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ABSTRACT
In this work, we propose a new modal logical language for reason-
ing about noisy actions and sensors in an epistemic setting. In the
reasoning about actions literature, there are only a few frameworks
for modelling probabilistic noise, and even less in dealing with con-
tinuous probability distributions. In the first model of its kind, we
show how a rich theory of actions with beliefs, meta-beliefs and
only knowing can be defined over discrete, continuous and mixed
discrete-continuous distributions.
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1 INTRODUCTION
The unification of the logic and probability has been seen as a long-
standing concern in philosophy and mathematical logic, going back
to Carnap [10] and Gaifman [14], at least in terms of early rigorous
algebraic studies. In artificial intelligence, starting from Nilsson
[31], Bacchus [1] and Halpern [16], a wide range of formalisms
encompassing various first-order logical features have been proposed.
In so much as a probabilistic underpinning provides the gateway
for incorporating probabilistic induction, areas such as statistical
relational learning [33] and neuro-symbolic AI [17], are promising
candidates for unifying deduction, noisy sensory observations and
association-based pattern learning [3, 12, 28, 29].

From a knowledge representation viewpoint, however, especially
in the context of reasoning about first-order knowledge over a rich
theory of action, probabilistic noise is not extensively studied. Con-
sider, for example, that Reiter’s [34] reconsideration of the situation
calculus [27] has proven enormously useful for the design of log-
ical agents, essentially paving the way for cognitive robotics [22].
Among other things, it incorporates a simple monotonic solution
to the frame problem, leading Reiter to define the notion of regres-
sion for basic action theories [43]. The situation calculus, and its
counterparts, such as dynamic epistemic logic [42] and the fluent
calculus [38], have enjoyed numerous extensions for time, processes,
concurrency, exogenity, reactivity, sensing and knowledge [34].

One criticism leveled at this line of work, and indeed at much of
the work in cognitive robotics and reasoning about actions, is that
the theory is far removed from the kind of probabilistic uncertainty
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and noise seen in typical robotic applications [40]. Fortunately, Bac-
chus, Halpern and Levesque (BHL henceforth) [2] provided a very
general account for incorporating degrees of belief, noisy actions
and sensors in the situation calculus. It is a surprisingly simple exten-
sion to the epistemic situation calculus [36]: instead of a categorical
knowledge operator that says whether a formula ϕ is known or not,
it permits expressions that quantitatively assesses by how much ϕ
is believed. Instead of sensing actions that discard possible worlds
based on what was observed, the weights of worlds are adjusted
based on how close their fluent values are to the observed value.
Most importantly, the main advantage of this logical account is that
it allows a specification of belief that can be partial or incomplete,
in keeping with whatever information is available about the appli-
cation domain. It does not require specifying a prior distribution
over some random variables from which posterior distributions are
then calculated, as in Kalman filters, for example [40]. Nor does
it require specifying the conditional independences among random
variables and how these dependencies change as the result of ac-
tions, as in the temporal extensions to Bayesian networks [32]. In
the BHL model, some logical constraints are imposed on the initial
state of belief. These constraints may be compatible with one or very
many initial distributions and sets of independence assumptions. All
the properties of belief will then follow at a corresponding level of
specificity. This is in line with a criticism by McCarthy and Hayes
[27] that any formalism forcing us to put numbers on formulas is
representationally inadequate.

The simplicity of the BHL model has led to two major classes
of extensions. Owing to its limitation to discrete distributions, and
the lack of a solution for the projection problem, recent results have
demonstrated how it can be extended to continuous distributions
[5, 8], as well how a notion of regression and progression [34] can
be defined for both the discrete and the continuous model [6, 7].

But perhaps the more major extension is owing to the fact that it is
defined axiomatically, as is usual in the situation calculus [34]. Even
in the non-probabilistic case of knowledge and actions, an axiomatic
definition makes semantic proofs about modalities deeply challeng-
ing [20]. The situation is far worse with probabilities: degrees of
belief in BHL is defined by summing the weights of situations, but
these weights themselves are provided by a successor state axiom
that stitches together action executability, unobservable outcomes
and likelihoods of actions in one formula. This makes it difficult to
unpack, even informally, how degrees of beliefs change over actions
and sensing. This motivated a new logical language, the logic DS

[4], which casts the BHL framework in a modal language, allowing
a semantical apparatus to reason about actions, beliefs, meta-beliefs
(including introspection) and only knowing [23] in a single logical
framework. Extensions to DS [25, 26] further considered adapting
the regression and progression results from the BHL model.



In this work, we argue that such a recasting is more pertinent in the
continuous setting. Continuous probabilistic models are widely used
in machine learning and robotics [30], and permitting the represen-
tation and reasoning of such models within logics of actions would
further bridge the knowledge representation and machine learning
communities. In the existing situation calculus variant for continu-
ous probabilities (BL henceforth) [8], the tangled account with the
weights of situations gets even more severe. While the successor
state axiom for a situation’s weight (now interpreted as a proba-
bilistic density) incorporates action executability and likelihoods,
a definition of belief is provided that accounts for unobservable
outcomes, and then integrates over the initial fluent values and the
possible outcomes. Owing to the axiomatic foundation, (Lebesgue)
integrals need also to be defined axiomatically [8], which not only
makes it difficult to study meta-beliefs and their properties, but also
to generalize to other accounts of probabilistic measures.

