1,450 research outputs found

    Large NN Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d2d\geq 2

    Full text link
    We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d2d\geq 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of pp-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes

    Tensor network method for reversible classical computation

    Full text link
    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017)]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.We thank Justin Reyes, Oskar Pfeffer, and Lei Zhang for many useful discussions. The computations were carried out at Boston University's Shared Computing Cluster. We acknowledge the Condensed Matter Theory Visitors Program at Boston University for support. Z.-C. Y. and C. C. are supported by DOE Grant No. DE-FG02-06ER46316. E.R.M. is supported by NSF Grant No. CCF-1525943. (Condensed Matter Theory Visitors Program at Boston University; DE-FG02-06ER46316 - DOE; CCF-1525943 - NSF)Accepted manuscrip

    Tensorizing Neural Networks

    Full text link
    Deep neural networks currently demonstrate state-of-the-art performance in several domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times

    Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps

    Get PDF
    Ordinary tensor models of rank D3D\geq 3 are dominated at large NN by tree-like graphs, known as melonic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to different types of large NN limits. We first study the most generic quartic model at D=4D=4, with maximally enhanced non-melonic interactions. The existence of the 1/N1/N expansion is proved and we further characterize the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic class of models for which the large NN free energy and the relevant expectations can be calculated explicitly. They are matched with random matrix models which contain multi-trace invariants in their potentials: they possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, which proves analyticity in the coupling constants in cardioid domains

    Enumeration of uni-singular algebraic hypersurfaces

    Full text link
    We enumerate complex algebraic hypersurfaces in PnP^n, of a given (high) degree with one singular point of a given singularity type. Our approach is to compute the (co)homology classes of the corresponding equi-singular strata in the parameter space of hypersurfaces. We suggest an inductive procedure, based on intersection theory combined with liftings and degenerations. The procedure computes the (co)homology class in question, whenever a given singularity type is properly defined and the stratum possesses good geometric properties. We consider in details the generalized Newton-non-degenerate singularities. We give also examples of enumeration in some other cases.Comment: Published versio
    corecore