, which is opposite to those of local kernel functions [35]. A mixed kernel function

can merge two or more single kernel functions and take advantage of assorted kernel functions [36]. Based on

the Mercer theory [37], a new kernel function, as formulated in (18), is designed with the linear combination 

of different kernel functions.

2 2( ) (2 )RBF i j i jK x ,x exp x x (16)

( ), ( )q
Poly i ij jK x x x x t (17)

1 2Mix Poly RBFK K K (18)

where 1 and 2 denote the weights of polynomial function and RBF, respectively. Moreover, 1 2 1 .

When 1 1, the mixed kernel function degenerates to the conventional polynomial kernel function, and when 

2 1, the mixed kernel function is a standard RBF. In addition, in spite of fixed size LS-SVM or that with 

mixed kernel functions, their function parameters all need to be determined, and the process will be elaborated 

in the next section. 

III. SOH DIAGNOSIS BASED ON MEASURABLE PARAMETERS

In this section, the aging experiment conducted in our laboratory is elaborated, and the process of feature 

variable generation is investigated, followed by the implementation process of proposed voltage prediction 

approach. Additionally, the overall framework of the proposed SOH diagnosis algorithm is presented and 

discussed.
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A. Aging Experiment

In this study, three nickel-cobalt-manganese (NCM)/graphite batteries, labeled as Bat. 1, Bat. 2 and Bat. 

3, are experimented in our laboratory to acquire the aging data. The nominal voltage and capacity of cells are 

3.6 V and 4 Ah, respectively; and the operating voltage ranges from 3 V to 4.15 V. Here, the CC-CV charging 

scheme and CC discharge schedule are repetitively operated. The charging and discharging rates are 

respectively set to 0.5C and 1C, where C=4 indicates the rated capacity value of battery. The CC-CV mode 

stops until the voltage reaches 4.15 V and meanwhile the charging current decreases to 0.02C. The discharge 

experiment is terminated when the voltage decreases to 3 V. In addition, two shelving operations with the 

length of 5 minutes are imposed when switching between charging and discharging. Note that all cycle tests 

are conducted at room temperature, and the temperature influence is not taken into account in this study.

B. Aging Features Generation based on Measurable Parameters

To diagnose battery SOH accurately, first, it is imperative to determine the feature variables that can 

reliably reveal the deterioration trend of lithium-ion batteries. Given the calculation and error of voltage 

prediction, these features should be easily obtained and characterize strong anti-interference capability. Due 

to the inherent complexity of battery electrochemical model and its complicated inner structure, it is difficult 

to capture effective features in a static manner. In this context, degradation characteristics of batteries are often 

highlighted by external measurements variation during charging/discharging processes. Since discharging 

current profiles are usually stochastic, leading to difficulty of extracting a suitable feature variable. In contrast,

the charging process is more regular and easier to be investigated. One example of charging voltage curves

under different cycle numbers is depicted in Fig. 1. It can be clearly found that with the degradation of battery, 

the CC charging time decreases gradually. The fresh battery takes 64 minutes when charging from 3.45 V to 

3.8 V, while the battery after cycled 500 times and 900 times merely last about 42 minutes and 27 minutes,

respectively, only occupying 65.6% and 42.2% of that of the fresh battery. Similarly, a period of 25.5 minutes

is required for a new battery when charging from 3.8 V to 4 V. In contrast, it takes only 24 minutes to obtain 

the same voltage increment for the 900 times cycled battery.
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Fig. 1. The CC-CV charging sketch at different cycles.

These phenomena indicate that the variation among voltage profiles after cycling different times can be 

exerted to characterize the aging behaviors of batteries. As the battery ages, the time required to charge from 

one voltage to another value gradually decreases. In other words, the duration decrement of the same voltage

increase interval can intentionally be addressed to quantify the battery SOH variation. As such, the charging 

duration from 3.4 V to 3.8 V, 3.8 V to 4 V and 4 V to 4.15 V are chosen as the basic features for SOH diagnosis,

and the corresponding voltage threshold is labeled as 3.4 VlV , 1 3.8 VmV , 2 4 VmV and 4 15 VhV . .

Furthermore, the influence of voltage range selection will be discussed in Section IV.