What we attempt here, in other words, is something between
DS and the BL model. We do this by first noting that in the BL
model, because the space of situations is not a well-defined space
for calculating integrals, they define belief in terms of the values
of fluents initially, and then “projecting" how the weights of these
situations change after actions. We recast this in a clean modal
setting, allowing for a clean specification of how action likelihoods
affect the densities of worlds. Integration is used meta-linguistically,
and beliefs are allowed to be nested. Overall, our work distinguishes
itself from BL in presenting a simple semantic framework for meta-
beliefs and only-knowing. On the downside, we will inherit BL’s
limitation of allowing only finitely many fluents (albeit whose values
can come from uncountably infinite sets).

2 THE LOGIC XS

We now define the logic XS (= continuous random variables ®X
in the situation calculus). The language is built so as to reason
about probabilistic beliefs and meta-beliefs over actions. Recall
that we allow fluents to take values from countably infinite and
uncountable sets. Likewise, the arguments of sensors and effectors
too can values from infinite sets. For simplicity, we will therefore
assume the domain of discourse to be consisting of a countably
infinite set of standard names (the set of objects) together with
the set of real numbers R. Quantifiers of the object sort will be
understood substitutionally [24]. But we will use variable maps for
the reals. (The set of computable reals [41], which includes irrational
numbers such as π is assumed to be included in the set of objects so
that they can be used in the language.)

2.1 Syntax
Formally, the non-modal fragment of XS consists of standard first-
order logic with = (that is, connectives {∧,∀,¬}, syntactic abbrevia-
tions {∃,≡, ⊃}) but limited to functions. For simplicity, no predicates
are considered. In particular, assume:

• an infinite supply of variables {x ,y, . . . ,u,v, . . .};
• rigid function symbols of every arity ≥ 1, move(x,y), sin(x)

and other arithmetic functions such as + and ×;
• finitely many nullary fluent functions ≤ k, such as salary,

height and distance, often simply denoted f1, . . . , fk ;
• the following special symbols:

– a unary functional fluent poss to denote the executability of
an action;1 and

– a unary fluent l that takes an action as its argument and
gives the action’s likelihood.

Terms are the least set of expressions such that:

• every variable is a term;
• if t1, . . . , tk are terms and f is k-ary function symbol, then

f (t1, . . . , tk ) is a term.

Well-formed (static) formulas are constructed as usual in first-
order logic with equality. They can further be in the context of belief
and action modalities.

XS has two epistemic operators: 𝐵(α : x) is to be read as “α
is believed with a probability x ,” where x is a term of the number
sort. Next, the modality 𝑂(α1 : x1, . . . ,αk : xk ), where xi is a term
of the number sort, is to be read as “all that is believed is: α1 with
probability x1, . . . , and αk with probability xk .” We also use 𝐾α , to
be read as “α is known,” as an abbreviation for 𝐵(α : 1).We write
𝑂α , to be read as “α is all that is known,” to mean 𝑂(α : 1).

XS has two action modalities [a] and □, in that if α is a formula,
then so are [a]α (read: “α holds after a") and □α (read:“α holds
after any sequence of actions.") For z = a1 · · ·ak , we write [z]α to
mean [a1] · · · [ak ]α .We use true to denote truth, which is taken as
an abbreviation for, say, ∀x(x = x), and false for its negation.

2.2 Semantics
The semantics is given in terms of possible worlds. In a dynamic
setting, such worlds are defined to interpret not only the current state
of affairs, but also how that changes over actions. There are three key
complications over non-probabilistic accounts with deterministic
acting and sensing [20]:

• we need to be able to specify probabilities over uncountably
many possible worlds in a well-defined manner;

• to allow for qualitative uncertainty in an inherently quantita-
tive account, beliefs may not be characterizable in terms of a
single distribution;

• the effects of actions are nondeterministic, and the changes
to the state of affairs thereof are (possibly) not observable by
the agent.

2.2.1 Defining worlds. To begin with, let us assume the elements
of A are of the form a(c), where a is an action symbol, and c is
a standard name or a number. Let Z be all finite sequences of A,
including ⟨⟩, the empty sequence. Then, a world w is a mapping:

• for every (nullary) fluent f and z ∈ Z, w[f , z] ∈ R (and
analogously for fluents of other arities);

• for every k-ary rigid function д, the world maps Rk to R that
is same for every z ∈ Z; and

• arithmetic functions such as sin(x), exp(x), and + are inter-
preted in the usual sense. (This is as in [8].)

Let W be the set of all such mappings: the set of possible worlds.

1This fluent function captures the executability of actions, replacing the usual fluent
predicate in the situation calculus [34], and so we require also that for every a, poss(a) =
0 ∨ poss(a) = 1.



2.2.2 Initial distribution. We are now ready to define distributions
and epistemic states, like in DS, but for continuous probability
spaces. Let us consider a general notion first, not dissimilar to DS,
over which we will place further stipulations so as to be integrable.
By a distribution d we mean a mapping from W to R≥0 (the set of
non-negative reals) and an epistemic state e is any set of distributions.
The idea in DS is to constrain a d such that it defines a distribution
on the worlds in W. Then 𝐵 is interpreted wrt every d ∈ e.

Let us now consider a d and investigate how it can be used to
define a continuous distribution. Moreover, let us focus on the empty
sequence ⟨⟩, that is, before any actions have occurred.

While there are many notions of continuity in probability the-
ory [9], perhaps the simplest is consider an absolutely continuous
distribution ηX (x) for a random variable X such that:

Pr[a ≤ X ≤ b] =

∫ b

a
ηX (x).

That is, the probability over an interval is obtained by the Lebesgue
integral. As we shall see, the simplicity of our construction means
that we will not need to limit ourselves to just integrals, sums will
also do, as perhaps would other types of measures [37].

