97,437 research outputs found

    Multi-Lattice Kinetic Monte Carlo Simulations from First-Principles: Reduction of the Pd(100) Surface Oxide by CO

    Full text link
    We present a multi-lattice kinetic Monte Carlo (kMC) approach that efficiently describes the atomistic dynamics of morphological transitions between commensurate structures at crystal surfaces. As an example we study the reduction of a (5×5)R27∘(\sqrt{5}\times \sqrt{5})R27^{\circ} PdO(101) overlayer on Pd(100) in a CO atmosphere. Extensive density-functional theory calculations are used to establish an atomistic pathway for the oxide reduction process. First-principles multi-lattice kMC simulations on the basis of this pathway fully reproduce the experimental temperature dependence of the reduction rate [Fernandes et al., Surf. Sci. 2014, 621, 31-39] and highlight the crucial role of elementary processes special to the boundary between oxide and metal domains.Comment: 19 pages, 10 figure

    Constrained Statistical Modelling of Knee Flexion from Multi-Pose Magnetic Resonance Imaging

    Get PDF
    © 1982-2012 IEEE.Reconstruction of the anterior cruciate ligament (ACL) through arthroscopy is one of the most common procedures in orthopaedics. It requires accurate alignment and drilling of the tibial and femoral tunnels through which the ligament graft is attached. Although commercial computer-Assisted navigation systems exist to guide the placement of these tunnels, most of them are limited to a fixed pose without due consideration of dynamic factors involved in different knee flexion angles. This paper presents a new model for intraoperative guidance of arthroscopic ACL reconstruction with reduced error particularly in the ligament attachment area. The method uses 3D preoperative data at different flexion angles to build a subject-specific statistical model of knee pose. To circumvent the problem of limited training samples and ensure physically meaningful pose instantiation, homogeneous transformations between different poses and local-deformation finite element modelling are used to enlarge the training set. Subsequently, an anatomical geodesic flexion analysis is performed to extract the subject-specific flexion characteristics. The advantages of the method were also tested by detailed comparison to standard Principal Component Analysis (PCA), nonlinear PCA without training set enlargement, and other state-of-The-Art articulated joint modelling methods. The method yielded sub-millimetre accuracy, demonstrating its potential clinical value

    A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System.

    Get PDF
    The "connectome," a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond

    Semantic Segmentation of Pathological Lung Tissue with Dilated Fully Convolutional Networks

    Full text link
    Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis (CAD) system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a dataset of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semi-supervised fashion, utilizing both labeled and non-labeled image regions. The experimental results show significant performance improvement with respect to the state of the art
    • …
    corecore