389 research outputs found

    Calculation of receiver sensitivities in (orthogonal) subcarrier multiplexing microwave-optical links

    Get PDF
    Microwave-based all-analogue (orthogonal) subcarrier multiplexing (SCM) permits a direct processing of baseband data at Gbit/s while achieving low power consumption, low latency, low cost, and tolerance to dispersion. A key figure of merit in any SCM link is the sensitivity in the receiver, which depends on the transmitter, the link and the receiver. By analysing the impact of the nonlinearities of an optical IQ modulator in the presence of optical noise, sensitivities are mathematically estimated as a function of the optical modulation index (OMI) at the transmitter. The results are verified with simulations achieving a good agreement with the mathematical model. The theoretical model provided can be employed as a tool to predict the best achievable sensitivities and the optimum OMI in broadband SCM and orthogonal SCM links

    Clipping noise in visible light communication systems with OFDM and PAPR reduction

    Get PDF
    This paper presents an analytical study of signal clipping that leads to the noise/distortion in the waveform of DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM)-based visible light communication (VLC) systems. The pilot-assisted (PA) technique is used to reduce the high peak-to-average power ratio (PAPR) of the time-domain waveform of the DCO-OFDM system. The bit error rate (BER) performance of the PA DCO-OFDM system is investigated analytically at three different clipping levels as well as without any clipping. The analytical BER performance is verified through simulation and then compared to that of the conventional DCO-OFDM without PAPR reduction at the selected clipping levels. The PA DCO-OFDM system shows improved BER performance at all three clipping levels

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals

    Discrete multitone modulation for short-range optical communications

    Get PDF
    As the need for higher information throughput increases, standard solutions such as copper lines and radio links seem to approach their limits. Therefore, optical solutions, after having conquered the long and medium-range networks, are nowadays also migrating into short-range data communication scenarios, offering the possibility of high capacity information transfer for both professional as well as consumer applications. The challenge is to offer cost-effective and robust optical solutions at relatively short (¿ 1 km) transmission distances, where traditional single-mode fiber for long-haul transmission systems are unsuitable. Solutions such as multimode glass fibers (MMF), plastic optical fibers (POF), using light-emitting diodes (LED) or low-cost vertical cavity surface emitting laser diodes (VCSEL), and optical wireless links (based on LEDs) are therefore being proposed and seem to be promising candidates. These solutions feature low costs, easy handling and installation, flexibility, and robustness, which are all very suitable characteristics for consumer needs. However, this comes at the expense of less bandwidth when compared to single-mode fiber systems. This thesis investigates the use of digital signal processing in order to overcome the bandwidth limitations in short-range optical communication systems, ensuring that such solutions are future-proof. In particular, discrete multitone (DMT) modulation is proposed and investigated in order to increase the capacity of such systems. Derived from the more general orthogonal frequency division multiplexing (OFDM), DMT is a baseband multicarrier modulation technique that is already widely employed in copper-based digital subscriber lines (DSL) systems such as asymmetrical DSL (ADSL) and very high data rate DSL (VDSL). By dividing a high-speed serial data stream into multiple parallel low-speed sub-streams and transmitting them simultaneously using different frequencies, DMT can be used to efficiently combat various signal impairments such as dispersion and narrowband interference. Due to the use of intensity-modulation and direct-detection (IM/DD) in low-cost optical systems, where only the intensity of light is modulated and not the phase, the application of DMT is different from standard electrical systems. Characteristics such as high crest factor, which is the ratio of the peak to root-mean-square amplitude value of the DMT signal, and clipping have different consequences and are studied in this thesis. After an introduction to the principles of DMT and rate-adaptive bit-loading, an analytical model of the optical IM/DD channel for short-range optical communications is presented. Making use of this model, the theoretical capacity of such a channel is derived for both a Gaussian and a first-order low-pass electrical-to-electrical channel response by means of the water-filling method. It is found that the crest factor of the modulation signal plays a dominant role in defining the capacity of the optical IM/DD channel. Furthermore, by including characteristics of DMT modulation such as clipping and quantization, it is shown that the calculated capacity values can be refined and optimum parameters for DMT transmission over an optical IM/DD channel exist. Following this, the optimum clipping values and number of subcarriers for maximizing DMT transmission performance over an optical IM/DD channel are investigated. It is shown that the optimum clipping value, which depends on various system parameters such as receiver noise power and modulation order, can be determined by using an analytical expression. In the case of the number of subcarriers, larger values generally lead to better performance when DMT with bit-loading is used. Additionally, various experiments to explore the system limits of DMT techniques have been performed and the results for POF, MMF, and optical wireless are presented. It is shown that record bit-rates of up to 47 Gbit/s can be achieved using DMT. Finally, an efficient way to implement DMT is presented, together with results regarding the implementation of a real-time DMT transmission system operating at 1.25 Gbit/s. System complexity issues of real-time hardware implementation are also discussed, showing that pipelining and parallelization are essential in high-speed designs, adding to the need of extra hardware resources. Moreover, it is verified that for DMT, the Fast Fourier Transform (FFT) operations require most hardware resources. After the presentation of some alternative modulation techniques such as pulse-amplitude-modulated DMT (PAM-DMT), which also were investigated by the author, this thesis ends with the conclusions and some recommendations for further research work

    Nonlinear Mixing in Optical Multicarrier Systems

    Get PDF
    Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low

    FGPA Implementation of Low-Complexity ICA Based Blind Multiple-Input-Multiple-Output OFDM Receivers

    Get PDF
    In this thesis Independent Component Analysis (ICA) based methods are used for blind detection in MIMO systems. ICA relies on higher order statistics (HOS) to recover the transmitted streams from the received mixture. Blind separation of the mixture is achieved based on the assumption of mutual statistical independence of the source streams. The use of HOS makes ICA methods less sensitive to Gaussian noise. ICA increase the spectral efficiency compared to conventional systems, without any training/pilot data required. ICA is usually used for blind source separation (BSS) from their mixtures by measuring non-Gaussianity using Kurtosis. Many scientific problems require FP arithmetic with high precision in their calculations. Moreover a large dynamic range of numbers is necessary for signal processing. FP arithmetic has the ability to automatically scale numbers and allows numbers to be represented in a wider range than fixed-point arithmetic. Nevertheless, FP algorithm is difficult to implement on the FPGA, because the algorithm is so complex that the area (logic elements) of FPGA leads to excessive consumption when implemented. A simplified 32-bit FP implementation includes adder, Subtractor, multiplier, divider, and square rooter The FPGA design is based on a hierarchical concept, and the experimental results of the design are presented
    corecore