4 research outputs found

    High-power medium-voltage motor drive: converter topology, modulation, and control

    Get PDF
    The output power quality, device voltage sharing, power converter flying capacitor voltage ripple and motor torque ripple at low-frequency/ speed operation are the major issues in high-power medium-voltage (MV) motor drives. In this thesis, a new four-level multilevel converter (4L-MLC) is proposed for MV drive applications. The proposed converter does not require series connection of devices, thereby the voltage sharing problems will be eliminated. Also, the new MLC does not require any isolated direct current (DC) sources and eliminates the need of complex phase-shifting transformer. Furthermore, the proposed MLC is also suitable for back-to-back operation due to the presence of a common DC-link. [...

    Optimal modulation and topology design of modular multilevel converter for grid integration of solar photovoltaic systems

    Get PDF
    Modular multilevel converter (MMC) stands out among converter topologies for medium/high-power applications. With salient features like modularity and scalability, MMC can meet the requirement of theoretically any voltage level with higher efficiency and superior harmonic performance, using converter components with reduced ratings. Unlike conventional converters, MMC has a higher switching frequency due to its higher number of switching components. While MMC has been mainly considered for transmission-level applications such as HVDC, it still needs improvements for medium-voltage systems and grid integration of distributed energy resources. The contribution of this thesis is twofold. First, modulation techniques are designed to reduce switching frequency through novel advanced submodule sorting algorithms, which provide a level of controllability over two conflicting constraints – switching frequency reduction and capacitor voltage deviation – for HVDC applications. Second, a topology design based on full-bridge submodules is proposed to use MMC in grid integration of solar photovoltaic systems

    Contrôle avancé des convertisseurs de puissance multi-niveaux pour applications sur réseaux faibles

    Get PDF
    139 p.El advenimiento progresivo de las microrredes que incorporan fuentes de energía renovable está dando lugar a un nuevo paradigma de distribución de la electricidad. Este nuevo planteamiento sirve de interfaz entre consumidores no controlados y fuentes intermitentes, implicando desafíos adicionales en materia de conversión, almacenamiento y gestión de la energía.Los convertidores de potencia se adaptan en consecuencia, en particular con el desarrollo de los convertidores multinivel, que integrando los mismos componentes que sus predecesores y un control más complejo, soportan potencias más altas y aseguran una mejor calidad de la energía.Debido al carácter híbrido de los convertidores de potencia, su control se divide comúnmente en dos partes: por un lado, el control de los objetivos continuos vinculados a la función principal de los convertidores de servir de interfaz, y, por otro, el control discreto de los interruptores de potencia, conocido con el nombre de modulación.En este contexto, las exigencias crecientes en términos de eficiencia, fiabilidad, versatilidad y rendimiento hacen necesaria una mejora de la inteligencia de la estructura de control. Para cumplir conestos requisitos, se propone tratar mediante un solo controlador ambas problemáticas, la vinculada a la función de interfaz de los convertidores y la relacionada con su naturaleza discreta. Esta decisión implica incorporar la no-linealidad de los convertidores de potencia en el controlador, lo que equivale a suprimir el bloque de modulación, que constituye la solución tradicional para linealizar el comportamiento interno de los convertidores. Se adopta un planteamiento de Control Predictivo basado en Modelos (MPC) para abordar la no-linealidad y la gran diversidad de objetivos de control que acompañan a los convertidores de potencia.El algoritmo desarrollado combina teoría de grafos ¿con algoritmos de Dijkstra, A* y otros¿ con un modelo de estado especial para sistemas conmutados al objeto de proporcionar una herramienta potente y universal, capaz de manipular simultáneamente el carácter cuantificado de los interruptores de potencia y el continuo de las entidades interconectadas por el convertidor. Se han obtenido resultados sobre la estabilidad y la controlabilidad de los modelos de estado conmutados aplicados al caso particular de los convertidores de potencia.El controlador así desarrollado y descrito se ha examinado en simulación frente a varios casos y aplicaciones: inversor aislado o conectado a la red, rectificador y convertidor bidireccional. Se ha empleado la misma estructura de control para tres topologías de convertidor multinivel: Neutral-Point Clamped, Flying Capacitor y Cascaded H-Bridge. Al objeto de adaptarse a los cambios citados, lo único que varía en el controlador es el modelo del convertidor adoptado para la predicción, así como la función de coste, que traduce los requisitos de control en un problema de optimización a solucionar por el algoritmo. Un cambio de topología resulta en una modificación del modelo interno, sin impacto sobre la función de coste, mientras que variaciones de esta función son suficientes para adaptarse a la aplicación.Los resultados muestran que el controlador logra actuar directamente sobre los interruptores de potencia en función de diversos requisitos. Los desempeños de la estructura de control propuesta son similares a los de las numerosas estructuras dedicadas a cada uno de los casos estudiados, excepto en el caso de operación en modo rectificador, en el que la versatilidad y rapidez de control obtenidos son particularmente interesantes.En definitiva, el controlador planteado puede emplearse para diferentes aplicaciones, topologías, objetivos y limitaciones. Si bien las estructuras de control lineal tradicionales han de modificarse, a menudo en profundidad, para afrontar diferentes modos de operación o requisitos de control, dichas alteraciones no tienen ningún impacto sobre la arquitectura del controlador MPC obtenido, lo que pone de manifiesto su versatilidad, así como su universalidad, también demostrada por su capacidad para adaptarse a diferentes convertidores de potencia sin modificaciones importantes. Finalmente, la solución propuesta elude por completo la complejidad de la modulación, ofreciendo simplicidad y flexibilidad al diseño del control

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters
    corecore