Let us start by observing that given Rk , its Borel sets can be
defined as measurable subsets (intervals, Cartesian products of inter-
vals, and so on), leading to a general notion of a probability measure
[9, 15]. So given a function ηX1, ...,Xk that maps Rk to R, stand-
ing for the probability density or mass function, well-understood
notion of probability apply in the sense of being able to obtain
a well-defined measure on Borel sets of Rk , either finitely many,
countably infinitely many or uncountably many. We would obtain a
discrete probability distribution with the first two, and a continuous
probability distribution with the last.

But our notion of a distribution d is precisely such a function. It
maps worlds to reals, where the worlds themselves are elements of
Rk . In other words, if d is standing for a probability mass function,
there is a number n such that:

n =
∑
®r ∈Rk

{
d(w) if w[f1, ⟨⟩] = r1, . . .w[fk , ⟨⟩] = rk
0 otherwise

where Rk ⊊ Rk is the discrete space corresponding to the values
of the fluents. In English: suppose fluents f1, . . . , fk took values

from a countably finite set
{
⟨r11 , . . . , r

1
k ⟩, . . . , ⟨r

n
1 , . . . , r

n
k ⟩

}
. There

is exactly one world corresponding to each such ⟨r i1, . . . , r
i
k ⟩.When

considering the summation, for every ®r = ⟨r i1, . . . , r
i
k ⟩ ∈ Rk , we use

the d value of the world where the fluents take these values initially,
and 0 otherwise. Notice that this is before any actions have happened,
because after actions multiple worlds might agree on the values of
fluents. (Think, for example, of k boxes and a functional fluent for
each box to capture its color: after an action that colors all boxes red,
all those fluents would take on the same value.)

Analogously, if d stands for a density function that maps Rk to
R, there is a number n such that:

n =

∫
®r ∈Rk

({
d(w) if w[f1, ⟨⟩] = r1, . . .w[fk , ⟨⟩] = rk
0 otherwise

)
This now gives us a generic recipe for dealing with absolutely con-
tinuous, discrete, countably infinite and mixed discrete-continuous

fluents. We let d map the Cartesian product of the appropriate space
of values to R to capture the probabilistic measure, and sum or inte-
grate as appropriate for that fluent, exactly as one would in standard
probability theory [9]. For simplicity of presentation, however, we
will use the integration symbol and assume absolutely continuous
distributions in the rest of the paper.

All of the above discussion only pertains to the empty sequence,
of course, because actions could affect the nature of the distributions.
But inspired by [8], we will find a way to define beliefs after actions
by recasting it to initial beliefs.

2.2.3 Noisy actions. When a noise-free physical action occurs,
it is clear to us (as modelers) but also the agent how the world has
changed after the action. Of course, in realistic domains, especially
robotic applications, this is not the usual case and a quantitative
account of effector noise is needed.

Let us first reflect on what is expected with noisy sensing vs noisy
acting. When an agent senses, say a sonar action such as sonar (z),
the argument for this action is not chosen by the agent. That is, the
world determines what z should be, and based on this reading of
z, the agent comes to conclusions about its own state. The noise
factor, then, simply addresses the phenomena that the number z
returned may differ from the true value of whatever fluent the sensor
is measuring. This is different from noise-free situation calculus
[36], where sensing reveals the value of the fluent in the real world.

Noisy acting diverges from that picture even further. The agent
intends to do action a, but what actually occurs is a′ that is possi-
bly different from a. For example, an agent may want to move 3
units towards a wall, but, unbeknownst to the agent, it may move
by 3.042 units. The agent, of course, does not observe this outcome.
Nevertheless, provided the agent has an account of its effector’s
inaccuracies, it is reasonable for the agent to believe that it is in
fact closer to the wall, even if it may not be able to precisely tell
by how much. Intuitively, the result of a nondeterministic action is
that any number of successor sequences might be possible, which
are all indistinguishable in the agent’s perspective. Depending on
the likelihoods of the action’s potential outcomes, some of these
successors are considered more probable than others. The agent’s
belief about what holds then must incorporate these relative like-
lihoods. Intuitively, if the belief about the position is a bell curve,
a noisy action may cause it “flatten” and move the mean (because
the robot has possibly moved), and a noisy sensing would cause it
“sharpen” slightly, and so on. This is what necessitates a sense-act
loop in stochastic domains.

Like with DS, we will need some notational devices for dealing
with (noisy) actions. However, there are some significant differences,
because in DS, we could simply gather the indistinguishable worlds
after actions. However, that would not be useful here because it may
not be feasible to provide a compact characterization of the proba-
bility function. For example, an action can transform an absolutely
continuous function with a density to a single point with a probabil-
ity mass. Nonetheless, a characterization of the prior distributions
for the initial state is provided by assumption, and we will use it to
define probabilities on successor situations, like in [8].

So let us introduce some notation for characterizing the likelihood
of a sequence of noisy actions and their executability. We will need
to do this precisely because the arguments of the actions are what



we will eventually integrate over. So assume noisy actions [8] are
of the form a(x ,y), where x is the intended argument and y is the
actual value of the executed action, and noisy sensing is of the form
a(z), where z is the observed value determined by the environment.2

First, we extend the application of l to sequences:

Definition 2.1. We define L :W ×Z 7→ R≥0 as follows:
• L(w, ⟨⟩) = 1 for every w ∈ W;
• L(w, z · r ) = L(w, z) × n where w[l(r ), z] = n.

