4,039 research outputs found

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Material Recognition Meets 3D Reconstruction : Novel Tools for Efficient, Automatic Acquisition Systems

    Get PDF
    For decades, the accurate acquisition of geometry and reflectance properties has represented one of the major objectives in computer vision and computer graphics with many applications in industry, entertainment and cultural heritage. Reproducing even the finest details of surface geometry and surface reflectance has become a ubiquitous prerequisite in visual prototyping, advertisement or digital preservation of objects. However, today's acquisition methods are typically designed for only a rather small range of material types. Furthermore, there is still a lack of accurate reconstruction methods for objects with a more complex surface reflectance behavior beyond diffuse reflectance. In addition to accurate acquisition techniques, the demand for creating large quantities of digital contents also pushes the focus towards fully automatic and highly efficient solutions that allow for masses of objects to be acquired as fast as possible. This thesis is dedicated to the investigation of basic components that allow an efficient, automatic acquisition process. We argue that such an efficient, automatic acquisition can be realized when material recognition "meets" 3D reconstruction and we will demonstrate that reliably recognizing the materials of the considered object allows a more efficient geometry acquisition. Therefore, the main objectives of this thesis are given by the development of novel, robust geometry acquisition techniques for surface materials beyond diffuse surface reflectance, and the development of novel, robust techniques for material recognition. In the context of 3D geometry acquisition, we introduce an improvement of structured light systems, which are capable of robustly acquiring objects ranging from diffuse surface reflectance to even specular surface reflectance with a sufficient diffuse component. We demonstrate that the resolution of the reconstruction can be increased significantly for multi-camera, multi-projector structured light systems by using overlappings of patterns that have been projected under different projector poses. As the reconstructions obtained by applying such triangulation-based techniques still contain high-frequency noise due to inaccurately localized correspondences established for images acquired under different viewpoints, we furthermore introduce a novel geometry acquisition technique that complements the structured light system with additional photometric normals and results in significantly more accurate reconstructions. In addition, we also present a novel method to acquire the 3D shape of mirroring objects with complex surface geometry. The aforementioned investigations on 3D reconstruction are accompanied by the development of novel tools for reliable material recognition which can be used in an initial step to recognize the present surface materials and, hence, to efficiently select the subsequently applied appropriate acquisition techniques based on these classified materials. In the scope of this thesis, we therefore focus on material recognition for scenarios with controlled illumination as given in lab environments as well as scenarios with natural illumination that are given in photographs of typical daily life scenes. Finally, based on the techniques developed in this thesis, we provide novel concepts towards efficient, automatic acquisition systems

    Refractive shape from light field distortion

    Get PDF
    Acquiring transparent, refractive objects is challenging as these kinds of objects can only be observed by analyzing the distortion of reference background patterns. We present a new, single image approach to reconstructing thin transparent surfaces, such as thin solids or surfaces of fluids. Our method is based on observing the distortion of light field background illumination. Light field probes have the potential to encode up to four dimensions in varying colors and intensities: spatial and angular variation on the probe surface; commonly employed reference patterns are only two-dimensional by coding either position or angle on the probe. We show that the additional information can be used to reconstruct refractive surface normals and a sparse set of control points from a single photograph

    Neural 360^\circ Structured Light with Learned Metasurfaces

    Full text link
    Structured light has proven instrumental in 3D imaging, LiDAR, and holographic light projection. Metasurfaces, comprised of sub-wavelength-sized nanostructures, facilitate 180^\circ field-of-view (FoV) structured light, circumventing the restricted FoV inherent in traditional optics like diffractive optical elements. However, extant metasurface-facilitated structured light exhibits sub-optimal performance in downstream tasks, due to heuristic pattern designs such as periodic dots that do not consider the objectives of the end application. In this paper, we present neural 360^\circ structured light, driven by learned metasurfaces. We propose a differentiable framework, that encompasses a computationally-efficient 180^\circ wave propagation model and a task-specific reconstructor, and exploits both transmission and reflection channels of the metasurface. Leveraging a first-order optimizer within our differentiable framework, we optimize the metasurface design, thereby realizing neural 360^\circ structured light. We have utilized neural 360^\circ structured light for holographic light projection and 3D imaging. Specifically, we demonstrate the first 360^\circ light projection of complex patterns, enabled by our propagation model that can be computationally evaluated 50,000×\times faster than the Rayleigh-Sommerfeld propagation. For 3D imaging, we improve depth-estimation accuracy by 5.09×\times in RMSE compared to the heuristically-designed structured light. Neural 360^\circ structured light promises robust 360^\circ imaging and display for robotics, extended-reality systems, and human-computer interactions

    Computational Schlieren Photography with Light Field Probes

    Get PDF
    We introduce a new approach to capturing refraction in transparent media, which we call light field background oriented Schlieren photography. By optically coding the locations and directions of light rays emerging from a light field probe, we can capture changes of the refractive index field between the probe and a camera or an observer. Our prototype capture setup consists of inexpensive off-the-shelf hardware, including inkjet-printed transparencies, lenslet arrays, and a conventional camera. By carefully encoding the color and intensity variations of 4D light field probes, we show how to code both spatial and angular information of refractive phenomena. Such coding schemes are demonstrated to allow for a new, single image approach to reconstructing transparent surfaces, such as thin solids or surfaces of fluids. The captured visual information is used to reconstruct refractive surface normals and a sparse set of control points independently from a single photograph.Natural Sciences and Engineering Research Council of CanadaAlfred P. Sloan FoundationUnited States. Defense Advanced Research Projects Agency. Young Faculty Awar

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented
    corecore