659 research outputs found

    Low Cost Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Many of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range from those used by closed groups, such as private video meetings or conferences, where all participants must be known to the sender, to applications used by open groups, such as video lectures, where partcipants need not be known by the sender. These types of application will require high volumes of network resources in addition to the real-time delay constraints on data delivery. For these reasons, several multicast routing heuristics have been proposed to support both interactive and distribution multimedia services, in high speed networks. The objective of such heuristics is to minimise the multicast tree cost while maintaining a real-time bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient, although some perform better for small multicast groups and others perform better for larger groups. Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustrates that in some situations their average performance is reversed; a heuristic that in general produces efficient solutions for small multicasts may sometimes produce a more efficient solution for a particular large multicast, in a specific network. Also, in a limited number of cases using Dijkstra's algorithm produces the best result. We conclude that the efficiency of a heuristic solution depends on the topology of both the network and the multicast, and that it is difficult to predict. Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortest path tree algorithm to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. These heuristics are based on Dijkstra's algorithm which maintains acceptable time complexity for the hybrid, and they rarely produce inefficient solutions for the same network/multicast. The resulting performance attained is generally good and in the rare worst cases is that of the shortest path tree. The performance of our hybrid is supported by our evaluation results. Secondly, we examine the stability of multicast trees where multicast group membership is dynamic. We conclude that, in general, the more efficient the solution of a heuristic is, the less stable the multicast tree will be as multicast group membership changes. For this reason, while the hybrid solution we propose might be suitable for use with closed user group multicasts, which are likely to be stable, we need a different approach for open user group multicasting, where group membership may be highly volatile. We propose an extension to an existing heuristic that ensures multicast tree stability where multicast group membership is dynamic. Although this extension decreases the efficiency of the heuristics solutions, its performance is significantly better than that of the worst case, a shortest path tree. Finally, we consider how we might apply the hybrid and the extended heuristic in current and future multicast routing protocols for the Internet and for ATM Networks.

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    A communication model of broadcast in wormhole-routed networks on-chip

    Get PDF
    This paper presents a novel analytical model to compute communication latency of broadcast as the most fundamental collective communication operation. The novelty of the model lies in its ability to predict the broadcast communication latency in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    A Hybrid Approach to Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Multimedia services envisaged for high speed networks may have large numbers of users, require high volumes of network resources and have real-time delay constraints. For these reasons, several multicast routing heuristics that use two link metrics have been proposed with the objective of minimising multicast tree cost while maintaining a bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient. This thesis presents a detailed analysis and evaluation of these heuristics which illustrate that in some situations their average performance is prone to wide variance for a particular multicast in a specific network. It concludes that the efficiency of an heuristic solution depends on the topology of both the network and the multicast, which is difficult to predict. The integration of two heuristics with Dijkstras shortest path tree algorithm is proposed, to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. The evaluation results show good performance over a wide range of networks (flat and hierarchical) and multicast groups, within differing delay bounds. The more efficient the multicast tree is, the less stable it will be as multicast group membership changes. An efficient heuristic is extended to ensure multicast tree stability where multicast group membership is dynamic. This extension decreases the efficiency of the heuristics solutions, although they remain significantly cheaper than the worst case, a shortest delay path tree. This thesis also discusses how the hybrid and the extended heuristic might be applied to multicast routing protocols for the Internet and ATM Networks. Additionally, the behaviour of the heuristics is examined in networks that use a single link metric to calculate multicast trees and concludes one of the heuristics may be of benefit in such networks

    Performance-Engineered Network Overlays for High Quality Interaction in Virtual Worlds