Noise-free physical actions will be axiomatized in a way such that
their l-values are 1. For a noisy sensing action sonar (3), its l-value
will be determined by how likely it is to observe 3 given that the
robot is, say, 4 units away from the wall. For example, if assuming a
Gaussian error profile [40] with a standard deviation of 2, the l-value
would be N(3; 4, 2), which is to say the number on the Gaussian
curve corresponding to the number 3 on the X -axis. The curve
is centered on the number 4 with a spread given by the standard
deviation of 2. Analogously, if assuming a Gaussian error profile
with a standard deviation of 2, the l-value for the actionmove(3, 4)
would be N(4; 3, 2), which is to say the number on the Gaussian
curve corresponding to the number 4 on the X -axis. We read the
action as saying 3 was intended but 4 actually occurred. The curve
is centered on the number 3 with a spread given by the standard
deviation of 2.

After intending to execute a sequence of actions, the agent needs
to also consider those sequences that may be the actual outcomes. For
this, we define action sequence observational indistinguishability as
follows:

Definition 2.2. We define z ≈ z′:
• ⟨⟩ ≈ z′ iff z′ = ⟨⟩;
• z · r ≈ z′ iff z′ = z∗ · r , z ≈ z∗ and r is a noise-free physical

action or a noisy sensor; and
• z · a(c, c ′) ≈ z′ iff z′ = z∗ · a(c, c ′′) for some c ′′, and z ≈ z∗.

Let us unpack this definition. Empty sequences have no indistin-
guishable alternatives. Noise-free actions have no indistinguishable
alternatives, and so if z ≈ z∗ and r is such an action, z · r ≈ z∗ · r .
One might be tempted to lump noisy sensing and noisy actions, but
note that with an action like sonar (3), even though the argument is
not in control of the agent and is determined by the environment, the
reading is observable to the agent after performing the action. Thus,
noisy sensing actions also have no indistinguishable alternatives.

But for a noisy action a(c, c ′), any a(c, c ′′) would mean z·a(c, c ′) ≈
z · a(c, c ′′).3 In general, then, given z ≈ z′, we have z · a(c, c ′) ≈
z′ · a(c, c ′′). By construction, it is easy to see that:

PROPOSITION 2.3. ≈ is an equivalence relation.

As a matter of notational convenience, given any action sequence
z, having n noisy actions, we use z(c1, . . . , cn ) to mean that the ac-
tual arguments of those actions in z were replaced in corresponding
2Actions with more arguments are permitted, we are restricting it this way for presenta-
tion purposes.
3 Note that in DS, there was a distinguished predicate for capturing the indistin-
guishability of actions, which could also be axiomatized in the basic action theory. Our
approach is less general, but simpler: we assume that for every noisy action a(x, y),
all and only the actions a(x, z) are alternatives. (We expect the likelihood axiom to
determine which of these are more likely than the other.) Ultimately, because we define
integration in terms of the parameters of the actions, this restriction is unavoidable, so
we drop the use of this distinguished predicate.

places by c1, . . . , cn . For example, given z = sonar (3) ·move(3, 4) ·
sonar (4) · move(2, 2), we let z(1, 1) mean sonar (3) · move(3, 1) ·
sonar (4) ·move(2, 1) and by above, z ≈ z(1, 1).

Third, to extend the applicability of poss for action sequences, we
proceed as follows:

Definition 2.4. Define Exec(z) for any z ∈ Z inductively:

• for z = ⟨⟩, Exec(z) denotes true;
• for z = a · z′, Exec(z) denotes (poss(a) = 1) ∧ [a]Exec(z′).

2.2.4 Truth. We are finally ready for the semantics. Let us intro-
duce variable maps: such a map v maps real-number variables to R.
We write v ′ ∼x v to mean v ′ and v agree on everything except the
assignment for variable x .

The denotation of terms (wrt a world w , action sequence z and
mapv) is defined inductively. If t is a name, then |t |(w,z,v) = t . If t is
a term of the number sort, then |t |(w,z,v) = v(t). If t = f (t1, . . . , tm ),
then |t |(w,z,v) = w[f (r1, . . . , rm ), z] where |ti |(w,z,v) = ri .

Truth in XS is defined wrt (e,w, z,v) as follows:

(1) e,w, z,v |= (f = t) iff w[f , z] = |t |(w,z,v);
(2) e,w, z,v |= (t1 = t2) iff |t1 |(w,z,v) and |t2 |(w,z,v) are identi-

cal;
(3) e,w, z,v |= α ∧ β iff e,w, z,v |= α and e,w, z,v |= β ;
(4) e,w, z,v |= ¬α iff e,w, z,v ̸ |= α ;
(5) e,w, z,v |= ∀xα iff e,w, z,v |= αxn for all names n, where x

is a variable of the object sort;
(6) e,w, z,v |= ∀xα iff e,w, z,v ′ |= α for all v ′ ∼x v, where x is

a variable of the number sort;
(7) e,w, z,v |= [t]α iff e,w, z · n,v |= α where n = |t |(w,z,v);
(8) e,w, z,v |= □α iff e,w, z · z′,v |= α for all z′ ∈ Z.

Hereafter, to simplify the presentation, we often write e,w, z |= α
to mean e,w, z,v |= α for all maps v .

2.2.5 Epistemic operators. For the epistemic operators, we need
to bridge the intuition of defining a probability using d for the empty
sequence with actions. This is made all the more complicated by the
fact that actions are noisy. To work this out, let us start with what
we understand so far: consider a semantics for the degree of belief
of a modality-free formula ϕ wrt ⟨⟩ and a singleton e = {d}. Based
on what was discussed before, we might arrive at:

e,w, ⟨⟩,v |= 𝐵(ϕ : n) iff n =
∫
Rk

{
d(w∗) ifψ
0 otherwise

What mightψ be? We understand from before that we choose worlds
corresponding to every vector of values from Rk , and so to obtain
the probability of ϕ, we would need to only consider those tuples
where it holds. Formally,ψ is

w∗[f1, ⟨⟩] = r1, . . . ,w
∗[fk , ⟨⟩] = rk , (e,w

∗, ⟨⟩,v |= ϕ).

