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Abstract: Microwave-based all-analogue (orthogonal) subcarrier multiplexing (SCM) permits a direct
processing of baseband data at Gbit/s while achieving low power consumption, low latency, low
cost, and tolerance to dispersion. A key figure of merit in any SCM link is the sensitivity in the
receiver, which depends on the transmitter, the link and the receiver. By analysing the impact
of the nonlinearities of an optical IQ modulator in the presence of optical noise, sensitivities are
mathematically estimated as a function of the optical modulation index (OMI) at the transmitter.
The results are verified with simulations achieving a good agreement with the mathematical model.
The theoretical model provided can be employed as a tool to predict the best achievable sensitivities
and the optimum OMI in broadband SCM and orthogonal SCM links.

Keywords: subcarrier multiplexing; orthogonal subcarrier multiplexing; optical IQ modulator;
direct detection

1. Introduction

Digital subcarrier multiplexing (SCM) consists of the generation of a multicarrier electrical signal
that is then modulated onto an optical carrier and transmitted over fiber [1,2]. The (de)modulation
of the electrical digital subchannels can be accomplished by digital signal processing (DSP) [1] and
analogue signal processing (ASP) [2]. Broadband DSP-based SCM schemes can potentially achieve high
modulation orders with a high spectral efficiency, but they require expensive analogue-to-digital and
digital-to-analogue converters (ADC and DAC) and are also penalised by a high power consumption
and latency [3]. In contrast, ASP-based SCM systems rely on the maturity of microwave components,
leveraging the excellent stability and frequency selectivity of microwave devices and the low phase
noise of microwave oscillators, to potentially achieve broadband communications systems with
low power consumption and low latency. Furthermore, all electrical ASP can be implemented
with inexpensive monolithic microwave integrated circuit (MMIC) technology [4], benefiting from
integration but with a reduced transistor count with respect to DSP. The main weakness of traditional
broadband ASP-based SCM systems has been the spectral efficiency. Recently, it has been proven that
this disadvantage can be overcome by transmitting orthogonally overlapping electrical subchannels
according to filter bank multicarrier (FBMC) theory [5]. For the remainder of the paper, this technique
will be referred to as orthogonal subcarrier multiplexing (OSCM). Note that the feasibility of OSCM
has been demonstrated in real-time schemes relying largely on off-the-shelf components [5], employing
realistic synchronization [6] and in combination with wavelength division multiplexing (WDM) [7].
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The main advantage of SCM with respect to a single channel implementation is the higher
tolerance to dispersion [2]. However, standard modulation of an optical carrier produces a double
sideband (DSB) spectrum. Due to dispersion, associated subcarriers suffer a different delay in the
upper and the lower sidebands, which translates into dispersive fading after photo-detection [8].
Consequently, optical single side band (SSB) modulation is preferred as it eliminates dispersive
fading [9] and achieves the higher tolerance to dispersion expected from SCM. SCM/SSB can be directly
obtained without employing optical filters with dual-drive Mach Zehnder modulators (DD-MZM) [2]
and with optical IQ modulators [10]. The optical modulators exhibit a nonlinear behaviour that
produces intermodulation distortion (IMD) between the electrical subchannels. This IMD has been
thoroughly analysed in a number of theoretical studies [11,12], where results are often provided in
terms of signal to noise ratio per subchannel in the receiver. However, from a practical perspective, the
performance of digital electro-optical transceivers is typically specified in terms of receiver sensitivity,
which is the minimum received power at which data can be successfully recovered. Calculations to
obtain the best achievable sensitivities in digital broadband SCM links in the presence of optical
noise were presented in [2], but did not include the IMD. In contrast, a model that includes IMD was
developed in [10] for the case of optical IQ modulators.

This paper employs the model presented in [10] to estimate the best achievable sensitivities in
broadband SCM/SSB and OSCM/SSB links consisting of an optical IQ modulator and a pre-amplified
optical receiver as a function of the optical modulation index (OMI). While previous works showed
how the mathematical model predicted differential variations in performance [10], this manuscript
investigates the accuracy of the model to predict the receiver sensitivity as a function of OMI, which
are the key parameters in the design of such an optical link. The model is implemented in MATLAB
and compared to simulations performed with the “VPI Transmission Maker” simulation platform.
A good agreement, especially for the optimum OMI, is obtained.

