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Abstract
Logical AI is concerned with formal languages to
represent and reason with qualitative specifications;
statistical AI is concerned with learning quanti-
tative specifications from data. To combine the
strengths of these two camps, there has been excit-
ing recent progress on unifying logic and probabil-
ity. We review the many guises for this union, while
emphasizing the need for a formal language to rep-
resent a system’s knowledge. Formal languages
allow their internal properties to be robustly scru-
tinized, can be augmented by adding new knowl-
edge, and are amenable to abstractions, all of which
are vital to the design of intelligent systems that are
explainable and interpretable.

1 Preface
In a seminal paper, McCarthy [1958] put forward a profound
idea to realize artificial intelligence (AI) systems: he posited
that what the system needs to know could be represented in
a formal language, and a general-purpose algorithm would
then conclude the necessary actions needed to solve the prob-
lem at hand. The main advantage is that the representation
can be scrutinized and understood by external observers, and
the system’s behavior could be improved by making state-
ments to it.

The past 60 years have yielded numerous methods for AI
that attempt to learn about the world from data, many of
which would arguably distance themselves from McCarthy’s
declarative approach. But as many of these data-intensive
approaches are deployed in social environments, such as self-
driving cars and domestic robots that care for the elderly,
there is a growing concern that these systems need to be ex-
plainable, modular, re-usable, and in general, amenable to
suggestions from human users [Gunning, 2016]. One can-
not help but feel that this emphasis is strongly reminiscent of
McCarthy’s original vision.

This article reviews approaches that unify logical methods
going back to McCarthy and probabilistic methods that have

∗This is a companion paper for the Early Career Spotlight track
at the 26th International Joint Conference on Artificial Intelligence,
2017. The author is grateful to his collaborators, who have signifi-
cantly shaped the direction of the research discussed here.

since dominated numerous application areas. At one extreme,
we report progress on the use of symbolic representations and
reasoning as proxy for Bayesian inference and learning. At
the other extreme, we review frameworks that tackle uncer-
tainty in a general way (that is, without committing to a single
probabilistic model) where meta-reasoning plays a significant
role. Our view is that languages that lie between these ex-
tremes are best equipped to jointly address commonsensical
reasoning and learning. Overall, formal languages:
• allow their internal properties to be robustly scrutinized

(internally by verification techniques and externally with
conversational dialogs);

• can be augmented by adding new knowledge and nat-
urally support operations such as composition or other
programmatic constructs; and

• are amenable to abstractions, in the context of, say, de-
scribing decisions using high-level concepts;

all of which are vital to the design of intelligent systems that
are explainable and interpretable.

2 Uncertain Worlds
One of the main arguments against logical AI is that in prac-
tice, there is pervasive uncertainty in almost every domain
of interest: these can be in the form of measurement errors
(e.g. readings from a thermometer), the absence of categor-
ical assertions (e.g. smoking may be a factor for cancer, but
cancer is not an absolute consequence for smokers), and the
presence of numerous “latent” factors, including causes that
the modeler may simply not have taken into account, all of
which question the legitimacy of the model. The upshot is
that on the one hand, logic was seen as an inappropriate tool,
as it is “rigid” (sentences always evaluate to true or false),
“brittle” (sentences in the knowledge base must be true in all
possible worlds) and discrete (as opposed to the continuous
error profiles for thermometers). On the other, the knowledge
of the system, as posited in the declarative approach, may not
only be incomplete but may be impossible to specify apriori.

Modeling uncertain worlds needed a rigorous formulation,
and this came in the form of probabilistic graphical models
(PGMs) [Pearl, 1988]. Given a finite set of random variables
X = {x1, . . . , xn} over the event space {0, 1}n , a PGM pro-
vides the machinery to effectively factorize the joint distribu-
tion over X. PGMs supercharged the application of statistical



methods in language understanding, vision, robotics and ma-
chine learning more generally [Murphy, 2012]. What makes
PGMs particularly attractive is that both the probabilities of
the variables in a given network, as well as the dependencies
themselves can be learnt from data, thereby circumventing
the requirement that the model needs to be provided by some
omniscient modeler.