That is, for every vector of values from Rk , consider the w∗ where
the fluents take these values initially, and test whether ϕ is true at the
model with w∗ as the real world. If it is, use the d-value, otherwise
ignore.

But what is the relation between d and e? An epistemic state is
a set of distributions, so for arbitrary epistemic states, we would



require that for every d ∈ e:

n =

∫
Rk

{
d(w∗) ifψ
0 otherwise

Notice that the epistemic state in theψ -condition is e and not some
d ∈ e, and this allows for introspection.

To now handle actions, let us reflect on how belief changes. With
noise-free actions, the values of fluents change at worlds, so all we
would need to do is:

e,w,a,v |= 𝐵(ϕ : n) iff for all d ∈ e,

(∫
Rk

{
d(w∗) ifψ
0 otherwise

)
= n

whereψ is

w∗[fi , ⟨⟩] = ri for every i, (e,w∗,a,v |= ϕ).

That is, we integrate over Rk , and for every vector of real values,
if the world corresponding to those values satisfies ϕ after a, then
we use its d-value, else we ignore it. This can be extended to any
sequence of noise-free actions.

With noisy sensing, the account is very much the same except
that we need to adjust the weight of the world based on the value
read on the sensor.4 That is,

e,w,a,v |= 𝐵(ϕ : n) iff for all d ∈ e,

(∫
Rk

{
d(w∗) × θ ifψ
0 o.w.

)
= n

where o.w. = otherwise, andψ is

w∗[fi , ⟨⟩] = ri for every i, w∗[l(a), ⟨⟩] = θ , (e,w∗,a,v |= ϕ).

Recall that we have L precisely for obtaining the likelihood of a
sequence, so we may use that instead of referring to θ .

We now consider the case of noisy actions. The likelihood of
an always continuous noisy action is given by a density function.
Intuitively, when an action with argument x is intended, uncountably
many y are possible and we would need to integrate over these. The
density of a world is now further adjusted for each such outcome.
This means that we need to introduce a new integration symbol for
every noisy action. Formally, given a noisy action a(c, c ′), we have:5

e,w,a(c, c ′),v |= 𝐵(ϕ : n) iff for every d ∈ e,n = η

4With continuous distributions, a number of involved issues may arise in the context
of conditioning. (Conditioning corresponds to an observation so can be captured using
sensing actions.) Given a continuous fluent, a sensing action might suggest a single
point or a discrete set of points to be likely and all others unlikely, for example. It is also
possible to condition on null sets, leading to the Borel–Kolmogorov paradox [9, 15].
We will not have much to say about such concerns beyond what is already discussed in
the literature, and simply assume that the d -value of worlds as well as its adjustment
after actions always integrates to 1.
5Related to the conditioning remark, there is an important consideration on measurability
[9] more generally that we are glossing over in our treatment. Our set of worlds is defined
over Rk , and we simply assumed that the initial beliefs are (Lebesgue) integrable, as
is the product of the initial density with the likelihood of actions. These assumptions
are perhaps acceptable in the context of most robotics applications, where we expect
initial beliefs and likelihood axioms to involve Gaussian, uniform and other classical
distributions. But there are examples of sets that are not Lebesgue integrable (such as the
Vitali set [19]): this would mean formulas expressing such sets would not be satisfiable
in our logic. This is an issue also with prior accounts formulated using Lebesgue
integrals, such as [8]. We ignore this issue in its entirety for now. A general account
would have to address the problem of defining integrals over arbitrary probability
spaces, both initially and after actions. Finally, notice that by assuming beliefs are
always integrable, we have that 𝐾true is valid, as is □𝐾true. (Recall that we use the
abbreviation 𝐾α � 𝐵α = 1.)

where η is: ∫
R

∫
Rk

{
d(w∗) × L(w∗,a(c, c ′′)) ifψ
0 o.w .

whereψ is

w∗[fi , ⟨⟩] = ri for every i, (e,w∗,a(c, c ′′),v |= ϕ)

In English, given a real number c ′′ for the actual outcome, and real
numbers r1, . . . , rk for the fluent values, we first identify the world
w∗ where the fluents take on the latter values. Because a(c, c ′′) is
indistinguishable from a(c, c ′), if ϕ is true after a(c, c ′′), then we
use the d-value of the world. Its weight is further adjusted using the
likelihood of this alternate action. So for every world, we consider
every possible outcome, and depending on whether ϕ is true, we
use the density term (product of the initial density term and the
likelihood). This now allows us to provide the general definition of
belief:

(8) e,w, z,v |= 𝐵(ϕ : n) iff for every d ∈ e,n = η

where η is: ∫
Rk+m

{
d(w∗) × L(w∗, z′) ifψ
0 otherwise

whereψ is:

w∗[fi , ⟨⟩] = ri for every i, z′ = z(c1, . . . , cm ), (e,w∗, z′,v) |= ϕ .

In English: for k real numbers, we identify the world w∗ where the
fluents take these values. Givenm noisy actions in z, for them real
numbers ⟨c1, . . . , cm⟩ , we consider z′ = z(c1, . . . , cm ). Because z′

is indistinguishable from z, provided ϕ is true after z′ at w∗ means
that we can use its d-value. It is adjusted as per the likelihood of z′.