2. Electro-Optical System

The system that was analysed and simulated is illustrated in Figure 1a. Data was generated
in the form of delta trains that were shaped with low pass square root raised cosine (SRRC) filters.
The roll-off factor β was equal to 1 as a full-bandwidth is more realistic to emulate an ASP-based system.
The shaped digital streams were then used to modulate carriers from microwave local oscillators
(LO) with ideal IQ mixers, performing a quadrature phase shift keying (QPSK) modulation on each
subchannel. Once the subchannels were combined, the resultant signal and its Hilbert transform,
required for the optical SSB generation [10], were fed to an optical IQ modulator. The laser at the input
of the optical modulator was ideal (a noise free optical carrier). The parallel MZMs inside the optical
modulator were biased at quadrature. The amplitude of the obtained optical SSB signal was modified
with a variable optical attenuator (VOA) that simulated fibre losses. The Erbium doped fibre amplifier
(EDFA) in the pre-amplified receiver presented a noise figure of 5 dB and produced a constant output
average optical power that was fed to an ideal noise-free photo-receiver that performed the direct
detection (DD) of the received signal. The resultant electrical signal was demodulated with ideal IQ
mixers and the matched low pass SRRC filters. The obtained digital binary streams were analysed by
measuring bit error rate (BER). Note that the use of SRRC filters and the particular phase alignment
imposed in the local oscillators and the baseband signals are required to make the scheme compatible
with orthogonal transmission in accordance with FBMC theory [5,13,14]. From the previous description
of the simulated electro-optical scheme, it can be derived that the only sources of impairments were
the IMD coming from the optical modulator and the amplified spontaneous emission (ASE) generated
in the EDFA. These conditions were considered because the signal-ASE beat noise is the main source
of optical noise in practical SCM systems implementing pre-amplified receivers [2], especially when
working close to the sensitivity level.

Two different microwave frequency plans were analysed. The first case corresponds to a SCM/SSB
signal consisting of three 2.7 Gbaud QPSK subchannels with LOs located at 5.4, 10.8, and 16.2 GHz, as
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depicted in Figure 1b. The electrical signal presents a data rate of 16.2 Gbit/s with a spectral efficiency
of 1 bit/s/Hz. The second case halves the LO separation and achieves the OSCM/SSB spectrum
shown in Figure 1c, increasing the spectral efficiency to 1.5 bit/s/Hz. Note that both spectra are only
illustrative and the real optical carrier to signal power ratio (CSPR) depends on OMI.
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Figure 1. (a) Direct Detection (DD) electro-optical scheme compatible with subcarrier multiplexing
(SCM)/single side band (SSB) and orthogonal subcarrier multiplexing (OSCM)/SSB transmission
based on optical IQ modulator and pre-amplified optical receiver; (b) example of transmitted optical
spectrum for the case of SCM/SSB consisting of three 2.7 Gbaud quadrature phase shift keying (QPSK)
subchannels; (c) example of transmitted optical spectrum for the case of OSCM/SSB consisting of three
orthogonally overlapping 2.7 Gbaud QPSK subchannels.

3. Mathematical Model

The sensitivity in the presented DD SCM/SSB scheme is the result of the following trade-off. OMI
needs to be high to obtain a low CSPR, which reduces the relative power wasted in the optical carrier,
thereby achieving a better sensitivity. However, higher values of OMI translate into higher IMD due to
the nonlinear response of the optical modulator, which can translate into a penalty in the sensitivity
if the IMD is higher than the noise floor originating from the ASE and obtained in the photocurrent.
Therefore, a mathematical model that considers only the main source of optical noise, namely the
ASE, obtains the best sensitivity that is potentially achievable as a function of OMI. Such a model was
presented in [10] for the case of optical IQ modulators, and is employed in this work. As IMD at a given
subchannel is the result of summing the interfering intermodulation products (IMP), a perfect model
would require considering all the individual electrical phases in the system. However, for simplicity,
IMD is modelled as random noise with Gaussian distribution, and, accordingly, discrepancies with the
model are expected for higher OMIs. In the conditions stated in Section 2, the best achievable optical
sensitivity is [10]:

PIN =
2Q2

FFhvB(
JN−1
0 (2m)J1(2m)

)2(
1−Q2

FDIMD
) (1)

where F represents the noise figure of the EDFA, h is Planck’s constant, ν is the optical frequency, B is
the electrical baseband bandwidth of the subchannels, QF represents the quality factor of the digital
communication, N states the number of electrical subchannels, Jn(x) stands for the nth order Bessel
function of the first kind, m represents the rms OMI per subchannel (m = πVAC/2Vπ where Vπ is
the half-wave voltage of the MZMs and VAC is the peak voltage of a tone in theory but represents
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the rms voltage per subchannel at the electrical input of the MZMs in practice [10]), and, finally,
DIMD represents the distortion associated with IMD.

