3,572 research outputs found

    Mechanisms for Automated Negotiation in State Oriented Domains

    Full text link
    This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An approach is offered for conflict resolution, and it is shown that even in a conflict situation, partial cooperative steps can be taken by interacting agents (that is, agents in fundamental conflict might still agree to cooperate up to a certain point). A Unified Negotiation Protocol (UNP) is developed that can be used in all types of encounters. It is shown that in certain borderline cooperative situations, a partial cooperative agreement (i.e., one that does not achieve all agents' goals) might be preferred by all agents, even though there exists a rational agreement that would achieve all their goals. Finally, we analyze cases where agents have incomplete information on the goals and worth of other agents. First we consider the case where agents' goals are private information, and we analyze what goal declaration strategies the agents might adopt to increase their utility. Then, we consider the situation where the agents' goals (and therefore stand-alone costs) are common knowledge, but the worth they attach to their goals is private information. We introduce two mechanisms, one 'strict', the other 'tolerant', and analyze their affects on the stability and efficiency of negotiation outcomes.Comment: See http://www.jair.org/ for any accompanying file

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    The Semantic Web Paradigm for a Real-Time Agent Control (Part II)

    Get PDF
    This paper is the second part of The Semantic Web Paradigm for a Real-time Agent Control, and the goal is to present the predictability of a multiagent system used in a learning process for a control problem (MASLCP).learning process, fuzzy control, agent predictability

    Dispute Resolution Using Argumentation-Based Mediation

    Get PDF
    Mediation is a process, in which both parties agree to resolve their dispute by negotiating over alternative solutions presented by a mediator. In order to construct such solutions, mediation brings more information and knowledge, and, if possible, resources to the negotiation table. The contribution of this paper is the automated mediation machinery which does that. It presents an argumentation-based mediation approach that extends the logic-based approach to argumentation-based negotiation involving BDI agents. The paper describes the mediation algorithm. For comparison it illustrates the method with a case study used in an earlier work. It demonstrates how the computational mediator can deal with realistic situations in which the negotiating agents would otherwise fail due to lack of knowledge and/or resources.Comment: 6 page
    corecore