The semantics for only knowing then is:
(9) e,w, z,v |= 𝑂(ϕ1 : n1, . . . ,ϕk : nk ) iff for all d, d ∈ e iff

ni = ηi

where ηi is the same expression as η above except in using ϕi .
For any sentence α , we write e,w |= α instead of e,w, ⟨⟩ |= α .

When Σ is a set of sentences and α is a sentence, we write Σ |= α
(read: “Σ logically entails α") to mean that for every e and w , if
e,w |= α ′ for every α ′ ∈ Σ, then e,w |= α . Finally, we write |= α
(read: “α is valid") to mean {} |= α .

We introduce some syntactic sugar for 𝐵. Our modal operator
for belief is of the form 𝐵(ϕ : x), but we often write 𝐵ϕ = x . This
is extended for arithmetic inequalities ◦ ∈ {,, ≤, ≥, <, >} in an
obvious manner. That is,

(8◦) e,w, z,v |= 𝐵ϕ ◦ n iff for every d ∈ e, η ◦ n,
where η is before, given in the semantic definition (8).

3 PROPERTIES
We can show that reasonable properties regarding 𝐵 and 𝑂 as
considered for DS also hold in XS. They essentially follow the
same style of argumentation (which is desirable), but the proofs are
different because the semantic structures and the definition of 𝐵 is
entirely different. For what follows, it will be useful to introduce
a bit of additional notation for the RHS of “iff” in the notion of
truth for 𝐵 and 𝑂. In particular, here is a slightly more notationally
precise version of item (8) on the definition of truth:



(8) e,w, z,v |= 𝐵(ϕ : n) iff for every d ∈ e,n = ηd (ϕ, z)

where ηd (ϕ, z) is:∫
Rk+m

{
d(w∗) × L(w∗, z′) ifψ (®r , ®c,ϕ, z)
0 otherwise

whereψ (®r , ®c,ϕ, z) is:

w∗[fi , ⟨⟩] = ri for every i, z′ = z(c1, . . . , cm ), (e,w∗, z′,v) |= ϕ .

We often drop the superscript on η when the context is obvious.
Let us start with how degrees of belief operate over logical equiv-

alence and connectives:

PROPOSITION 3.1. The following can be shown in XS:

(1) If |= □(α ≡ β) then |= □(𝐵(α : r ) ≡ 𝐵(β : r ));
(2) |= □(𝐵(α ∧ β : r ) ∧𝐵(α ∧ ¬β : r ′) ⊃ 𝐵(α : r + r ′));
(3) |= □(𝐵(α : r ) ∧𝐵(β : r ′) ∧𝐵(α ∧ β : r ′′)

⊃ 𝐵(α ∨ β : r + r ′ − r ′′)).

Note the □ in front of formulas, which indicates that the properties
hold after any sequence of actions.

PROOF. For item 1, consider any (e,w, z). Suppose e,w, z |=

𝐵α = r . By definition, for every d ∈ e, r = η(α , z). But α ≡ β by
assumption, and so when we check e,w∗, z′ |= α inψ (®r , ®c,α , z), it is
also the case that e,w∗, z′ |= β . This must mean e,w, z |= 𝐵β = r .
The argument is identical for the other direction.

For item 2, consider any e,w, z such that the left hand side of the
implication holds. This means that for every d ∈ e, η(α ∧ β , z) = r
and η(α ∧ ¬β , z) = r ′. It is a bit tedious, but by using the semantical
definition, we note the following: When expanding the η expressions,
we see that after z, certain posterior worlds where α ∧ β holds
integrate to r , and others where α ∧¬β hold integrate to r ′. But these
are distinct, and so the posterior worlds where α holds is the union.
Hence we get e,w, z |= 𝐵(α) = r + r ′. Item 3 is analogous. □

Let us now consider the relationship between degrees of belief
and meta-knowledge. We have:

PROPOSITION 3.2. (1) |= □(𝐵(α : r ) ⊃ 𝐾𝐵(α : r )); and
(2) |= □(¬𝐵(α : r ) ⊃ 𝐾¬𝐵(α : r )).

PROOF. We show the first item, and the second is analogous. Con-
sider any model (e,w, z) such that e,w, z |= 𝐵α = r . By assumption,
for every d ∈ e, r = η(α , z). But by assumption, we observe that for
every such d, η(𝐵α = r , z) = 1. This can be checked by expanding
the definition of 𝐵 and noting that one of the conditions for using
the d-value of a world w∗ is when e,w∗, z |= 𝐵α = r . Since this is
true at every w∗ by assumption (the real world is, in fact, irrelevant),
we integrate and consider the density of every ®r ∈ Rk , and so we get
the probability of 1. □

Following this style of argument, it is not hard to see that modus
ponens and weak S5 properties [11] holds for 𝐾:

PROPOSITION 3.3. The following are valid in XS:

(1) |= □(𝐾α ∧𝐾(α ⊃ β) ⊃ 𝐾β);
(2) |= □(𝐾α ⊃ 𝐾𝐾α); and
(3) |= □(¬𝐾α ⊃ 𝐾¬𝐾α).

Finally, the benefit of using only knowing is that is provides the
means to succinctly define what is known as well as what is not
known. Consider the following properties:

PROPOSITION 3.4. The following are valid in XS:
(1) 𝑂(α : r ) |= 𝐵(α : r ).
(2) 𝑂α |=𝐾α .
(3) Suppose {α , β} do not mention modalities, and α ̸ |= β . Then

𝑂α |= ¬𝐾β .