C. Voltage Prediction 

The substance of voltage prediction is to forecast the whole voltage response curve corresponding to the

future charging current. In fact, this is not a challenging task in the CC charging process, as the current is 

known during this process. We assume that the battery has been charged for a short period t , and the recorded 

current, voltage, temperature and SOC, referred to as aI , aV , aT and as , are collected from beginning to the 

present moment for voltage forecast. All of these values can be random and discontinuous, nonetheless they 

should be one-to-one correspondence; in other words, when current is collected at step k , the voltage, SOC 

and temperature should also be acquired at this time. Our goal is to predict the partial voltage values without 

measure and therefore acquire the whole charging voltage information using the available data. To attain it,

the ELM algorithm is applied, and a data set 1 1 2 2( ) ( ) ( )n nIn ,OV , In ,OV , , In ,OV employed to train the model 

is provided, where iIn denotes the input vector at time step i , and iOV is the actual voltage corresponding to 

iIn . The available data at time step i are stored in an input vector, as

[ , , ]i i i iIn I T s (19)

0 50 100 150
Time (min)

3.4

3.6

3.8

4

4.2

V
ol

ta
ge

 (V
)

Cycle 1
Cycle 500
Cycle 900

t
2 2

t
2 3

t
1 3

t
1 2

t
1 1

t
2 1 t

3 1

t
3 2

t
3 3

Cycle 1
Cycle 500
Cycle 900

ttt
2 2

2 3

tt
2 1 tttt

3 1

tt
3 2

t
3 3

t
1 3

t

tt
2 3

tt
1 2

t
1 1 tt22 33 tt



11 of 22

The ELM model is trained by the measured voltage data segment, and then the trained model is implemented 

to predict the remaining unknown voltage data. By this manner, the complete voltage charging curve can be 

achieved.

D. State of Health Diagnosis 

The overall framework of SOH diagnosis based on short-term charging data is depicted in Fig. 2. The 

proposed approach contains three modules: voltage prediction, feature extraction, fixed size LS-SVM 

modeling and estimation. First, the proposed ELM algorithm is exploited to constitute a voltage prediction

model for forecasting the complete charging curve according to the known partial information. Then, the output 

data of ELM are disposed, and the features of SOH are extracted. Finally, the fixed size LS-SVM algorithm is 

furnished to construct the nonlinear mapping among the input feature variables and SOH, thereby 

accomplishing the SOH diagnosis by serviceable model learning. In addition, the fixed size LS-SVM training 

module includes a crucial parameter optimization step. There are six parameters in total that need to be set a

priori in the algorithm and the included mixed kernel function, i.e., the penalty factor , the RBF kernel 

parameter , the polynomial parameters q and t , and the weights of RBF and polynomial kernel function 

1 and 2 . The proposed parameter optimization problem is strongly nonlinear, enabling it difficult to find 

the optimal parameters through numeric methods. To solve it, the SA algorithm is implemented to find them 

effectively [38]. The SA algorithm chooses the six parameters as the control target 1 2( )c q t .

Meanwhile, the mean absolute error (MAE) between the output SOH and real value is set as the evaluation 

criterion. The update of theses variables conforms to the probability distribution. When the termination 

conditions are met, the algorithm will stop and finally give the optimal c . Note that in this study, the optimal 

fixed size LS-SVM model with a mixed kernel function is trained.
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Fig. 2. Overall flowchart of the proposed SOH diagnosis.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the mixed kernel function is firstly validated, and the results are compared and discussed

with those based on two single kernel functions. Second, the voltage prediction and SOH diagnosis results 

based on the short-term charging data are presented. Third, the influence of voltage noise is discussed. Finally, 

the features extracted from different voltage ranges are addressed to further assess the feasibility of the 

proposed method.

A. Comparison with Different Kernel Functions

To elucidate the advantages of the presented method, some commonly used kernel functions, including

RBF and polynomial, are respectively applied. In addition, the mixed kernel function (MKF), in which the 

weights of RBF and polynomial kernel functions are both set as 0.5, is also implemented. Fig. 3 shows the 

diagnosis results of the selected different kernel functions. We train the model using 50% of the cycle-SOH 

data of Bat. 1 and validate the model based on the remaining data of Bats 1 to 3. As shown in Fig. 3, the 

reference curve represents the actual SOH value which is obtained by calibration. The SA-MKF denotes the 

estimation results based on mixed kernel function and SA algorithm. It should be pointed out that the SOH in 

this study is denoted as the percentage of current capacity over the nominal value. The initial SOH is lower 

than 100% because of the operating environment and discharge conditions. In terms of Bat. 1, no matter what 
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kernel functions are applied, all the absolute errors of SOH are restricted within 2%, thus manifesting the 

feasibility of the proposed fixed size LS-SVM. However, the distribution of the proposed kernel function is 

relatively concentrated, compared to other three kernel functions. For Bat. 2, although the estimation results 

of RBF, polynomial and MKF can roughly track the reference value, their estimation errors are much larger 

than that of the SA-MKF, which is raised by the large local fluctuation of the estimation SOH. For Bat. 3,

owing to the benefit from the mixed kernel function after optimization instead of the single kernel function, 

the estimation error of the SA-MKF fluctuates around zero while the prediction errors of other three kernel 

functions deviate far from zero. Therefore, we can infer that the proposed method with the optimal mixed

kernel function shows a satisfactory generalization and guarantees high estimation precision.