3 Back To Logic
Despite the success of PGMs, we observe that they are es-
sentially propositional, but are nonetheless deployed in an in-
herently relational world. That is, PGMs easily make sense
of “flat” data, where atomic events are treated as independent
random variables. But in medical records, for example, it
makes little sense to treat individual entries on patient symp-
toms as independent, since it ignores things like relationships
between co-occurring symptoms, and symptoms common to
family members. This encouraged the design of concept lan-
guages for PGMs, culminating in the area of statistical rela-
tional learning [Getoor and Taskar, 2007]. These formalisms
borrow syntactic devices from finite-domain relational logic
to define complex interactions between random variables in
large-scale PGMs over classes and hierarchies. For example,
in Markov logic networks [Richardson and Domingos, 2006],
the weighted formula:

1.2 ∀x, y : D [Smokes(x) ∧ Friends(x, y) ⊃ Smokes(y)]

is indicative of a fairly involved Markov network obtained
by grounding the formula wrt a finite set of constants D and
assigning a potential proportional to 1.2 to the edges of the
network. (The formula expresses the statistical default that
friends of smokers are smokers themselves.)

While this can be seen as a purely representational advan-
tage in using logical machinery, it turns out that propositional
satisfiability (SAT) technology can be used for probabilistic
inference: given a PGM G, an encoding of its structure as a
propositional formula φ and an encoding of its parameters as
a weight function w, computing the probability of an event q
in G amounts to computing the weights of those assignments
that satisfy φ ∧ q. Indeed, there are natural polynomial time
reductions from inference to the counting instance of SAT.
A variety of exact and approximate solver techniques have
since been developed that are known to be very competitive,
especially in the presence of hard constraints, deterministic
reasoning and logical dependencies [Chavira and Darwiche,
2008; Ermon et al., 2013].

Finally, needless to say, the learning of parameters and de-
pendencies from data have natural analogues in these logical
formulations [Richardson and Domingos, 2006].1

So, the bridge between propositional logic (possibly de-
fined over a relational template) and PGMs has proven to be
insightful and significant.2 In the sequel, we discuss how this

1Learning in formal languages can take other forms [Lake et al.,
2015], of course, which are nonetheless related to the approaches
reviewed here. Our development is mainly in the context of formal
languages with a truth theory (that is, logics).

2Although discussions in the article are restricted to probabilistic
reasoning, we have argued elsewhere that there are also venues for

union can be enriched by turning to more expressive logical
languages.

4 Beyond Propositional Logic
Since most of the formal templates for PGMs reduce to
propositional logic, it might seem that the use of logical
methods is restricted to discrete random variables over fi-
nite event spaces. However, by lifting the underlying theory
from propositional logic to linear arithmetic, we can also nat-
urally reason about continuous properties. The idea is that
these arithmetic expressions can be used to make statements
about the nature of the density function over R: for exam-
ple, according a weight of .1 to the formula 0 ≤ x ≤ 1 can
be understood as saying that x is uniformly distributed on the
interval [0,1]. Based on a generalized SAT solving for lin-
ear arithmetic, we have shown how this intuition leads to ex-
act and approximate inference techniques for continuous and
mixed discrete-continuous probability distributions [Belle et
al., 2015a; 2015b; 2016b].

Formal templates notwithstanding, the expressive power of
PGMs, however, is limited: variables are assumed to be fixed
and finite. But this conflates with usage in practice where
there is uncertainty about what things are in this world. In
vision and language understanding, for example, the system
would discover the existence of previously unknown objects
from raw data [Russell, 2015].

In principle, then, allowing for the instantiation of possi-
bly infinitely many propositions can provide the machinery to
handle applications implicitly involving infinitely many ran-
dom variables. Among other strategies [Milch et al., 2005],
an infinite Herbrand base would enable this, as is possible in
probabilistic (logic) programming [Raedt et al., 2007].

To put this to practice, we have enabled data association
using expressions such as [Nitti et al., 2015b; 2015a]:

obspost+1(ID) ∼ GAUSSIAN(post(ID); 0, 1)

which says that the object ID’s position at time t is observed at
t+1 with Gaussian error, where ID is instantiated in an online
fashion as the system plans for its goals in an environment.
Analogously, handling objects without known identifiers is a
common occurrence in language and robotic sensing. For ex-
ample, in a GRE test, we encounter questions such as:

In a group of 10 people, 60 percent have brown
eyes. Two people are to be selected at random from
the group. What is the probability that neither per-
son selected will have brown eyes?

Here, the question does not specify the eye color of the re-
maining 40 percent of the group. The automated solving of
such problems using probabilistic programming is considered
in our recent work [Dries et al., 2017].

Be that as it may, although piggybacking on a program-
ming language allows some respite in going beyond the
closed-world assumption, the fundamental question of when
finitely many computational steps are sufficient for inference

bridging logical methodologies and numerical optimization [Mlade-
nov et al., 2017].



over infinite theories remains poorly understood. For exam-
ple, in the above smokes-friends rule, what type of queries
can we efficiently compute when D is infinite? What about
the case of function symbols? We investigate these questions
in [Belle, 2017a; 2017b].