PROOF. For item 1, suppose e,w, z |= 𝑂(α : r ). This means that
every d such that η(α , z) = r is in e, and for every d ∈ e, η(α , z) = r .
Clearly then e,w, z |= 𝐵(α : r ) as it only uses the second condition.
Item 2 is a special case of item 1 with r = 1.

For item 3, suppose e,w, z |= 𝑂α . Consider that for every d ∈ e,
η(α , z) = 1. Since α ̸ |= β , it cannot be that η(β, z) = 1. In other
words, there may be worlds where β is true but because α ̸ |= β , their
d-values would not considered in the integration when obtaining
η(β , z). Although it is possible that worlds where ¬β are given a
d-value of 0 by some distributions, there must be distributions that
accord a non-zero density to worlds where ¬β . By definition of
only-knowing, these latter distributions must also be in e, and in
them, η(β, z) < 1. Therefore, e,w, z ̸ |=𝐾β . □

There are perhaps many other properties one could explore in
the context of knowledge, belief and actions [4, 24], but the above
illustrate the reasonableness of the semantic definition for many of
the ones considered for DS. Let us now explore the use of XS for
basic action theories.

4 BASIC ACTION THEORY
Using the example from [8], imagine a robot facing the wall, as
in Figure 1. Let h be the fluent representing the robot’s horizontal
distance to the wall. The fluent h would have different values in dif-
ferent possible worlds. In a discrete setting, the set of worlds where
h take on a particular value might be given a discrete probability,
whereas in the continuous case, they might be given a density. For
example, the following initial theory:

∀x(𝐵(h = x) = 0.1 ≡ 0 < x ≤ 10) (1)

might be understood as ascribing a probability of 0.1 toh ∈ {1, . . . , 10}
in a discrete setting, and a density of 0.1 toh ∈ (0, 10]. In other words,
the worlds where h = 2 are all collectively accorded a probability of
0.1 in the discrete setting. In a continuous setting, by construction,
there is only one world where h = 2, and its probability is 0. If we
were, however, interested in the probability of h ≤ 2, we would
integrate the density accorded to every world where h ∈ (0, 2], and
so we would get: ∫ 2

0
0.1dx = 0.2.

As discussed previously, the logic also permits uncertainty about
distributions. For example, a sentence of the following form:

∀x(0 ≤ x ≤ 10 ⊃ 𝐵(h = x) , 0)

says that any distribution that accords a non-zero probability density
(or mass, depending on whether x is discrete) to the range 0 ≤ x ≤ 10
is permitted. So an epistemic state satisfying this sentence will
include infinitely many distributions, including ones where:



Figure 1: A robot moving towards a wall.

• the density is 0.1 for every x ∈ [0, 10];
• the density is 0.05 for x ∈ [0, 5] and 0.15 for x ∈ [5, 10];
• the density is 0.15 for every x ∈ [3, 8] and 0.05 for every
x ∈ [0, 10] but x < [3, 8]; and so on.

The theory of action would then specify how these weights change
as the result of acting (such as moving away or towards the wall)
and sensing (such as obtaining a reading from a sonar aimed at the
wall). In particular, let the actionmove(x ,y) mean the robot intends
to move by x units by y is the actual outcome, and sonar (u) to say
that a reading of u was obtained on the robot’s sonar sensor. Using
the specification from [8], we have the following axioms:6

• Noisy actions are retrofitted in successor state axioms by
postulating that the effects are based on the actual argument:

□[a]h = u ≡ ∃x ,y(a =move(x ,y) ∧ u = h − y) ∨

∀x ,y(a ,move(x ,y) ∧ u = h).

This says that doing a move action means that the subsequent
value of h is its current value reduced by the actual outcome y,
otherwise it is the same as the current value. This is the equiv-
alent of Reiter’s monotonic solution to the frame problem in
the DS family of logics [4, 20].

• We let the noisy effector and sensor have Gaussian error
profiles, as is standard in probabilistic robotics [40]:

□l(move(x ,y)) = N(y;x , 1),□l(sonar (z)) = N(z;h, 0.25)

The first sentence says that the likelihood of move(x ,y) is
given by a Gaussian density for the number y centered on the
true value x with a spread of 1. Likewise, the sensing model
is given by a Gaussian density for the value read z centered
on the true value h (the fluent that it is measuring) with a
spread of 0.25.

• For simplicity, let actions be always executable:

□poss(a) = 1 ≡ a =move(x ,y) ∨ a = sonar (z).

Note that successor state and likelihood axioms are stipulated to
hold for every action sequence, the rough equivalent of quantifying
over situations as needed in basic action theories [21].

Lumping the axioms involving actions as Σdyn, let us consider
entailments wrt the following background theory Σ:7

(h = 11) ∧ Σdyn ∧ ∀x . 𝐵((h = x) : U(x ; 10, 12)) ∧𝐵(Σdyn : 1).

where the robot is actually 11 units from the wall in the real world.
Here, U(x ;a,b) is the continuous uniform distribution that returns
1/(b − a) when x ∈ [a,b], and 0 otherwise. So here the function
returns 0.5 when x ∈ [10, 12] and 0 otherwise. In general, we may
use any rigid function д(x), such as:
6Free variables are implicitly quantified from the outside.
7The example below also works with only knowing, but since we do not reason about
negative beliefs, we limit ourselves to 𝐵 in Σ for simplicity.

• д(x) = 0.1 iff x ∈ (0, 12] but x < [10, 12);
• д(x) = N(5; 0, 1); and
• д(x) = 1/x for rational x ≥ 2 and 0 otherwise.

The last example is similar to a geometric distribution, in which case
the appropriate “summation" operator (and not integration) over
countably infinite sets in the definition of 𝐵 would need to be used.