Typically, the main sources of IMD are second order intermodulation (Ω = Ωi − Ωj), third order
intermodulation (Ω = Ωi ± 2Ωj), and a different case of third order intermodulation that is called triple
beat (Ω = Ωi ± Ωj ± Ωk), where Ωi, Ωj, and Ωk are any three arbitrary frequencies [15]. For systems
consisting of many subchannels, triple beat is the dominant third order intermodulation [15], but for
the presented case which consists of a low number of subchannels, the described subdivision of the
third order IMD is necessary. For each subchannel in a given frequency plan, there can be a different
number of interfering intermodulation products of each kind. These values are denoted as NCSO for
the second order intermodulation, NIM3 for the third order intermodulation, and NCTB for the triple
beat. In the case under analysis, with the MZMs biased at quadrature, the received photocurrent is
free of second order intermodulation [10]. For that reason, only NIM3 and NCTB are analysed, and are
reported in Table 1 for the two frequency plans under analysis. Finally, from [10], DIMD is expressed as

DIMD = NCTB

[
J1(2m)

J0(2m)

]4
+ NIM3

[
J2(2m)

J0(2m)

]2
. (2)

Note that DIMD can be different for every subchannel, which translates into different optical sensitivities
for each subchannel.

Table 1. IMP (intermodulation products) count for each subchannel in the photocurrent.

Frequency Plan SCM (Subcarrier Multiplexing)
(Figure 1a)

OSCM (Orthogonal Subcarrier Multiplexing)
(Figure 1b)

IMP Count NIM3 NCTB NIM3 NCTB
Subchannel 1 2 0 1 0
Subchannel 2 0 1 0 1
Subchannel 3 1 0 1 0

4. Results

The system shown in Figure 1 was simulated for the depicted SCM/SSB and OSCM/SSB frequency
plans. Pseudo random binary sequences (PRBS) of 210 − 1 bits were generated in each baseband
source. Each PRBS was delayed by a random integer number of bits to ensure a degree of decorrelation
between subchannels. In the baseband receivers, the digital signals were sampled in the middle of the
bit period before performing a binary decision. It is important to note that the BER was calculated
emulating a real system, in contrast with other approaches that estimate BER according to statistical
distributions of noise. For different values of OMI, the attenuation of the VOA in the receiver was
increased until a BER of 3.8 × 10−3 was achieved, which is the typical BER threshold for hard-decision
forward error correction (HD-FEC) codes with a 7% overhead. With this procedure, the optical receiver
sensitivities were obtained as a function of OMI. The simulated results, obtained with the VPI software,
are illustrated in Figure 2, where they are also compared with the theoretical calculations obtained
with the mathematical model presented in Section 3. Note that the results are shown as a function of
overall rms OMI with respect to Vπ:

M% = m
2
π

√
N
2
· 100 =

vrms
√

N
Vπ

· 100 =
VRMS

Vπ
· 100, (3)

where vrms is the rms voltage per subchannel and VRMS is the overall rms voltage.



Appl. Sci. 2017, 7, 184 5 of 6
Appl. Sci. 2017, 7, 184  5 of 6 

 

Figure 2. Simulated and theoretical best achievable optical receiver sensitivities for (a) the SCM/SSB 

frequency plan consisting of three 2.7 Gbaud QPSK subchannels and (b) the OSCM/SSB frequency 

plan  consisting  of  three  orthogonally  overlapping  2.7  Gbaud  QPSK  subchannels.  The  values 

employed  in  the  simulation  and  the  theoretical  calculations  are: N =  3,  F =  5  dB,  v =  193.4  THz   

(1550 nm), QF = 2.67 (BER = 3.8 × 10−3), B = 2.7 GHz, and intermodulation product count according to 

Table 1. 

Focusing on the SCM/SSB case, from Figure 2a, it can be deduced that the mathematical model 

estimates the sensitivities with an error ≤2 dB when the optical noise is dominant over nonlinearities 

(M% ≤ 35%). When nonlinearities are dominant, especially triple‐beat for Subchannel 2, the error can 

be higher. This effect occurs because the Gaussian approximation is more accurate to model the ASE 

noise than the IMD. In reality, the effect of IMD is also related to the phase alignment of subchannels 

and can vary for different sampling points. Apart from that, the IMD count in this particular case is 

small,  and  Gaussian  approximations  tend  to  be  more  accurate  when  a  higher  number  of 

intermodulation products take place. However, and despite the inaccuracies of the model, it can be 

observed  that  the optimum OMI  that gives  rise  to  the best achievable optical  sensitivity  for each 

subchannel is accurately predicted by the mathematical model (M% ≈ 30%).   

The mathematical model was developed for the non‐overlapping SCM case. However, as the 

OSCM eye diagrams also present an ideal sampling point in the middle of the bit period [13], which 

is  impaired only by noise and distortion,  the mathematical model  can also be applied  to OSCM.   

A perfect compatibility of the model with OSCM is expected when the optical noise is completely 

dominant  over  IMD  and determines  the  final  sensitivity.  In  other  cases,  as  any  intermodulation 

product also distorts the adjacent subchannels, higher deviations between the VPI simulation and 

theory are expected. This effect can be observed in Figure 2b. In this case, even for low values of OMI 

(M% ≤ 35%), the error is higher than in the previous case, ≤4 dB. However, similarly to the previous 

case,  the  optimum OMI  for  each  subchannel  is predicted with  a  negligible  error  (M% ≈  25%  for 

Subchannel 2 and M% ≈ 35% for Subchannels 1 and 3). 