5 Meta Reasoning
Formulating PGMs as weighted logical formulas is an elegant
approach to tightly decouple the constraints and dependencies
from the probabilistic parameters. But at a conceptual level,
there is little gained as we are still embedded in the frame-
work of standard probability theory.

When it comes to long-lived AI systems, however, espe-
cially reasoners and learners that potentially run forever, we
need to be able to reason about probabilistic events in a more
general way. For example, we may need to compare the prob-
abilities of hypothetical outcomes, or analyze the behavior of
non-terminating probabilistic programs. In some cases, we
may even be ignorant about the actual probabilities of events!
Indeed, McCarthy and Hayes [1969] argued thus:

1. It is not clear how to attach probabilities to
statements containing quantifiers in a way that
corresponds to the amount of conviction peo-
ple have.

2. The information necessary to assign numer-
ical probabilities is not ordinarily available.
Therefore, a formalism that required numer-
ical probabilities would be epistemologically
inadequate.

In sum, we would need a specification of (probabilistic) belief
that can be partial or incomplete, in keeping with whatever
information is available about the application domain. We
would additionally need to construct a logic to reason about
statements involving beliefs, not only for the current epoch,
but also for all possible executable behaviors of the system.

On the subject of the expressiveness of such a logic, we
take the view that as a language, it should be as general as
possible: we are then in a position to investigate fragments
that enjoy reasonable computational properties. In fact, at
the very least, such a language should fully subsume what is
already representable by purely probabilistic or purely logical
accounts.

Of course, having uncertainty about the actual probabilities
of events raises the following question: what does the system
know about its own state? If it cannot ascribe a unique prob-
ability to a proposition q, does it know of its ignorance? To
be able to talk about such meta-beliefs, we turn to formal
epistemology [Fagin et al., 1995; Reiter, 2001], where one is
interested in knowledge and ignorance, and how that changes
over actions.

Building on earlier efforts to combine first-order logic and
probability [Bacchus, 1990], perhaps the most general for-
malism for dealing with degrees of belief in formulas, and in
particular, with how belief should evolve in the presence of
noisy sensing and acting is the account proposed by Bacchus,
Halpern, and Levesque (BHL) [1999]. The BHL scheme is
embedded in a rich theory of action called the situation cal-

culus [Reiter, 2001], but now extended for nondeterminism
and probabilistic likelihoods.3

The continued relevance of the situation calculus, and re-
lated knowledge representation languages, can be explained
as follows. As a dialect of first-order logic, it is well-equipped
to embrace domain formalizations that require classes, hier-
archies and quantification. Given a language with atoms P,
actions T and sequences Z built from T , we presuppose the
existence of possible worldsW that map P × Z to {0, 1} . In
other words, a world is a tree. Semantically, this allows us
to not only reason about past events, but also about hypothet-
icals in the future. By defining epistemic operators that are
interpreted over these worlds, we can talk about meta-beliefs
over infinite histories [Belle and Lakemeyer, 2017].

We reiterate that the advantage of investigating results in
a general language is that more constrained (and thus, often
tractable) frameworks follow as special cases. Indeed, the sit-
uation calculus has proven helpful in providing formal under-
pinnings to automated planning formalisms [Lin and Reiter,
1997; McIlraith and Son, 2002], updates in closed- and open-
world databases [Hariri et al., 2013], and dynamic Bayesian
networks over complex actions [Hajishirzi and Amir, 2010],
among others. Interestingly, tractability can often be decou-
pled in terms of the expressiveness of the knowledge base and
that of the action model [Belle and Lakemeyer, 2011].

Below we emphasize recent results and extensions to the
BHL account, which arguably demonstrates its generality and
compatibility with a number of threads of research in knowl-
edge representation and machine learning.

Compatibility and Generality The BHL account moti-
vates the necessary extensions to the situation calculus for
handling probabilistic nondeterminism, but it was left open
how closely the account matches important real-world ap-
plications like localizing a robot. In [Belle and Levesque,
2014b; 2015b], we developed a logical theory where a num-
ber of standard and non-standard variations pertaining to lo-
calization could be tested.

In [Belle and Lakemeyer, 2017], we have also studied the
compatibility between the BHL scheme and purely logical
accounts of knowledge and action [Reiter, 2001].

Continuity One of the major points of divergence between
logical accounts and learning frameworks is the absence of
continuous distributions in the former, and their abundance
in the latter. The BHL scheme is certainly restricted to dis-
crete random variables. In [Belle and Levesque, 2013a], we
showed how this limitation could be lifted.

