1,460 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Actions, Continuous Distributions and Meta-Beliefs

    Get PDF

    Anonymity and Information Hiding in Multiagent Systems

    Full text link
    We provide a framework for reasoning about information-hiding requirements in multiagent systems and for reasoning about anonymity in particular. Our framework employs the modal logic of knowledge within the context of the runs and systems framework, much in the spirit of our earlier work on secrecy [Halpern and O'Neill 2002]. We give several definitions of anonymity with respect to agents, actions, and observers in multiagent systems, and we relate our definitions of anonymity to other definitions of information hiding, such as secrecy. We also give probabilistic definitions of anonymity that are able to quantify an observer s uncertainty about the state of the system. Finally, we relate our definitions of anonymity to other formalizations of anonymity and information hiding, including definitions of anonymity in the process algebra CSP and definitions of information hiding using function views.Comment: Replacement. 36 pages. Full version of CSFW '03 paper, submitted to JCS. Made substantial changes to Section 6; added references throughou

    Logic, Probability and Action: A Situation Calculus Perspective

    Get PDF
    The unification of logic and probability is a long-standing concern in AI, and more generally, in the philosophy of science. In essence, logic provides an easy way to specify properties that must hold in every possible world, and probability allows us to further quantify the weight and ratio of the worlds that must satisfy a property. To that end, numerous developments have been undertaken, culminating in proposals such as probabilistic relational models. While this progress has been notable, a general-purpose first-order knowledge representation language to reason about probabilities and dynamics, including in continuous settings, is still to emerge. In this paper, we survey recent results pertaining to the integration of logic, probability and actions in the situation calculus, which is arguably one of the oldest and most well-known formalisms. We then explore reduction theorems and programming interfaces for the language. These results are motivated in the context of cognitive robotics (as envisioned by Reiter and his colleagues) for the sake of concreteness. Overall, the advantage of proving results for such a general language is that it becomes possible to adapt them to any special-purpose fragment, including but not limited to popular probabilistic relational models

    Logics of knowledge and action: critical analysis and challenges

    Get PDF
    International audienceWe overview the most prominent logics of knowledge and action that were proposed and studied in the multiagent systems literature. We classify them according to these two dimensions, knowledge and action, and moreover introduce a distinction between individual knowledge and group knowledge, and between a nonstrategic an a strategic interpretation of action operators. For each of the logics in our classification we highlight problematic properties. They indicate weaknesses in the design of these logics and call into question their suitability to represent knowledge and reason about it. This leads to a list of research challenges

    Logic meets Probability: Towards Explainable AI Systems for Uncertain Worlds

    Get PDF
    Logical AI is concerned with formal languages to represent and reason with qualitative specifications; statistical AI is concerned with learning quantitative specifications from data. To combine the strengths of these two camps, there has been exciting recent progress on unifying logic and probability. We review the many guises for this union, while emphasizing the need for a formal language to represent a system's knowledge. Formal languages allow their internal properties to be robustly scrutinized, can be augmented by adding new knowledge, and are amenable to abstractions, all of which are vital to the design of intelligent systems that are explainable and interpretable.</jats:p
    • 

    corecore