    Get PDF
    Overlay hosting systems such as PlanetLab, and cloud computing environments such as Amazon’s EC2, provide shared infrastructures within which new applications can be developed and deployed on a global scale. This paper ex-plores how systems of this sort can be used to enable ad-vanced network services and sophisticated applications that use those services to enhance performance and provide a high quality user experience. Specifically, we investigate how advanced overlay hosting environments can be used to provide network services that enable scalable virtual world applications and other large-scale distributed applications requiring consistent, real-time performance. We propose a novel network architecture called Forest built around per-session tree-structured communication channels that we call comtrees. Comtrees are provisioned and support both unicast and multicast packet delivery. The multicast mechanism is designed to be highly scalable and light-weight enough to support the rapid changes to multicast subscriptions needed for efficient support of state updates within virtual worlds. We evaluate performance using a combination of analysis and experimental measurement of a partial system prototype that supports fully functional distributed game sessions. Our results provide the data needed to enable accurate projections of performance for a variety of session and system configurations

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Applicability of group communication for increased scalability in MMOGs

    Full text link
    Massive multiplayer online games (MMOGs) are today the driving factor for the development of distributed interactive applications, and they are increasing in size and complex-ity. Even a small MMOG supports thousands of players, the biggest support hundreds of thousands of concurrent players. Since they are typically built as strict client-server systems, they suffer from the inherent scalability problem of the architecture. Computing power and bandwidth limita-tions close to the server limit the possible number of players. Also, the latency of communication between players through the server will be higher than using direct communication. In the paper, we address these issues and investigate im-provement options. A typical MMOG consists of a virtual world with a con-cept of time and space that is similar to the real world. In it, players are represented by avatars. Only subsets of these avatars interact with each other at any given time. This allows us to divide them into groups, and communication among group members becomes a multi-party communica-tion problem. Thus, to reduce resource consumption, we compare the performance of several algorithms for group communication with the current central server approach. We use overlay multicast as the means of providing group communication, and research algorithms for creating short-est path trees, spanning trees, delay-bounded spanning trees and, more specific, applying Steiner tree heuristics. Our experimental results indicate that different approaches are useful to reduce resource consumption while achieving a good perceived quality under varying conditions, such as frequent changes in group membership and the demand for low latency. 1

    Design of Overlay Networks for Internet Multicast - Doctoral Dissertation, August 2002

    Get PDF
    Multicast is an efficient transmission scheme for supporting group communication in networks. Contrasted with unicast, where multiple point-to-point connections must be used to support communications among a group of users, multicast is more efficient because each data packet is replicated in the network – at the branching points leading to distinguished destinations, thus reducing the transmission load on the data sources and traffic load on the network links. To implement multicast, networks need to incorporate new routing and forwarding mechanisms in addition to the existing are not adequately supported in the current networks. The IP multicast are not adequately supported in the current networks. The IP multicast solution has serious scaling and deployment limitations, and cannot be easily extended to provide more enhanced data services. Furthermore, and perhaps most importantly, IP multicast has ignored the economic nature of the problem, lacking incentives for service providers to deploy the service in wide area networks. Overlay multicast holds promise for the realization of large scale Internet multicast services. An overlay network is a virtual topology constructed on top of the Internet infrastructure. The concept of overlay networks enables multicast to be deployed as a service network rather than a network primitive mechanism, allowing deployment over heterogeneous networks without the need of universal network support. This dissertation addresses the network design aspects of overlay networks to provide scalable multicast services in the Internet. The resources and the network cost in the context of overlay networks are different from that in conventional networks, presenting new challenges and new problems to solve. Our design goal are the maximization of network utility and improved service quality. As the overall network design problem is extremely complex, we divide the problem into three components: the efficient management of session traffic (multicast routing), the provisioning of overlay network resources (bandwidth dimensioning) and overlay topology optimization (service placement). The combined solution provides a comprehensive procedure for planning and managing an overlay multicast network. We also consider a complementary form of overlay multicast called application-level multicast (ALMI). ALMI allows end systems to directly create an overlay multicast session among themselves. This gives applications the flexibility to communicate without relying on service provides. The tradeoff is that users do not have direct control on the topology and data paths taken by the session flows and will typically get lower quality of service due to the best effort nature of the Internet environment. ALMI is therefore suitable for sessions of small size or sessions where all members are well connected to the network. Furthermore, the ALMI framework allows us to experiment with application specific components such as data reliability, in order to identify a useful set of communication semantic for enhanced data services
    corecore