165 research outputs found

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Full text link
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate.Comment: 7 pages, 11 figures, Accepted at the 2015 IEEE Globecom 2015, Selected Areas in Communications: Access Networks and Systems, 6-10 December, 201

    Utility greedy discrete bit loading for interference limited multi-cell OFDM system

    No full text
    In this contribution we present the solution of the utility greedy discrete bit loading for interference limited multicell OFDM networks. Setting the utility as the sum of consumed power proportions, the algorithm follows greedy way to achieve the maximum throughput of the system. Simulation has shown that the proposed algorithm has better performance and lower complexity than the traditional optimal algorithm. The discussion of the results is provided

    A Coded Bit-Loading Linear Precoded Discrete Multitone Solution for Power Line Communication

    Get PDF
    Linear precoded discrete multitone modulation (LP-DMT) system has been already proved advantageous with adaptive resource allocation algorithm in a power line communication (PLC) context. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LP-DMT system is presented in the PLC context with a loading algorithm which ccommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the roposed algorithm is analyzed. Simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than classical coded discrete multitone

    Coded Adaptive Linear Precoded Discrete Multitone Over PLC Channel

    Get PDF
    Discrete multitone modulation (DMT) systems exploit the capabilities of orthogonal subcarriers to cope efficiently with narrowband interference, high frequency attenuations and multipath fadings with the help of simple equalization filters. Adaptive linear precoded discrete multitone (LP-DMT) system is based on classical DMT, combined with a linear precoding component. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LPDMT system is presented in the power line communication (PLC) context with a loading algorithm which accommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the proposed algorithm is analyzed. Theoretical coding gains are derived and simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than coded DMT and can achieve higher throughput for PLC applications

    Real-time dynamic spectrum management for multi-user multi-carrier communication systems

    Full text link
    Dynamic spectrum management is recognized as a key technique to tackle interference in multi-user multi-carrier communication systems and networks. However existing dynamic spectrum management algorithms may not be suitable when the available computation time and compute power are limited, i.e., when a very fast responsiveness is required. In this paper, we present a new paradigm, theory and algorithm for real-time dynamic spectrum management (RT-DSM) under tight real-time constraints. Specifically, a RT-DSM algorithm can be stopped at any point in time while guaranteeing a feasible and improved solution. This is enabled by the introduction of a novel difference-of-variables (DoV) transformation and problem reformulation, for which a primal coordinate ascent approach is proposed with exact line search via a logarithmicly scaled grid search. The concrete proposed algorithm is referred to as iterative power difference balancing (IPDB). Simulations for different realistic wireline and wireless interference limited systems demonstrate its good performance, low complexity and wide applicability under different configurations.Comment: 14 pages, 9 figures. This work has been submitted to the IEEE for possible publicatio

    Loading Algorithms for Adaptive SS-MC-MA Systems over Wireline Channels: Comparison with DMT

    No full text
    In this paper, we propose to combine adaptive loading principles with the spread-spectrum multicarrier multiple access (SS-MC-MA) scheme. Such an approach has particular interests in the context of powerline communications (PLC), where the transmitter has not only to exploit robust transmission techniques, but has also to adapt the waveform to the channel response. We introduce finite-granularity loading algorithms that dynamically handle the configuration of the system under power spectral density constraints. The presented algorithms assign subcarriers, spreading codes, bits and energy to each user in order to maximize either the data rate or the noise margin at a given target symbol error rate. These algorithms can actually be viewed as a widening of the classical waterfilling approach in the case of an hybrid spread-spectrum multicarrier system. Simulation results of the new scheme are presented for different measured PLC channels and are compared with those of the classical discrete multitone modulation (DMT) approach. It is shown that the adaptive SS-MC-MA scheme performs significantly better than DMT, due to its natural energy gathering capability. Adaptive SS-MC-MA then leads to a more efficient bits and energies distribution and constitutes a simple solution to reduce the quantification loss induced by the use of finite order modulation

    Adaptive Spread Spectrum Multicarrier Multiple Access over Wirelines

    No full text
    In this paper, we investigate the dynamic resource allocation adapted to spread spectrum multicarrier multiple access (SS-MC-MA) systems in a multiuser power line communication (PLC) context. The developed adaptive system is valid for uplink, downlink, as well as for indoor and outdoor communications. The studied SS-MC-MA system is based on classical multicarrier modulation like DMT, combined with a spread-spectrum (SS) component used to multiplex several information symbols of a given user over the same subcarriers. The multiple access task is carried out using a frequency division multiple access (FDMA) approach so that each user is assigned one or more subcarrier sets. The number of subcarriers in each set is given by the spreading code length as in classical SS-MC-MA systems usually studied in the wireless context. We derive herein a new loading algorithm that dynamically handles the system conguration in order to maximize the data throughput. The algorithm consists in an adaptive subcarrier, code, bit and energy assignment algorithm. Power spectral density constraint due to spectral mask specications is considered as well as nite order modulations. In that case, it is shown that SS-MC-MA combined with the proposed loading algorithm achieves higher throughput than DMT in a multiuser PLC context. Because of the nite granularity of the modulations, some residual energy is indeed wasted on each subcarrier of the DMT spectrum. The combining of a spreading component with digital multitone (DMT) allows to merge these amounts of energy so that one or more additional bits can be transmitted in each subcarrier subset leading to signicant throughput gain. Simulations have been run over measured PLC channel responses and highlight that the proposed system is all the more interesting than the SNR is low
    corecore