Reduction Theorems The situation calculus provides a
very rich setting for describing dynamics, such as allowing
for context-specificity: for example, the motion model of a

3Probabilities are but one approach to quantify uncertainty, per-
haps the most common and an obvious choice for many modeling
situations. Of course, there are other approaches. But as discussed
by BHL, much of their framework can be exported to alternate for-
malisms, such as Dempster-Shafer belief functions [Shafer, 1990].
This is possible by defining an alternate measure of belief, and re-
placing the likelihoods with non-probabilistic functions that support
an alternate rule of belief update.



robot could be conditioned on whether the floor is slippery.
But this richness comes at the cost of making inference more
challenging. Nonetheless, given queries about outcomes after
actions, as needed for automated planning, we have shown
that actions can be either “compiled” away, or “injected” to
the current state [Belle and Levesque, 2013b; 2014a]. (See
[Kaelbling and Lozano-Pérez, 2013] for similar results.)

Programming Languages As an illustration of how the
above reduction theorems can be applied to PGMs, the de-
sign of a query system was studied in [Belle and Levesque,
2014c]. Going further, [Belle and Levesque, 2015a] devel-
oped a programming language that can be used for goal-
directed planning over meta-beliefs. Such programs can be
seen as partial iterative policies [Reiter, 2001].

Characterizing Beliefs A crucial question ignored by
many prior accounts on unifying logic and probability is this:
what exactly do the beliefs of the system look like? Believ-
ing an event p, for example, does not the preclude the system
from also believing p ∧ q, and so, as modelers, we would
need a way to succinctly characterize knowledge and igno-
rance. We investigated this issue in [Belle et al., 2016a].

Multiple Agents AI systems these days can rarely be ex-
pected to only reason about their own internal model, as they
are often deployed in social environments, that is, in the pres-
ence of other autonomous systems, or even humans. There is
a large body of work on the model theory and implementa-
tion of meta-beliefs with multiple agents [Fagin et al., 1995;
Muise et al., 2015], but in the context of the situation cal-
culus, reduction theorems and axiomatizations have been
studied in [Kelly and Pearce, 2008; Liu and Wen, 2011;
Belle and Lakemeyer, 2015; 2014a; 2014b]. In [Belle and
Levesque, 2015b], a preliminary investigation on extending
the BHL scheme to multiple agents is considered.

In sum, with these developments, we obtain languages
and compositional programming abstractions to reason about
subjective probabilities and meta-beliefs in dynamical do-
mains. The open and exciting avenues here include a bet-
ter understanding of tractable fragments, and how algorith-
mic proposals from statistical relational learning can be lifted
for such general languages.

6 Discussion and Conclusions
Proponents of the declarative paradigm argue that expect-
ing systems to infer the complex and interactive nature of
the real-world in a fully unsupervised manner is a fantasy,
whereas those building systems that learn from data argue
that the provision of a sufficiently nuanced AI system by hu-
man experts is unrealistic. The unification of logic and prob-
ability may provide the best of both worlds, especially when
there is partial knowledge about the domain itself. This arti-
cle reviewed frameworks that show how such a unification is
achievable, and is suggestive of a more integrative view of the
two AI camps. These frameworks essentially sketch a spec-
trum of possibilities, ranging from bottom-up approaches that
are symbolic analogues to Bayesian learning, to full-blown
modal logics that allow us to talk about meta-beliefs and his-
tories. Languages that lie between these extremes are perhaps

best equipped to jointly address commonsensical reasoning
and learning.

There is much we do not yet understand on relating the rep-
resentation language of the AI system and the (possibly hu-
man) decision maker [Gunning, 2016]. Moreover, the ques-
tion of how one can effectively learn representations for ex-
pressive frameworks remains mostly open. But that question,
albeit challenging, may provide the necessary bridge between
incomplete and quantitative specifications, on the one hand,
and meta-beliefs and noisy observations, on the other. Log-
ical AI has a long and distinguished history in dealing with
thorny topics in commonsense reasoning [Davis, 2014]; in-
tegrating these with probabilistic models may prove fruitful.
We reiterate that formal languages enable scrutiny, augmen-
tations and abstractions, and when additionally armed with
meta-reasoning, systems can not only describe which of their
beliefs influenced their decisions, but also how this internal
model would change over interactions with the environment
and other agents. These features are vital to the design of
intelligent and commonsensical systems that are explainable
and interpretable, but also social.

Finally, we hope to have clarified that the characteristics
of rigidity, discreteness and brittleness attributed to logic is
a misunderstanding. Logic provides a language for talking
about the world and understanding what information is con-
veyed by expressions in that language; the language is indeed
rigid and discrete, but its worlds certainly need not be.
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