The following are entailments of Σ (plotted in Figure 2):
• [move(−2,−2.32)](h = 13.32) ∧𝐵(h ≥ 11) ≤ 0.97.

If the robot intends to move away by 2 units, it does not
control the actual distance it moves away by, nor does it
get to observe it after the move happens. Note that had the
move action been noise-free, the degree of belief in h ≥ 11
would have been one. So the overall outcome is that the
robot believes it away from the wall but the distribution has
“spread.” Note that the entailment also captures the effect
on the true distance, as a result of the actual value being
included in the background theory Σ. However, to reason
about belief, we do not require any mention of h’s value in
the real world. It is purely for illustration purposes. Of course,
the actionmove(−2, 3.32) is also possible, in which case the
robot might have actually moved towards the wall. To unwrap
how the degree of belief is obtained, consider that as per Σ,
there is only a single d that ascribes a probability density of
0.5 to every h ∈ [10, 12]. That is, let (e,w, ⟨⟩) be any model
satisfying Σ. To reason about beliefs after action, using the
definition of truth, we have to obtain the following expression:∫

R

∫
R

{
0.5 × N(z; 2, 1) ifψ
0 otherwise

where ψ is the following three conditions: (a) x ∈ [10, 12];
(b) w∗[h, ⟨⟩] = x ; and (c) (e,w∗,move(−2, z)) |= h ≥ 11.
So only those worlds where h initially in [10, 12] possibly
have non-zero densities. (So whatever value h takes in the
real world w is not relevant.) Next, in these worlds, if the
move of move(−2, z) leads to h ≥ 11, then its prior density
of 0.5 is now multiplied by the density ascribed to z given
that the intended move was −2. (So whatever distance the
robot moved in the real world w is also not relevant.) Using
the successor state axiom, we would, in fact, see that in any
w∗ where h = x initially and (h + z) ≥ 11 is accorded such a
density. This expression is integrated over all values of x and
z to obtain about 0.95, hence the entailed inequality.

• [move(−2,−2.32) · sonar (11.5) · sonar (12.6)](h = 13.32) ∧
𝐵(h ≥ 11) ≥ 0.98.
Here, two consecutive sensing actions means that the robot is
fairly certain (but not absolutely certain) about the spread of
h. For any (e,w, ⟨⟩) satisfying Σ, we expand belief after the
actions to the following expression:∫

R

∫
R

{
θ ifψ
0 otherwise

whereψ is identical to above, except that the condition (c) is:

e,w∗,move(−2, z) · sonar (11.5) · sonar (12.6) |= h ≥ 11.

That is, for any w∗ such that its initial h value is in [10, 12],
we use the density only provided h ≥ 11 is satisfied at



Figure 2: The prior as a green rectangle. The posterior after
a single noisy move away from the wall as a black bell curve, a
subsequent sensing action as a teal bell curve, and a second sens-
ing action as a navy blue bell curve. The posterior after a noisy
move away from the wall and a further noisy move towards the
wall given as an orange bell curve.

(e,w∗,move(−2, z) · sonar (11.5) · sonar (12.6)). But using the
successor state axiom and the fact that sensing actions do
not affect the values of fluents, we use the density provided
w∗ |= (h + z) ≥ 11. So what is the density term θ? Recall
from the above example, that after a noisy action, its the
prior multiplied by the density accorded to the actual argu-
ment of the action being z, that is: 0.5 × N(z; 2, 1). After
two sensing actions, this term needs to account of likeli-
hood of the observed value given the true value. So θ is:
0.5 × N(z; 2, 1) × N(11.5;h, 0.25) × N(12.6;h, 0.25). So the
closer the observed values (11.5 followed by 12.6) are to h
in w∗, the “higher” the density term. Not surprisingly, it is
the probabilistic analogue to exact sensing [36] where worlds
that disagree with the sensed value are simply discarded. Here
worlds that disagree are not discarded but weighted less (pro-
portional to the difference in values) than worlds that agree.

• [move(−2,−2.32) ·move(2, 1.9)]𝐵(h ≥ 10) ≤ 0.8.
Moving away by 2 units and moving back by 2 units means
that the degree of belief in h ≥ 10 is not quite one, owing to
the two noisy moves. That is, had the move action been noise-
free, the robot would be back where it had started, which
means the robot would know that h ≥ 10. The entailment
expands as before, except that we have three integrals: one to
range over values of h, one to range over the second argument
of the first action move(−2, z), and one to range over the
second argument of the second actionmove(2, z′).

5 RELATED WORK & CONCLUSIONS
Given the interest in unifying logic and probability, there are an
extensive list of related work – we refer interested readers to dis-
cussions in [8] – but very few that are closely related. Probabilistic
models, Kalman filters, decision theoretic and probabilistic planning
languages are either not logics (in allowing for arbitrary connectives
and quantifiers) or not general models of actions [18, 35]. Relational
probabilistic models [33] offer some logical features (such as clausal

reasoning), but not embedded in a general model of action, in allow-
ing to reason about unbounded sequences of actions. The closest
ones, therefore, are from the knowledge representation literature. Of
the ones permitting probabilities, proposals are either propositional
[13] or limited to discrete distributions [39]. From an expressiveness
viewpoint BHL and DS are the most general, and from a continuous
viewpoint, BL is the closest, which we recast in a modal language
with meta-beliefs and only knowing here.

There is some low-hanging fruit: resolving projection, via, say
regression or progression [6, 7], for example. But reworking these
should be readily possible given the closeness of the semantical
definition of 𝐵 to BL. Arguably, the most interesting direction for
the future would be allow for infinitely many fluent terms.
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