The histograms of different kernel functions for Bat. 3 are compared in Fig. 3 (g) to (i) to further analyze

the distribution of estimation errors. It can be indicated from these similar shapes that they have an approximate 

standard deviation. However, the number of samples near to zero is more for the presented kernel function and 

the error distribution is more concentrated, thus signifying that the mean error of the proposed method is less

than those of the other three kernel functions. The standard deviation of the proposed, MKF, polynomial and 

RBF kernel functions are 0.44%, 0.41%, 0.44% and 0.56%, respectively. The mean error of the proposed 

kernel function is 0.01%. For the MKF, polynomial and RBF functions, their mean errors are respectively 

0.33%, 0.4% and 0.11%, obviously higher than that for the proposed kernel function. In conclusion, the 

proposed method is more accurate than other three kernel function-based estimation methods.
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(e)             (f)

(g)             (h)

(i)             (j)
Fig. 3. SOH evolution with di erent kernel functions. (a) Bat. 1 prediction SOH results; (b) Bat. 1 prediction errors; 

(c) Bat. 2 prediction SOH results; (d) Bat. 2 prediction errors; (e) Bat. 3 prediction SOH results; (f) Bat. 3 prediction 

errors; (g) Histogram of RBF kernel function for Bat. 3; (h) Histogram of polynomial kernel function for Bat. 3; (i) 

Histogram of mixed kernel function for Bat. 3; (j) Histogram of SA-mixed kernel function for Bat. 3.

For the sake of assessing the diagnosis performances of the proposed method, the gained SOH values 

should be compared with the corresponding actual ones. The MAE, maximum absolute error (ME), and root 

mean square error (RMSE) are considered as the evaluation indicators for comparison. The error statistics 

based on the four kernel functions are listed in 

Table I. It can be observed that the maximum ME, MAE and RMSE appear in Bat. 3 when the RBF kernel 

function is employed. While the ME of the proposed kernel function is lower than 1.9%, about one-third of 

that of RBF. The MAE and RMSE of the proposed method for the three batteries are lower than 0.35% and 

0.46%, respectively. To sum up, the overall estimation performance of the proposed method outperforms that 

of the SVM algorithms with RBF, polynomial and the mixed kernel functions.

Table I. Statistical results with different kernel functions.
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Kernel 
function RBF Poly. MKF SA-

MKF RBF Poly. MKF SA-
MKF RBF Poly. MKF SA-

MKF
Bat. 1 2.23 1.66 1.63 1.42 0.19 0.17 0.138 0.10 0.27 0.24 0.20 0.15
Bat. 2 4.11 3.60 2.89 1.51 0.25 0.17 0.19 0.16 0.38 0.26 0.26 0.21
Bat. 3 5.83 3.53 3.43 1.90 0.54 0.53 0.46 0.32 0.74 0.67 0.62 0.46
Mean 4.06 2.93 2.65 1.61 0.33 0.29 0.26 0.19 0.46 0.39 0.36 0.27

B. SOH Validation Based on Short-Term Charging Voltage

In this part, the forecast performance of the formed voltage prediction model is examined. As described 

in Section III, only one parameter needs to be set in the ELM. Herein, different numbers of neurons in the 

ELM model are utilized for model training. The RMSE of the voltage prediction and the running time are 

calculated to evaluate the performance of the ELM model. Fig. 4 demonstrates the mean RMSE, ME and 

running time as a function of neurons after training and test for ten times, where the training set is specified as 

the same (15 minutes of random charging data). Obviously, the calculation time of ELM increases significantly 

with the increase of the neuron number. When the number of neurons becomes more than 20, the RMSE and 

ME gradually converge to a stable value. It can also be clearly observed that once the number is more than 20, 

increasing the number of neurons does not obviously improve the prediction performance but sacrifices the 

calculation time. From these results, we can find that the ELM does not lead to over-fit as the RMSE converges 

to a small value. Finally, neuronN is set to 23 after balancing the precision and the calculation intensity.