5. Conclusions   

The key figure of merit of any digital electro‐optical transceiver is the sensitivity for a given BER. 

However,  traditional  mathematical  models  calculate  the  signal‐to‐noise  ratio  per  subchannel 

without  investigating  the  accuracy  of  the  associated  BER  and,  consequently,  the  sensitivity.   

In contrast, the mathematical model presented in [10] attempts to predict the best achievable receiver 

sensitivities  for DD  SCM/SSB  links based on optical  IQ modulators  and pre‐amplified  receivers. 

Previous works  have  shown  the  accuracy  of  the model  in  terms  of performance difference  as  a 

function  of  parameters  like OMI  [10].  This  paper  further  extends  the  accuracy  of  the model  to 

estimate the best achievable sensitivities as a function of OMI.   

The model has been compared with simulations  for a case where  the BER  threshold  is high,   

in  line  with  modern  high‐performance  transceivers.  A  good  agreement  with  theory  has  been 

obtained and the optimum OMI can be predicted with small errors in sensitivity. The inaccuracies 

are  the  result of modelling  IMPs and  IMD, a deterministic phenomenon, as Gaussian noise. The 

Figure 2. Simulated and theoretical best achievable optical receiver sensitivities for (a) the SCM/SSB
frequency plan consisting of three 2.7 Gbaud QPSK subchannels and (b) the OSCM/SSB frequency plan
consisting of three orthogonally overlapping 2.7 Gbaud QPSK subchannels. The values employed in
the simulation and the theoretical calculations are: N = 3, F = 5 dB, v = 193.4 THz (1550 nm), QF = 2.67
(BER = 3.8 × 10−3), B = 2.7 GHz, and intermodulation product count according to Table 1.

Focusing on the SCM/SSB case, from Figure 2a, it can be deduced that the mathematical model
estimates the sensitivities with an error ≤2 dB when the optical noise is dominant over nonlinearities
(M% ≤ 35%). When nonlinearities are dominant, especially triple-beat for Subchannel 2, the error
can be higher. This effect occurs because the Gaussian approximation is more accurate to model
the ASE noise than the IMD. In reality, the effect of IMD is also related to the phase alignment of
subchannels and can vary for different sampling points. Apart from that, the IMD count in this
particular case is small, and Gaussian approximations tend to be more accurate when a higher number
of intermodulation products take place. However, and despite the inaccuracies of the model, it can
be observed that the optimum OMI that gives rise to the best achievable optical sensitivity for each
subchannel is accurately predicted by the mathematical model (M% ≈ 30%).

The mathematical model was developed for the non-overlapping SCM case. However, as the
OSCM eye diagrams also present an ideal sampling point in the middle of the bit period [13], which is
impaired only by noise and distortion, the mathematical model can also be applied to OSCM. A perfect
compatibility of the model with OSCM is expected when the optical noise is completely dominant over
IMD and determines the final sensitivity. In other cases, as any intermodulation product also distorts
the adjacent subchannels, higher deviations between the VPI simulation and theory are expected.
This effect can be observed in Figure 2b. In this case, even for low values of OMI (M% ≤ 35%), the error
is higher than in the previous case, ≤4 dB. However, similarly to the previous case, the optimum OMI
for each subchannel is predicted with a negligible error (M% ≈ 25% for Subchannel 2 and M% ≈ 35%
for Subchannels 1 and 3).

5. Conclusions

The key figure of merit of any digital electro-optical transceiver is the sensitivity for a given
BER. However, traditional mathematical models calculate the signal-to-noise ratio per subchannel
without investigating the accuracy of the associated BER and, consequently, the sensitivity. In contrast,
the mathematical model presented in [10] attempts to predict the best achievable receiver sensitivities
for DD SCM/SSB links based on optical IQ modulators and pre-amplified receivers. Previous works
have shown the accuracy of the model in terms of performance difference as a function of parameters
like OMI [10]. This paper further extends the accuracy of the model to estimate the best achievable
sensitivities as a function of OMI.

The model has been compared with simulations for a case where the BER threshold is high, in line
with modern high-performance transceivers. A good agreement with theory has been obtained and
the optimum OMI can be predicted with small errors in sensitivity. The inaccuracies are the result of
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modelling IMPs and IMD, a deterministic phenomenon, as Gaussian noise. The mathematical model
can also be applied to the case of OSCM/SSB, obtaining slightly higher errors. The additional errors
occur because the model does not include the impact of IMP on adjacent overlapping subchannels.
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