3,773 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Inter-organizational Interoperability through integration of Multiagent, Web Service, and Semantic Web Technologies

    Get PDF
    This paper presents a software architecture for inter-organizational multiagent systems. The architecture integrates Web service technology into multiagent systems to overcome the technical interoperability problem of current multiagent systems in the fast growing service-oriented environments. We integrate Semantic Web technology to make multiagent systems semantically interoperable. We address the problem of interoperability regarding interfaces, messaging protocols, data exchanged, and security whilst considering a dynamic e-business environment. The proposed architecture enables service virtualization, secure service access across organizational boundaries, service-to-agent communication, and OWL reasoning within agents

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    A multi-agent knowledge model for SMEs mechatronic supply chains.

    Get PDF
    19International audienceThe main concern of this research work is to analyse and model supply chains (SCs) in a particular context which is that of small and medium enterprises (SMEs) in the field of mechatronic. The study is based on the analysis of the organisational features, the actors' behaviour, and performance considerations. The development of the model relies on an iterative framework that progressively integrates different aspects into the model. This framework is the ArchMDE process, which is based on MDE (Model Driven Engineering). A major feature of this work lies in its contribution to two different areas of research. The first contribution of the work is to propose a generic metamodel for SCs. Based on a literature review, an incremental framework is proposed for the modelling of SCs in terms of concepts, structure and relationships. The application of the framework to the studied context is described and its result is a domain-metamodel for SCs. The second contribution of this work lies in the formalisation of the dynamic behaviour of the concepts in the metamodel. This formalisation is based on the multi-agent approach. An agentification of the metamodel is thus drawn, thanks to the natural links between multiagent theory and SC reality. This step leads to an agentified-domain-metamodel which also includes the monitoring of the SC and synchronisation protocols. By adding relationships and dynamic behavior aspects, we obtain a metamodel of the domain that can be implemented, with its static and dynamic aspects. To validate this model, an industrial case study is detailed and has been instantiated and encoded in JAVA

    A unified approach to planning support in hierarchical coalitions

    Get PDF
    corecore