Based on the preset inputs, the prediction results of voltage at different cycles are demonstrated in Fig. 5

(a) and (b), which manifest that the ELM model can accomplish a satisfactory prognosis result and the 

forecasted voltages are quite close to the reference values. The statistic indicators of voltage prediction at 

different cycles on the training and testing data sets are compared in Table II. Note that we predict the charging 

voltage curve every 100 cycles, and it shows that no obvious decrease or increase of MAE and RMSE occur 

as the cycle number changes. 

After selecting a suitable kernel function and determining a precise prediction voltage, we investigate the 

SOH diagnosis performance based on the predicted voltage curves. The battery SOH diagnosis results from 

these ten predicted voltages are depicted in Fig. 5 (c) and (d), and the statistical results are presented in Table 

II. It can be observed from these results that the output SOH of the presented method can track the reference 

curve precisely. We can see that only in the first cycle, the SOH estimation error is larger than 1%, which can 

be attributed to the initial voltage prediction error. Certainly, the RMSE, ME and MAE of the predicted voltage 

in the first cycle are higher than those of other cycles and lead to a higher SOH error. Fig. 6 denotes a boxplot 
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demonstrating the distribution of error statistical property across the cycle life test, wherein the red lines 

represent the median value and the red crosses indicate the outlier. As can be found, except a few abnormal 

points, the distribution of estimated results is all within the normal range. In summary, acceptable SOH 

diagnosis performance can be achieved by exerting a short-term charging data of just 15 minutes and extending 

the full charging voltage profile based on the ELM, and thus the feasibility of proposed algorithm is justified.

Fig. 4. Evaluation results of ELM model.

Cycle 900

Cycle 1

Cycle 500

Cycle 900

Cycle 1

Cycle 500

(a)              (b)

(c) (d)
Fig. 5. Voltage and SOH prediction results based on the short-term charging voltage. (a) Voltage prediction results; 

(b) Voltage prediction errors; (c) SOH prediction results; (d) SOH prediction errors.
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Voltage (10 mV) SOH (%)

ME MAE RMSE Error
0

0.5

1

1.5

2

2.5 Max.: 2.84

Median: 2.34

Min.: 0.59

Min.: 0.047
Median: 0.16

Max.: 0.32

Max.: 0.71

Min.: 0.12

Max.: 1.406

Median: 0.334

Min.: 0.078

Median: 0.395

Fig. 6. Boxplot of the overall modeling performance.

Table II. Overall model performance.

Cycle number 1 100 200 300 400 500 600 700 800 900

Voltage 
(10 mV)

ME 2.84 2.37 2.27 1.46 2.64 2.69 2.74 2.28 2.30 0.59
MAE 0.32 0.29 0.16 0.14 0.17 0.19 0.16 0.11 0.15 0.047
RMSE 0.71 0.53 0.35 0.29 0.41 0.48 0.38 0.30 0.42 0.12

SOH (%) Error 1.406 0.078 0.774 0.237 0.482 0.356 0.386 0.284 0.312 0.181

C. 

To validate the robustness of presented SOH diagnosis method, the Gaussian noise, of which the mean 

and variance equal 0 and 0.01 2V , is imposed on the measured voltage under the CC charging experiment. Fig. 

7 (a) depicts the voltage comparison at different cycles. Here, two noise setting modes are implemented. In 

mode 1, the training set is not disturbed by the noise and the Gaussian noise is overlapped into the testing set,

which is used to validate the algorithm under the actual operation environment. In mode 2, the same Gaussian 

noise is added to the training and testing sets, indicating that the training and validation of the algorithm are 

all conducted in actual environment.

Fig. 7 shows the SOH estimation results under different scenarios of voltage noise. By comparing the 

estimation results of various noise conditions, we find that the training set without noise leads to better 

diagnosis performance, and in contrast, the training set with voltage noise highlights the inferior estimation

results. As can be observed from Table III, the prediction results based on mode 1 are more accurate. 

Concretely, the ME based on mode 1 is larger; even so, the ME is still less than 1.8%. The similar values of 

RMSE and MAE for these two modes indicate that the proposed feature extraction and SOH diagnosis method 

show strong robustness. Even when the noises are imposed in the training and testing sets, a preferable 
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estimation result can be still achieved by the proposed method, and one main attribution is that the proposed 

feature selection method characterizes strong anti-interference ability.

(a)

(b) (c)
Fig. 7. SOH estimation results with voltage noise. (a) Voltage profiles with noise; (b) SOH prediction results; (c) 

SOH prediction errors.

Table III. Errors of SOH estimations under voltage noise.

