2,119 research outputs found

    Multi-task Implementation for Image Reconstruction of an AER Communication

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. There exist several AER tools to help in developing and testing AER based systems. These tools require the use of a computer to allow the processing of the event information, reaching very high bandwidth at the AER communication level. We propose to use an embedded platform based on multi-task operating system to allow both, the AER communication and the AER processing without a laptop or a computer. We have connected and programmed a Gumstix computer to process Address- Event information and measured the performance referred to the previous AER tools solutions. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment, composed by the Intel XScale processor governed by an embedded GNU/Linux system.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    Embedding Multi-Task Address-Event- Representation Computation

    Get PDF
    Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task AER tool, connecting and programming it for processing Address-Event information from a spiking generator.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    Spike Processing on an Embedded Multi-task Computer: Image Reconstruction

    Get PDF
    There is an emerging philosophy, called Neuro-informatics, contained in the Artificial Intelligence field, that aims to emulate how living beings do tasks such as taking a decision based on the interpretation of an image by emulating spiking neurons into VLSI designs and, therefore, trying to re-create the human brain at its highest level. Address-Event-Representation (AER) is a communication protocol that has embedded part of the processing. It is intended to transfer spikes between bioinspired chips. An AER based system may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. There are several AER tools to help to develop and test AER based systems. These tools require the use of a computer to allow the higher level processing of the event information, reaching very high bandwidth at the AER communication level. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment. This embedded platform is based on the Intel XScale processor which is governed by an embedded GNU/Linux system. We have connected and programmed it for processing Address-Event information from a spiking generator.Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    Performance Study of Software AER-Based Convolutions on a Parallel Supercomputer

    Get PDF
    This paper is based on the simulation of a convolution model for bioinspired neuromorphic systems using the Address-Event-Representation (AER) philosophy and implemented in the supercomputer CRS of the University of Cadiz (UCA). In this work we improve the runtime of the simulation, by dividing an image into smaller parts before AER convolution and running each operation in a node of the cluster. This research involves a test cases design in which the optimal parameters are set to run the AER convolution in parallel processors. These cases consist on running the convolution taking an image divided in different number of parts, applying to each part a Sobel filter for edge detection, and based on the AER-TOOL simulator. Execution times are compared for all cases and the optimal configuration of the system is discussed. In general, CRS obtain better performances when the image is divided than for the whole image.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors

    Get PDF
    Event-Driven vision sensing is a new way of sensing visual reality in a frame-free manner. This is, the vision sensor (camera) is not capturing a sequence of still frames, as in conventional video and computer vision systems. In Event-Driven sensors each pixel autonomously and asynchronously decides when to send its address out. This way, the sensor output is a continuous stream of address events representing reality dynamically continuously and without constraining to frames. In this paper we present an Event-Driven Convolution Module for computing 2D convolutions on such event streams. The Convolution Module has been designed to assemble many of them for building modular and hierarchical Convolutional Neural Networks for robust shape and pose invariant object recognition. The Convolution Module has multi-kernel capability. This is, it will select the convolution kernel depending on the origin of the event. A proof-of-concept test prototype has been fabricated in a 0.35 m CMOS process and extensive experimental results are provided. The Convolution Processor has also been combined with an Event-Driven Dynamic Vision Sensor (DVS) for high-speed recognition examples. The chip can discriminate propellers rotating at 2 k revolutions per second, detect symbols on a 52 card deck when browsing all cards in 410 ms, or detect and follow the center of a phosphor oscilloscope trace rotating at 5 KHz.Unión Europea 216777 (NABAB)Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Address-Event based Platform for Bio-inspired Spiking Systems

    Get PDF
    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows a real-time virtual massive connectivity between huge number neurons, located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate "events" according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems, it is absolutely necessary to have a computer interface that allows (a) reading AER interchip traffic into the computer and visualizing it on the screen, and (b) converting conventional frame-based video stream in the computer into AER and injecting it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. In the other hand, the use of a commercial personal computer implies to depend on software tools and operating systems that can make the system slower and un-robust. This paper addresses the problem of communicating several AER based chips to compose a powerful processing system. The problem was discussed in the Neuromorphic Engineering Workshop of 2006. The platform is based basically on an embedded computer, a powerful FPGA and serial links, to make the system faster and be stand alone (independent from a PC). A new platform is presented that allow to connect up to eight AER based chips to a Spartan 3 4000 FPGA. The FPGA is responsible of the network communication based in Address-Event and, at the same time, to map and transform the address space of the traffic to implement a pre-processing. A MMU microprocessor (Intel XScale 400MHz Gumstix Connex computer) is also connected to the FPGA to allow the platform to implement eventbased algorithms to interact to the AER system, like control algorithms, network connectivity, USB support, etc. The LVDS transceiver allows a bandwidth of up to 1.32 Gbps, around ~66 Mega events per second (Mevps)

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    On algorithmic rate-coded AER generation

    Get PDF
    This paper addresses the problem of converting a conventional video stream based on sequences of frames into the spike event-based representation known as the address-event-representation (AER). In this paper we concentrate on rate-coded AER. The problem is addressed as an algorithmic problem, in which different methods are proposed, implemented and tested through software algorithms. The proposed algorithms are comparatively evaluated according to different criteria. Emphasis is put on the potential of such algorithms for a) doing the frame-based to event-based representation in real time, and b) that the resulting event streams ressemble as much as possible those generated naturally by rate-coded address-event VLSI chips, such as silicon AER retinae. It is found that simple and straightforward algorithms tend to have high potential for real time but produce event distributions that differ considerably from those obtained in AER VLSI chips. On the other hand, sophisticated algorithms that yield better event distributions are not efficient for real time operations. The methods based on linear-feedback-shift-register (LFSR) pseudorandom number generation is a good compromise, which is feasible for real time and yield reasonably well distributed events in time. Our software experiments, on a 1.6-GHz Pentium IV, show that at 50% AER bus load the proposed algorithms require between 0.011 and 1.14 ms per 8 bit-pixel per frame. One of the proposed LFSR methods is implemented in real time hardware using a prototyping board that includes a VirtexE 300 FPGA. The demonstration hardware is capable of transforming frames of 64 times; 64 pixels of 8-bit depth at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.European Union IST-2001-34124Gobierno de España TIC-2000-0406-P4, TIC-2003-08164-C03-0

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    corecore