Group Training set Testing set ME (%) MAE (%) RMSE (%)
1 Without noise With noise 1.69 0.27 0.35
2 With noise 1.77 0.27 0.35

D. 

As demonstrated in Section III, a specific segmenting method of voltage curve should be firstly designated 

for feature generation and model training. In this part, three different ranges, as presented in Table IV, are 

considered for the feature generation. They are selected to validate how the voltage range will influence the 

diagnosis performance of SOH. It is noteworthy that in Range 3, there exist only two feature variables, both 

of which are overlapped. Since we have reselected the input features, the model needs to be trained again, and 

the model parameters are also optimized by the SA algorithm. To facilitate comparison with previous diagnosis 

results, 50% data of Bat. 1 is applied to train the model, and other data sets are used to evaluate the model 

performance. The SOH diagnosis results of unfamiliar data sets by the proposed kernel function method with 

different voltage ranges are shown in Fig. 8. It can be observed that the proposed kernel function approach can 

strictly follow the SOH decline tendency for all the tested batteries with various voltage ranges.
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Table IV. Segmentation range of voltage curve.
Segment 1 Segment 2 Segment 3

Range 1 (2.75 3.65] (2.75 3.65] (4.05 4.15]
Range 2 (2.75 3.70] (3.7 3.65] (4.1 4.15]
Range 3 (2.75 3.90] (2.9 4.14]

(a) (b)

(c)            (d)

(e)            (f)
Fig. 8. SOH diagnosis results under di erent voltage regions. (a) Bat. 1 prediction SOH; (b) Bat. 1 prediction errors; 

(c) Bat. 2 prediction results; (d) Bat. 2 prediction errors; (e) Bat. 3 prediction results; (f) Bat. 3 prediction errors.

To further assess the diagnosis capability of each voltage range, the statistics results for all batteries are 

compared in Table V. The least ME, MAE and RMSE are distinguished as bold characters for clearer 

comparison. According to Table V, for all the cells, different voltage ranges manifest the varying prediction 

precision. It is apparent that the presented method achieved the optimal performance with the input data under 

Range 1. Although the results of Range 1 on Bat. 2 are not as good as those based on Range 3, from the 

perspective of global results, the estimated result of Range 1 is still better than that of Range 3, with the mean 

ME, RMSE and MAE as 1.69%, 0.19% and 0.278%, respectively. By this manner, the feasibility of proposed 

voltage range selection and SOH diagnosis algorithm is justified.
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Table V. Comparison results under di erent voltage regions.
Battery 
Num.

ME (%) MAE (%) RMSE (%)
Range 1 Range 2 Range 3 Range 1 Range 2 Range 3 Range 1 Range 2 Range 3

1 1.26 1.37 1.33 0.11 0.15 0.12 0.16 0.19 0.17
2 1.93 1.44 0.95 0.17 0.28 0.15 0.24 0.36 0.21
3 1.87 1.85 1.95 0.30 0.37 0.36 0.43 0.49 0.47
mean 1.69 1.55 1.41 0.19 0.27 0.21 0.278 0.35 0.283

V. CONCLUSIONS

In this study, an online state of health diagnosis approach is developed based on short-term measurement 

data that is acquired under the constant current charging mode. The proposed method only requires random

discontinuous charging data with a length of 15 minutes to predict a complete constant current charging voltage 

curve by the extreme learning machine, thus enabling more flexible battery state of health diagnosis. The fixed 

size least squares support vector machine model based on a mixed kernel function is established to capture the 

nonlinear characteristics of state of health based on the feature variables extracted from the predicted voltage 

without pre-processing. The illustrative results confirm that the developed mixed kernel function based 

algorithm outperforms the algorithm with the single kernel functions in terms of state of health diagnosis 

accuracy and generality. The validation experiments highlight that the proposed state of health diagnosis 

method features strong anti-interference capability. Moreover, the results in different voltage ranges also 

indicate that the proposed method is accurate, reliable and effective. All of the experimental results 

demonstrate that the maximum absolute error of the proposed method can be restricted within 2%. 

To the best of authors’ knowledge, this is the first attempt of directly coupling the voltage prediction and 

state of health diagnosis into a unified framework. It can be inferred that the developed method has the potential 

for practical application. Nonetheless, there still exists some improvement space in future research with respect 

to calculation speed and prediction accuracy. Furthermore, lithium-ion battery degradation mechanism and 

state of health prediction from the perspective of electrochemistry under varying ambient temperatures and 

different current rates should also be investigated in-depth in our future work.
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